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PAPER

Nonparametric Regression Method Based on Orthogonalization
and Thresholding

Katsuyuki HAGIWARA†a), Member

SUMMARY In this paper, we consider a nonparametric regression
problem using a learning machine defined by a weighted sum of fixed basis
functions, where the number of basis functions, or equivalently, the number
of weights, is equal to the number of training data. For the learning ma-
chine, we propose a training scheme that is based on orthogonalization and
thresholding. On the basis of the scheme, vectors of basis function outputs
are orthogonalized and coefficients of the orthogonalized vectors are esti-
mated instead of weights. The coefficient is set to zero if it is less than a
predetermined threshold level assigned component-wise to each coefficient.
We then obtain the resulting weight vector by transforming the thresholded
coefficients. In this training scheme, we propose asymptotically reasonable
threshold levels to distinguish contributed components from unnecessary
ones. To see how this works in a simple case, we derive an upper bound
for the generalization error of the training scheme with the given threshold
levels. It tells us that an increase in the generalization error is of O(log n/n)
when there is a sparse representation of a target function in an orthogo-
nal domain. In implementing the training scheme, eigen-decomposition or
the Gram–Schmidt procedure is employed for orthogonalization, and the
corresponding training methods are referred to as OHTED and OHTGS.
Furthermore, modified versions of OHTED and OHTGS, called OHTED2
and OHTGS2 respectively, are proposed for reduced estimation bias. On
real benchmark datasets, OHTED2 and OHTGS2 are found to exhibit rela-
tively good generalization performance. In addition, OHTGS2 is found to
be obtain a sparse representation of a target function in terms of the basis
functions.
key words: nonparametric regression, orthogonalization, hard threshold-
ing, model selection

1. Introduction

This paper considers a regression method using a learning
machine that is defined by a linear combination of fixed
basis functions. In particular, we focus on a machine in
which the number of basis functions, or equivalently, the
number of adjustable parameters or weights, is identical to
the number of training data. This is viewed as a nonpara-
metric regression problem in statistics. In machine learn-
ing, there are several approaches for this purpose, such as
the support vector machine (SVM) [3]; least-squared SVMs
(LS-SVMs) [10], or equivalently, regularized least squares
(RLS) [9]; relevance vector machine (RVM) [11] and its
variant called locally regularized orthogonal least squares
(LROLS) [2]. In SVM, a kernel trick with the represen-
ter theorem yields a linear combination of kernel functions.
LS-SVM/RLS is a quadratic type regularization method un-
der squared error loss. In RVM, regularization parameters
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are assigned individually to weights, which are updated on
the basis of Bayesian log evidence. LROLS is a variant
of RVM in which basis function outputs are orthogonalized
by a modified Gram–Schmidt procedure. In the procedure,
some contributed orthogonal vectors are selected in a greedy
manner in terms of residual reduction. Regularization pa-
rameters are individually assigned to coefficients of the or-
thogonal vectors and are updated as in RVM. The resulting
weight vector is obtained by linear transformation of the co-
efficient vector.

In these training methods, adjustable parameters are
needed to avoid over-fitting to training data and/or to ob-
tain a sparse representation, although there are no system-
atic choices for these parameters. This problem is one of
model selection. SVM parameters, C and ε, determine both
the generalization capability and sparseness of the trained
machine. In LS-SVM/RLS, a regularization parameter af-
fects only the generalization capability. The training param-
eters are usually determined by using a resampling method
such as cross-validation. In RVM and LROLS, there is no
systematic method to determine the number of updates of
regularization parameters and threshold levels necessary to
remove fruitless weights.

In this paper, we propose a training scheme that is
based on orthogonalization and hard thresholding. In this
scheme, vectors of the outputs of basis functions are or-
thogonalized and some of the orthogonalized vectors are
removed according to threshold levels. The advantage of
the naive orthogonalization is that we can set theoretically
reasonable component-wise threshold levels under some as-
sumptions while it is difficult in a modified Gram–Schmidt
procedure in LROLS. Thus, this scheme solves the above
model selection problems automatically. For a simple sit-
uation, we also derive a generalization error bound when
applying this training scheme with given threshold levels.
In implementing this training scheme, we employ eigen-
decomposition or the Gram–Schmidt procedure for orthogo-
nalization, in which the corresponding methods are referred
to as the orthogonalization and hard-thresholding method
with eigen-decomposition (OHTED) and orthogonalization
and hard-thresholding method with Gram–Schmidt proce-
dure (OHTGS). We further modify OHTED and OHTGS
in order to reduce estimation bias, which are referred to as
OHTED2 and OHTGS2, respectively. The proposed meth-
ods are numerically tested on some real benchmark datasets
and compared with a regularization method and LROLS in
terms of generalization capability and sparseness.
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In Sect. 2, we define the learning machine and describe
its training scheme. In Sect. 3, we present the theoretical
details of the training scheme. In Sect. 4, we discuss im-
plementations of the training scheme detailed in Sect. 2. In
Sect. 5, we present the results of numerical experiments on
real benchmark datasets. Section 6 presents the main con-
clusions and the scope for future work.

2. Formulation of Training Procedure

In this section, we explain our training scheme after defining
the learning machine.

2.1 Learning Machine

Let {(xi, yi) : xi ∈ Rd, yi ∈ R, i = 1, . . . , n} be a set of input–
output training data. We assume that output data are gener-
ated by a rule:

yi = h(xi) + ei, i = 1, . . . , n, (1)

where h is a fixed function on Rd and e1, . . . , en are i.i.d.
Gaussian noise with mean zero and variance σ2; that is, ei ∼
N(0, σ2). We refer to h by a target function or true function.

We consider a fitting problem by using a machine
whose output for an input vector x ∈ Rd is given by

fw(x) =
n∑

j=1

w jg j(x), (2)

where w = (w1, . . . , wn) ∈ Rn is a weight vector. (2) is a
linear combination of fixed basis functions. Note that the
number of weights is identical to that of training data here.
g j(x) can be written as g(x, x j) if we employ kernel func-
tions as basis functions.

Let G be an n × n matrix whose (i, j)-th element is
g j(xi). We define g j = (g j(x1), . . . , g j(xn))′, which is the
j-th column vector of G, where ′ denotes the transpose. We
assume that g1, . . . , gn are linearly independent. G has thus
full rank. We redefine w as a vertical vector; that is, w =
(w1, . . . , wn)′. We define fw = ( fw(x1), . . . , fw(xn)), which
is written as fw = Gw. We also define y = (y1, . . . , yn)′,
e = (e1, . . . , en)′, and h = (h(x1), . . . , h(xn))′.

2.2 Transformation of G

Our training scheme is described step by step as follows:
The flow of the training scheme is summarized in Fig. 1. In
our training scheme, we first consider the transformation of
G into a matrix with orthogonal column vectors.

{g1, . . . , gn} can be regarded as a coordinate system
since fw is represented by a weighted sum of those vectors.
In this paper, we introduce another coordinate system ob-
tained by transformation of the original coordinate system
and is also an orthogonal system. Let Q be an invertible
n × n matrix. We define A = GQ and denote the jth column
vector of A as a j. We assume that A has full rank and A′A is

(G,w) (G,w)⏐⏐⏐⏐⏐� Q−1 : orthogonalization Q
�⏐⏐⏐⏐⏐

(A, u) −−−−−−−−−−→
estimation

(A, û ) −−−−−−−−−−−−→
thresholding

(A, u)

Fig. 1 Flow of training scheme using orthogonalization and threshold-
ing.

a diagonal matrix by an appropriate choice of Q. Such Q ex-
ists since gk’s are linearly independent. We define Γ = A′A,
where Γ = diag(γ1, . . . , γn). diag(γ1, . . . , γn) denotes a di-
agonal matrix whose ( j, j)-th element is γ j. {a1, . . . , an} is
thus a set of orthogonal vectors. Since A′A = Q′(G′G)Q, a
transformation by Q implements a diagonalization of G′G,
which is the Gram matrix of {g1, . . . , gn}. For given in-
put data x1, . . . , xn and fixed basis functions g1, . . . , gn, Q
can be viewed as a matrix that transforms {g1, . . . , gn} into
{a1, . . . , an}. We call a j an orthogonal component or orthog-
onal basis vector. We define

u = (v1, . . . , vn)′ = Q−1w (3)

by which we can write fw = Gw = Au. We call u an orthog-
onal coefficient vector.

2.3 Estimation of Orthogonal Coefficient Vector

In training of a machine with many degrees of freedom,
there are two problems encountered: over-fitting and insta-
bility of the training process. If such a machine is trained
under a squared error loss function, then the machine highly
over-fits training data, resulting in poor prediction. In ad-
dition, for the typical choices for basis functions such as
Gaussian and sigmoidal functions, vectors of the outputs of
the basis functions can be nearly linearly dependent when
we use many basis functions. This leads to instability of a
trained weight vector.

The regularization method is one of the strategies for
solving these two problems simultaneously. In the regular-
ization method, we obtain an estimator of u that minimizes
a regularized cost function defined by

C(u) = ‖y − Au‖2 + u′Λu, (4)

where the first term is a squared error function and the
second term is a regularization term or regularizer. Λ

is an n-dimensional diagonal matrix defined by Λ =

diag(λ1, . . . , λn), where λ j ≥ 0 for all j. λ j’s are called reg-
ularization parameters. In a typical application of a regular-
ization method, λ = λ j for all j. Note that we may introduce
a regularizer only for stabilizing the training process since
the generalization capability is improved by another source.
Further note that in implementing our scheme, we will not
introduce a regularizer and consider stability to be guaran-
teed by another technique. In this case, we just set λ j = 0 for
all j. In theoretical analyses, however, we take account of
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a regularizer as a general case. A regularized estimator that
minimizes C(u) is defined by û. By simple calculations, we
have

û = (Γ + Λ)−1A′y (5)

since A′A = Γ. By the definition of Γ and Λ, we can write

v̂ j = a′jy/(γ j + λ j) (6)

for j = 1, . . . , n.

2.4 Thresholding of Orthogonal Coefficient Vector

By introducing a set of threshold levels defined by θ =
(θ1, . . . , θn)′, we consider the application of a hard thresh-
olding operator Tθ to an orthogonal coefficient vector. The
thresholded orthogonal coefficient vector is then given by
Tθ(u) = (Tθ1 (v1), . . . ,Tθn (vn))′, where

Tθ j (v j) =

⎧⎪⎪⎨⎪⎪⎩v j v2
j > θ j

0 v2
j ≤ θ j

, j = 1, . . . , n. (7)

For a regularized estimator given by (5), we define u =
Tθ( û ). By (3), we then obtain w = Qu as the resulting
weight vector in our scheme.

3. Theoretical Details on Threshold Levels

In this section, we consider threshold levels in the above-
mentioned training scheme.

3.1 Statistical Properties of û

We assume that there exists a w∗ such that h = Gw∗ holds.
We call w∗ a true weight vector and define u∗ = Q−1w∗ on
the basis of (3). We call u∗ = (v∗1, . . . , v

∗
n)′ a true orthogonal

coefficient vector. We define ξn = {x1, . . . , xn} as the set of
training inputs. We simply measure the generalization error
on ξn, which is written as

R(w|ξn) =
1
n

n∑
i=1

(h(xi) − fw(xi))
2 =

1
n
‖h −Gw‖2. (8)

(8) is minimized if w∗ = (G′G)−1G′h holds. We omit condi-
tioning by ξn below.

We now have e ∼ N(0n, σ
2In), where 0n is the n-

dimensional zero vector and In is the n × n identity matrix.
We define μ = (μ1v

∗
1, . . . , μnv

∗
n)′ in which

μ j =
γ j

γ j + λ j
. (9)

By (5), we have

E[ û ] = (Γ + Λ)−1A′h = (Γ + Λ)−1A′Gw∗ = μ (10)

where we used y = h + e, h = Gw∗, u∗ = Q−1w∗, and
A′A = Γ. We define S = σ2(Γ + Λ)−2Γ = diag(σ2

1, . . . , σ
2
n)

in which

σ2
j =

σ2γ j

(γ j + λ j)2
. (11)

By (5) and (10), we have

E[( û − E[ û ])( û − E[ û ])′] = S , (12)

where we used Eee′ = σ2In and A′A = Γ. Since e ∼
N(0n, σ

2In) and û is a linear transformation of e, we have

û ∼ N (μ, S ) . (13)

Since S is diagonal, v̂ j ∼ N(μ jv
∗
j , σ

2
j ), j = 1, . . . , n hold and

are independent.

3.2 Thresholding Operation with Threshold Levels

By (3), we have h = Gw∗ = Au∗. We define V∗ = { j|v∗j �
0, 1 ≤ j ≤ n} and V = { j|v∗j = 0, 1 ≤ j ≤ n}. V∗ is a subset of
indexes for which true orthogonal coefficients are nonzero.
We refer to {a j| j ∈ V∗} as true components or contributed
components. K∗n denotes the cardinality of V∗, and we define
Kn = n− K∗n as the cardinality of V . Orthogonal coefficients
that have indexes in V do not relate to a target function and
are affected only by noise. We thus refer to {a j| j ∈ V} as
noise components. The purpose of thresholding is to remove
noise components and keep contributed components. We
should determine appropriate threshold levels to achive this
purpose in some meanings. We here define

Cn,ε = (2 + ε) log n, (14)

where ε is a constant. Let δ be a positive constant below.
We consider a thresholding operation Tθn,ε in which θn,ε =

(θ1,ε , . . . , θn,ε),

θ j,ε = σ
2
jCn,ε , j = 1, . . . , n. (15)

We present a theoretical implication of the threshold
levels defined in (15). We define Zj = ( v̂ j − μ jv

∗
j)/σ j. By

(13) and the definition of V , Zj = v̂ j/σ j for j ∈ V and {Zj :
j ∈ V} are i.i.d. samples from N(0, 1). By the definition of
θ j,ε , we have

P

⎡⎢⎢⎢⎢⎢⎢⎣⋃
j∈V

{
v̂ 2

j > θ j,δ

}⎤⎥⎥⎥⎥⎥⎥⎦ = P
⎡⎢⎢⎢⎢⎢⎢⎣⋃

j∈V

{
v̂ 2

j/σ
2
j > Cn,δ

}⎤⎥⎥⎥⎥⎥⎥⎦
= P

[
max

j∈V
Z2

j > Cn,δ

]
.

Since Kn ≤ n and δ > 0,

lim
n→∞ P

⎡⎢⎢⎢⎢⎢⎢⎣⋃
j∈V

{
v̂ 2

j > θ j,δ

}⎤⎥⎥⎥⎥⎥⎥⎦ = 0 (16)

by (A· 4) in Appendix A. On the other hand, we consider the
case where Kn ≥ ρn for ρ ∈ (0, 1]. We then have
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P

⎡⎢⎢⎢⎢⎢⎢⎣⋂
j∈V

{
v̂ 2

j ≤ θ j,−δ
}⎤⎥⎥⎥⎥⎥⎥⎦ = P

⎡⎢⎢⎢⎢⎢⎢⎣⋂
j∈V

{
v̂ 2

j/σ
2
j ≤ Cn,−δ

}⎤⎥⎥⎥⎥⎥⎥⎦
= P

[
max

j∈V
Z2

j ≤ Cn,−δ
]
.

Since δ > 0,

lim
n→∞ P

⎡⎢⎢⎢⎢⎢⎢⎣⋂
j∈V

{
v̂ 2

j ≤ θ j,−δ
}⎤⎥⎥⎥⎥⎥⎥⎦ = 0 (17)

by (A· 5) in Appendix A.
(16) tells us that for any j ∈ V , v̂ 2

j cannot exceed θ j,δ

with high probability when n is large. If we employ θ j,δ’s
as component-wise threshold levels, then (16) implies that
they have a high probability of removing all noise compo-
nents if n is large. On the other hand, (17) tells us that there
is at least one noise component for which v̂ 2

j > θ j,−δ, j ∈ V
with high probability when n is large. In other words, there
exists at least one noise component for which v̂ 2

j is close to
θ j,0. Thus, we cannot distinguish a contributed component
with v̂ 2

j ≤ θ j,−δ from a noise component. Alternatively, the
j-th component should be recognized as a noise component
if v̂ 2

j ≤ θ j,−δ, even when it is not. Since δ can be set to an
arbitrarily small value here, θ j = θ j,0, j = 1, . . . , n are crit-
ical levels and reasonable for deciding whether to remove
or keep orthogonal components if Kn ≥ ρn. As a summary,
(16) tells us that θ j = θ j,0, j = 1, . . . , n can be used for the
worst case evaluations for noise levels and are appropriate
threshold levels for removing noise components. Addition-
ally, (16) and (17) says that those are tight if Kn ≥ ρn.

It may be important to consider a generalization prop-
erty of the proposed training scheme. For a simple situation,
we will give an upper bound on the generalization error de-
fined by (8) when applying threshold levels defined by (15).
We make the following two assumptions here:

(A1) γ j ≥ 4σ2Cn,ε/|v∗j |2 for j ∈ V∗.
(A2) λ j ≤ √γ j for j ∈ V∗.

(A1) implies that γ j, j ∈ V∗ should be larger than c j log n
for some c j > 0. Recall that γ j is the squared norm of jth
orthogonal basis vector with length n. If (A1) does not hold
for a contributed component then almost all of output val-
ues of the component may be nearly zeros or exactly zeros
since the right hand side of (A1) is of O(log n). This im-
plies that the component may not contribute a target output;
that is, for examples, it gives spikey outputs. We exclude
this type of contributed outputs by (A1), which may be nat-
urally accepted. On the other hand, if λ j is large for j ∈ V∗
then the corresponding v̂ j is biased from v∗j . (A2) avoids
this. Roughly speaking, regularization parameters may be
required to go to zero as n → ∞ for a consistency of an es-
timated model outputs. If this is true, (A2) is satisfied for a
sufficiently large n under (A1).

Under (A1) and (A2), we have

P

⎡⎢⎢⎢⎢⎢⎢⎣R(u|ξn) >
1
n

n∑
j=1

α j

⎤⎥⎥⎥⎥⎥⎥⎦→ 0 (18)

as n→ ∞, where

α j =

⎧⎪⎪⎨⎪⎪⎩γ jθ j,ε j ∈ V∗

0 j ∈ V
(19)

for any ε > 0. The proof is given in Appendix B. Note that
(18) holds for any h while it gives an important implications
under a sparseness condition as mentioned later. We con-
clude this section with some remarks including this point.

• The aim of applying a thresholding scheme is to re-
move noise components and keep contributed compo-
nents. As seen in evaluation of P2 in Appendix B and
also evaluation of (16), component-wise threshold lev-
els defined by (15) remove all noise components with
high probability when n is large. Moreover, as seen
in the evaluation of P1,1 in Appendix B, component-
wise threshold levels retain all of the contributed com-
ponents with high probability when n is large.
• If γ j = 1 and λ j = 0 for all j, then our threshold-

ing method on the orthogonal domain is consistent with
a hard thresholding method with a universal threshold
level in wavelet denoising, which has asymptotic opti-
mality [4].
• If we define a generalization error by R(w) =

Eu[(h(u) − fw(u))2] and assume that there exists w∗ =
(w∗1, . . . , w

∗
n)′ such that h(u) =

∑n
j=1 w

∗
jg j(u) for any u,

then we have R(w) = (w−w∗)′H(w−w∗), where H is an
n × n matrix whose (k, l)-th element is Eu[gk(u)gl(u)].
Here, Eu denotes an expectation with respect to a
probability distribution P on Rd. On the other hand,
R(ŵ|ξn) = (w∗ − ŵ)′(G′G/n)(w∗ − ŵ) holds by (8), since
h = Gw∗ holds. If training inputs are randomly drawn
from P, then by the strong law of large numbers, we
have 1

n

∑n
i=1 gk(xi)gl(xi) → Eu[gk(u)gl(u)] as n → ∞

almost everywhere if basis functions are sufficiently
smooth. In this situation, we can therefore expect that
R(ŵ|ξn) approximates R(ŵ) for a sufficiently large n.
However, we need a proof to rigorously support the va-
lidity of the proposed threshold levels in this case.
• If λ j = 0 for all j then α j = σ

2Cn,ε . In this case, (18)
can be written as

P

[
R(u|ξn) > σ2(2 + ε)

K∗n
n

log n

]
→ 0 (20)

as n→ ∞.
• If K∗n = n then (20) is not informative bound on the gen-

eralization error unfortunately. However, if K∗n is small
relative to n then (20) gives us some non-trivial impli-
cations. This is the case that there is a sparse repre-
sentation of a target function in an orthogonal domain.
The important point is that, in this case, we can ex-
pect Kn ≥ ρn and the proposed threshold levels in (15)
can be critical levels. (20) gives us non-trivial results
in this case as follows. If K∗n = o(n/ log n), then by
(20), the generalization error goes to zero as n → ∞.
If K∗n is a constant, then the generalization error is less
than O(log n/n). As seen in the evaluation of P1,2, we
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need O(log n/n) for uniformly bounding the fluctua-
tions of orthogonal coefficients for contributed compo-
nents. (20) is tight when K∗n = O(n) while the gen-
eralization error cannot be shown to go to zero in this
case. On the other hand, (20) is not tight under a sparse-
ness condition while it guarantees the convergence of
generalization error. Roughly speaking, if K∗n is con-
stant then we may just need to uniformly bounding a
sequence of random variables with a constant length.
From the viewpoint of the aysmptotic theory, log n ap-
peared in (20) may be replaced with log log n for this
case while the rigorous proof is somewhat complicated
and is included in our future works.
• In applications, it is natural to consider the case where

K∗n = n but many v∗j’s are small. This depends on the
shape of a true function. As well known, under a lim-
ited number of training data, small values of v∗j should
be ignored because the corresponding components are
used to fit noise, which causes over-fitting. Unfortu-
nately, for this case, (20) cannot give us valid impli-
cations when using the proposed threshold levels. In
other words, the magnitude of v∗j is not reflected in (20).
However, let us recall (16) and (17). Those tell us that
we cannot distinguish a contributed component from
noise components if the magnitude of coefficients of
the contributed components is less than the proposed
threshold levels. This is true regardless of the shape
of a true function. We should note that a certain the-
oretical plausibility of our threshold levels in practical
applications comes from an evaluation of noise levels.

4. Implementation

In this section, we describe an implementation of the above
training scheme.

4.1 Estimation of Noise Variance

We employ θn,0 as component-wise threshold levels since δ
can be set to an arbitrarily small value in (16) and (17). In
practical applications of threshold levels, we need an esti-
mate of noise variance σ2. Fortunately, in nonparametric
regression methods, [1] suggested

σ̂2 =
y′(I − H)2y

trace[(I − H)2]
, (21)

where

H = A(Γ + Λ)−1A′, (22)

by which an estimated machine output vector is given by
Hy; that is, it is written as a linear estimator based on y.

4.2 Orthogonalization Procedure

In this paper, we consider two different procedures for de-
termining Q by which A′A becomes a diagonal matrix, or

equivalently, {a1, . . . , an} becomes a set of orthogonal vec-
tors.

The first procedure is based on eigen-decomposition of
G′G. We choose Q in which the k-th column vector is the k-
th eigenvector of G′G. Q is then an orthonormal matrix; that
is, Q−1 = Q′. By this choice of Q, the column vectors of A =
GQ, in which a1, . . . , an, are orthogonal . Actually, A′A =
(GQ)′GQ = Q′(G′G)Q = Γ, where γk is the eigenvalue
corresponding to ak. Since G is nondegenerate, we have
γk > 0 for any k. Without loss of generality, we assume that
γ1 ≥ γ2 ≥ · · · ≥ γn > 0.

The second procedure is based on Gram–Schmidt or-
thogonalization of G = (g1, . . . , gn). In the Gram–Schmidt
procedure, gk is orthogonalized on the basis of g1, . . . , gk−1.
We assume that orthogonal vectors q1, . . . , qk−1 are already
obtained by a Gram–Schmidt procedure for g1, . . . , gk−1.
At the k-th step, we define p j,k = 〈q j, gk〉/‖q j‖2, j =
1, . . . , k − 1, where 〈·, ·〉 denotes the Euclidean inner prod-
uct. We then obtain qk = gk −

∑k−1
j=1 p j,k q j, which is or-

thogonal to q1, . . . , qk−1. This procedure is successively
applied by starting from q1 = g1. We define P1 = In.
Let Pk, k = 2, . . . , n be a n × n matrix whose ( j, k)-th el-
ement is p j,k if j = 1, . . . , k − 1, is 1 if j = k, and is
0 otherwise. We define Qk =

∏k
j=1 Pj. We then have

GQk = (q1, . . . , qk, gk+1, . . . , gn); that is, multiplication of
Qk brings us to the k-th step of the Gram–Schmidt proce-
dure. We choose Qn as Q. Then A = GQ = (q1, . . . , qn), by
which ak = qk and γk = ‖qk‖2. In implementing the Gram–
Schmidt procedure, we consider the choice of a vector of
basis function outputs to be orthogonalized at each step. At
the k-th step, we calculate p j,i, qi, and γi for all i in {k, . . . , n}.
We then find ck = arg maxk≤i≤n γi. We set p j,k = p j,ck and
qk = qck

. We then swap gck
with gk and repeat this proce-

dure. This process chooses the k-th orthogonal component
that maximizes its norm, or equivalently, is possibly unre-
lated to previously chosen components. This process may
stabilize an orthogonalization procedure. In doing this, we
need to store an index set {c1, . . . , cn} for calculating w.

LROLS [2] employs a modified Gram–Schmidt proce-
dure in which the vector of basis function outputs to be or-
thogonalized is selected according to residual error reduc-
tion in a greedy manner. In this case, our threshold levels
cannot be applied because the procedure corresponds to se-
lect basis functions as to well fit training data. It is a setup
similar to that employed in optimizing a multilayer percep-
tron or choosing hyperparameters in kernel methods in a
data-dependent manner (see, e.g., [7]). In this meaning, it
may also be difficult for LROLS to confirm the effective-
ness of an update procedure for the regularization param-
eters on the basis of Bayesian log evidence, although [2]
reports good performance by LROLS in numerical experi-
ments. In LROLS, after the update, sparseness is maintained
by removing coefficients of small magnitude, although there
is no systematic method available to set appropriate cut-off
values. This problem also emerges in RVM.
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4.3 Numerical Stability

Although the previous theoretical analysis covers a regular-
ization method, we consider the following alternative train-
ing procedure. Since in our method, over-fitting can be
avoided by thresholding in an orthogonal domain, we are
left with only the stability problem in training. For this,
we choose orthogonal components for which γk’s are larger
than a positive constant η. This is because estimation of
the coefficients of orthogonal components with small values
for γk’s are no longer accurate because of numerical errors.
Their contributions are suppressed when we introduce a reg-
ularization method. So they are not useful in explaining
training data. A set of orthogonal components that satisfy
this condition is referred to as a stable set. In this procedure,
regularization parameters are set to zeros; that is, λ j = 0
for all j. If we set a large value for η then the number of
components in the stable set are not sufficient to represent a
target function. On the other hand, over-fitting may occur if
we set a small value for η while a stability of training pro-
cedure is kept in this case. Our thresholding method avoid
this over-fitting by removing noise components in the sta-
ble set. In other words, η is set to a small value for just
avoiding instability in the training process, and the orthog-
onal components in a stable set are targets of thresholding.
Note that η is not a hyperparameter which affects the gener-
alization performance and, thus, there is no need to optimize
η. However, we note also that the number of candidates in
the stable set, that is the size of the stable set can vary with
the hyperparameter values.

In addition, restriction of the set of orthogonal com-
ponents by η reduces the number of candidates that must
be compared with the threshold levels. When applying the
Gram–Schmidt procedure, especially, the number of steps is
equal to the size of a stable set. This may considerably re-
duce computational cost. Note that eigen-decomposition is
efficiently implemented in many software packages, includ-
ing Matlab and R, and requires only a few CPU cycles.

4.4 Summary of Procedure for Hard Thresholding

By incorporating the above implementation issues, we pro-
pose the procedure summarized below.

1. We set η to a small positive value and set λ j = 0 for all
j, as discussed in 4.3. We apply eigen-decomposition
or the Gram–Schmidt procedure in 4.2 for orthogo-
nalization of {g1, . . . , gn} and obtain {(a j, γ j, v̂ j) : j =
1, . . . , l ≤ n}, where v̂ j is obtained by (6) with λ j = 0
and l = l(η) is the number of orthogonal components in
a stable set in 4.3. We also obtain Rl, which is the first
n × l submatrix of Q when using eigen-decomposition
and the first l× l submatrix of Ql when using the Gram–
Schmidt procedure.

2. We define θ̂ j = σ̂
2
jCn,0, where Cn,0 = 2 log n and σ̂2

j =

σ̂2/γ j. σ̂2 is obtained by (21), where A = (a1, . . . , al),

Γ = diag(γ1, . . . , γl), and Λ is an l × l zero matrix. We
then obtain ul = (Tθ̂1

(̂v1), . . . ,Tθ̂l
(̂vl))′, where Tθ̂ j

is de-
fined by (7). If m < l and Tθ̂ j

(̂v j) = 0 for any m < j ≤ l,
then we set um = (Tθ̂1

(̂v1), . . . ,Tθ̂m
(̂vm))′. In this case,

we replace l with m in constructing Rl in 1.

3. The final weight vector is obtained by w = Rmum.
w is an n-dimensional vector when using eigen-
decomposition and is an m-dimensional vector when
using the Gram–Schmidt procedure. As a result, the
output of fw for x ∈ Rd is fw(x) =

∑n
j=1 w jg j(x) when

using eigen-decomposition and fw(x) =
∑m

j=1 w jgc j (x)
when using the Gram–Schmidt procedure.

We refer to the methods with eigen-decomposition and
the Gram–Schmidt procedure as OHTED and OHTGS re-
spectively. The two methods yield different types of esti-
mates for a weight vector. It is easy to see that the least
squares estimate of a weight vector is ŵ = (G′G)−1G′y. The
least squares estimate of an orthogonal coefficient vector is
û = Γ−1A′y by (5). We obtain ŵ = Q û due to (3). We then
have ‖ŵ‖2 = û ′Q′Q û = ‖ û ‖2 since Q is orthonormal. It is
also easy to see that R′mRm = Im in OHTED. We thus have
‖w‖2 = u′mR′mRmul = ‖um‖2. By the definition of Tθ̂m

, we
have ‖um‖2 ≤ ‖ û ‖2. This implies that ‖w‖2 ≤ ‖ŵ‖2 while w
has the same dimensions as ŵ. Thus, w is a shrinkage es-
timator of a weight vector. On the other hand, in OHTGS,
we have {gc1 , . . . , gcm } as a set of unremoved basis functions.
Since m ≤ n, OHTGS works as a thresholding method also
on the set of original basis functions. In practical situations,
l � n holds (see, e.g., [2]). In addition, as can be seen in
the numerical experiments described below, m < l holds.
Since some of vk, k ∈ {c1, . . . , cm} are possibly set to zero
by thresholding, w can also be a shrinkage estimate of a
weight vector associated with {gc1 , . . . , gcm }. Note that the
performances of the proposed methods including the gener-
alization capabilities and/or the numbers of unremoved or-
thogonal basis vectors are affected by the choice of basis
functions. If an assumed basis function has hyperparame-
ters then its performance depends on the choice of hyper-
parameters. Therefore, in practical applications, we need to
choose appropriate hyperparameters by using such as cross-
validation method.

4.5 Modifications to OHTED and OHTGS

As previously mentioned, orthogonal components with large
γ j capture the smooth part of training data and dominate
machine outputs. Accidental removal of such orthogo-
nal components by, for example, hard thresholding, will
yield a large bias. Actually, in wavelet denoising, only
fast/detail components are the targets of the thresholding
method and slow/approximation components are considered
harmless [4]. In our methods, such accidental removal oc-
curs when there are some zeros in um = (v1, . . . , vm)′. If
v̂ j ≤ θ̂ j and it is a coefficient of a contributed component,
then it yields a bias that causes a large increase in the gen-
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eralization error. It is usually of O(1). If we set v j = v̂ j,
j ∈ {1, . . . ,m} even when it is a coefficient of a noise com-
ponent, then the generalization error of the j-th compo-
nent is γîv

2
j in (A· 6). By (16), this is bounded above by

2σ2 log n/γ j with high probability, which is very small for
a component with large γ j. If there is a sparse represen-
tation and K∗ is constant, then it is of O(log n/n) by (20).
It is thus safer to avoid accidental removal and retain such
components. We thus consider the use of um = (̂v1, . . . , v̂m)′;
that is, we retain all m orthogonal components. In other
words, this procedure is a stopping point search, which is m
here, in increasing order of magnitudes of γ j. OHTED and
OHTGS with this modification are referred to as OHTED2
and OHTGS2 respectively. We note that OHTGS2 works
as a thresholding method also on the original basis function
but does not work as a shrinkage method since we do not
remove any of the ak, k ∈ {c1, . . . , cm}.

5. Numerical Experiments

In this section, we compare the generalization performance
of the proposed methods to the alternatives through numer-
ical experiments on real benchmark datasets from [12]. As
an alternative, we consider the regularization method with
the squared norm of weights as a regularizer, where the
regularization parameter is selected by leave-one-out cross-
validation (LOOCV). We refer this method just by regu-
larization method (RM) below. We also test LROLS here
while we do not apply a sparsity control with heuristics. In
addition, we discuss the performance of OHTGS/OHTGS2
in terms of sparseness.

We employ a Gaussian basis function for all meth-
ods. A hyperparameter is a width parameter that is com-
mon across all basis functions. Each dataset is divided into
a training set and test set. A machine is trained for a train-

Table 1 Names of datasets, number of training data (ntrain), test
data (ntest), and inputs (d) of each dataset.

names of datasets ntrain ntest d

Ailerons 4000 2000 39
Delta ailerons 4000 2000 5
Elevators 4000 2000 17
Delta elevators 4000 2000 6
Kin8nm 4000 2000 8
Puma8NH 3000 1499 8
Puma32H 3000 1499 32
Auto 300 92 7

Table 2 Averaged test errors (mean ± twice the standard deviation).

RM OHTED OHTED2 OHTGS OHTGS2 LROLS
ailerons 0.422±0.031 0.178±0.011 0.178±0.012 0.526±0.053 0.525±0.054 0.500±0.039
delta ailerons 0.305±0.023 0.315±0.030 0.307±0.023 0.312±0.022 0.306±0.024 0.306±0.023
elevators 0.116±0.016 0.106±0.015 0.100±0.014 0.115±0.016 0.109±0.015 0.106±0.015
delta elevators 0.376±0.019 0.378±0.018 0.379±0.018 0.379±0.019 0.381±0.022 0.376±0.019
kin8nm 0.117±0.011 0.158±0.025 0.123±0.023 0.171±0.020 0.135±0.020 0.124±0.017
puma8NH 0.342±0.026 0.373±0.029 0.350±0.056 0.414±0.030 0.360±0.027 0.352±0.029
puma32H 0.798±0.037 0.819±0.038 0.801±0.039 0.820±0.037 0.801±0.039 0.800±0.039
auto 0.129±0.046 0.144±0.047 0.141±0.059 0.145±0.057 0.136±0.049 0.146±0.058

ing set by using each method and tested on a test set. The
test error is defined as the mean squared error on the test set.
We repeat this procedure for five different randomly chosen
pairs of sets and calculate the average test error. The names
of the datasets are shown in Table 1, together with the num-
ber of training data, test data, and inputs. For each dataset,
values for all variables are normalized to zero mean and unit
variance. The value of a hyperparameter is determined by
two-fold cross-validation. The candidate set of values for
the hyperparameter is T = {1, 2, 5, 8} and is common for all
datasets.

In RM, candidate values for a regularization parame-
ter are {k × 10 j; k = 1, 5, j = −4,−3, . . . , 2}. In LROLS,
we set λinit = 10−3 as the common initial value of regu-
larization parameters, ηL = 10−6 as the lower bound for
the squared norms of orthogonalized vectors in a modified
Gram–Schmidt procedure, K = 20 as the number of updates
of the regularization parameters on the basis of Bayesian
log evidence (see, e.g., [2], [11] for the details of the param-
eters). Here, ηL plays the same role as η in our methods. In
LROLS, we do not apply heuristics when choosing the num-
ber of basis functions. For our methods, we set η = 10−10.
In all datasets, the number of unremoved components, m, is
smaller than that of candidates in a stable set determined by
this value of η.

Averaged test errors for 50 repetitions are summarized
in Table 2, in which test error is divided by the variance of
the test data for normalization. In this table, we also show
twice the standard deviation for 50 repetitions. In Table 3,
we show the numbers of unremoved orthogonal basis vec-
tors in OHTGS and OHTGS2 together with twice the stan-
dard deviations. Both of OHTGS and OHTGS2 yield the
same number of unremoved original basis functions, which
is consistent with the value for OHTGS2 in Table 3; see
Sect. 4.4. As explained in 4.5, the number of unremoved
orthogonal components in OHTGS is smaller than that in
OHTGS2 if the selected hyperparameter value is identical.
We can see this in Table 3 while we should note that the
selected hyperparameter value for OHTGS can be different
from that for OHTGS2 in each trial. In Table 3, by com-
paring the number of data in Table 1, we can see that, for
all data sets, OHTGS and OHTGS2 obtained sparse repre-
sentations in the orthogonal domain and also in the original
domain.

In Table 2, we can see that OHTED2 outperforms the
other methods in the “ailerons” datasets, and is compara-
ble to RM in the other datasets; that is, the average per-
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Table 3 Averaged number of unremoved basis functions (mean ± twice
the standard deviation).

OHTGS OHTGS2
ailerons 6.70 ± 2.92 10.54 ± 2.59
delta ailerons 17.64 ± 7.04 53.20 ± 11.76
elevators 40.88 ± 7.22 101.42 ± 5.38
delta elevators 7.36 ± 3.79 42.00 ± 160.84
kin8nm 208.84 ± 17.90 612.28 ± 17.23
puma8NH 64.26 ± 7.93 254.82 ± 128.47
puma32H 16.92 ± 4.06 31.96 ± 3.59
auto 10.30 ± 4.38 24.52 ± 34.58

formance depends on the dataset, although the differences
are almost within twice the standard deviations. The per-
formance of OHTED and OHTGS tends to be worse than
those of the other methods. This may be due to an es-
timation bias caused by accidental removing contributing
components. We can therefore say that the modification in
OHTED2 and OHTGS2 is effective in improving the gener-
alization performance in practical situations.

The performance of RM and OHTED2 seems to be su-
perior to that of OHTGS2 in terms of the average test error.
This fact may tell us that sparseness on basis functions may
not necessarily imply better generalization capability. The
other reason for this fact may be due to the orthogonaliza-
tion procedure in OHTGS/OHTGS2. In OHTED/OHTED2,
the components in a stable set represent the smooth part of
data. This is intuitively understood since the eigendecom-
position procedure is essentially the same as the principal
component analysis of vectors of basis function outputs and
the stable set is constructed by the components with rel-
atively large eigen values. Therefore, OHTED/OHTED2
may be possible to reduce a bias effectively. On the other
hand, if we pick up the components so as to reduce resid-
uals in the Gram-Schmidt procedure as in LROLS then it
could effectively represent a target function by a few com-
ponents. However, it would be difficult to derive theoretical
threshold levels for this procedure. In OHTGS/OHTGS2,
we pick up components successively so as to cover the input
space by using information only about input data. There-
fore, OHTGS/OHTGS2 do not see output data in the or-
thogonalization procedure. This may cause a bias in training
since some contributed basis functions may not be in a sta-
ble set. However, Table 2 shows that such a impact is small
in OHTGS2. Although constructing the stable set without
using output data may be a disadvantage of our methods,
we could construct theoretically reasonable threshold levels
because of this restriction. However, there may be effective
methods for constructing a stable set in OHTGS/OHTGS2
under this restriction.

The relatively good generalization performance of
LROLS may stem from the update of regularization param-
eters since the number of basis functions may be larger than
the number of effective basis functions; that is, the weights
are small for ineffective basis functions. Note again that in
LROLS, and also in RVM, there is no systematic choice
for the number of updates and threshold levels for remov-

ing weights. On the other hand, although RM exhibits good
generalization performance in this set of experiments, it re-
quires a proper choice of candidates and number of folds in
cross-validation. The important point is that OHTED2 and
OHTGS2 do not present such a model selection problem.

6. Conclusions and Future Work

For a nonparametric regression problem, we proposed a
training scheme based on orthogonalization and thresh-
olding with theoretically reasonable threshold levels. For
the training scheme, we also obtained an upper bound for
the generalization error in a simple case. As an impli-
cation of the bound, we found that the increase in the
generalization error is of O(log n/n) if there is a sparse
representation of the target function in an orthogonal do-
main. Analyses for more general cases are left to fu-
ture work. We also described a practical implementation
of the training scheme and proposed the training methods
OHTED/OHTED2 and OHTGS/OHTGS2, which are based
on eigen-decomposition and the Gram–Schmidt orthogo-
nalization procedure, respectively. OHTED2/OHTGS2 are
modifications of OHTED/OHTGS with reduced incidence
of accidental estimation bias. In numerical experiments on
real benchmark datasets, we compared the performance of
our methods to those of RM and LROLS. We found that
the generalization capabilities of OHTED2 and OHTGS2
are comparable to those of RM and LROLS. In addition,
OHTGS2 could obtain a sparse representation. The salient
point is that our methods are automatic, including model
selection, which is an advantage of using orthogonaliza-
tion. Moreover, our methods are easily implemented, ex-
cept eigen-decomposition, which is nevertheless included in
most software.

In applications, to reduce a bias effectively for OHTGS
and OHTGS2, we need to improve a choice of basis func-
tions in each step of the orthogonalization procedure. On
the other hand, from a theoretical viewpoint, it is important
to consider a target function for which Kn = n but many
v∗j is small, which is mentioned in the remark of Sect. 3.2.
Unfortunately, the generalization error bound given in this
paper does not reflect the magnitude of v∗j . Furthermore,
the derived bound is not tight in the sparse case as noted
in Sect. 3.2. To derive more precise and tight bound of the
generalization error is a part of our future works. Also, the
rigorous analysis when the inputs are stochastic is also left
as a future work.
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Appendix A: Properties of Gaussian and χ2 Random
Variables

Let Y1, . . . ,Ym be i.i.d. random variables from N(0, 1), that
is, a Gaussian distribution whose mean is 0 and vari-
ance 1. Y2

1 , . . . ,Y
2
m are then i.i.d. random variables from

χ2
1, where χ2

1 denotes a χ2 distribution with one degree
of freedom. We define φ(x) = e−x2/2/

√
2π and ψ1(t) =

(21/2Γ(1/2))−1t−1/2 exp(−t/2), which are probability density
functions of N(0, 1) and χ2

1 respectively. We define Cn,δ =

(2 + δ) log n, where δ is a constant and n ≥ m. We have

P[Y1 > x] ∼ φ(x)/x (A· 1)

for large x([5], [6], [8]), where the notation of p(x) ∼ q(x)
implies p(x)/q(x) → 1 as x → ∞. By replacing x with√

Cn,δ in (A· 1), we have

P[max
1≤i≤m

Yi >
√

Cn,δ] ≤
m∑

i=1

P[Yi >
√

Cn,δ]

∼ mc1

n1+δ/2
√

log n ≤ c1

nδ/2
√

log n

(A· 2)

for sufficiently large n, where c1 is a constant. We thus have
P[max1≤i≤m Yi >

√
Cn,δ]→ 0 as n→ ∞ if δ ≥ 0.

We have

P[Y2
1 > x] ∼ 2ψ1(x) (A· 3)

for large x ([5], [6], [8]). By replacing x with Cn,δ in (A· 3),
we have

P[max
1≤i≤m

Y2
i > Cn,δ] ≤

m∑
i=1

P[Y2
i > Cn,δ]

∼ mc2

n1+δ/2
√

log n

≤ c2

nδ/2
√

log n
(A· 4)

for large n, where c2 is a constant. We thus have
P[max1≤i≤m Y2

i > Cn,δ]→ 0 as n→ ∞ if δ ≥ 0.
On the other hand, we assume that m ≥ ρn where ρ ∈

(0, 1]. Then, for a sufficiently large n, we have

P[max
1≤i≤m

Y2
i ≤ Cn,δ] =

(
P[Y2

1 ≤ Cn,δ]
)m

=
(
1 − P[Y2

1 > Cn,δ]
)m

∼
⎛⎜⎜⎜⎜⎜⎝1 − c3

n1+δ/2
√

log n

⎞⎟⎟⎟⎟⎟⎠
m

≤
⎛⎜⎜⎜⎜⎜⎝1 − ρc3

nδ/2
√

log n

1
m

⎞⎟⎟⎟⎟⎟⎠
m

∼ exp
(
−ρc3/(n

δ/2
√

log n)
)
, (A· 5)

where c3 is a constant. In this case, thus, P[max1≤i≤m Y2
i ≤

Cn,δ]→ 0 as n→ ∞ if δ < 0.

Appendix B: Proof of (18)

By (8), we have

nR(u|ξn) = ‖Au∗ − Au‖2 = (u − u∗)′A′A(u − u∗)

=

n∑
i=1

γi(vi − v∗i )2, (A· 6)

since h = Au∗, Gw = Au and A′A = Γ. Then we have

P

⎡⎢⎢⎢⎢⎢⎣nR(u|ξn) >
n∑

i=1

αi

⎤⎥⎥⎥⎥⎥⎦
≤P

⎡⎢⎢⎢⎢⎢⎣ n⋃
i=1

{
γi(vi − v∗i )2 > αi

}⎤⎥⎥⎥⎥⎥⎦
≤P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗

{
γi(vi − v∗i )2 > αi

}⎤⎥⎥⎥⎥⎥⎦ + P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V

{
γiv

2
i > 0

}⎤⎥⎥⎥⎥⎥⎦ . (A· 7)

We denote the first and second terms in (A· 7) as P1 and P2

respectively. We note that P1 relates to contributed com-
ponents and P2 relates to noise components. We define
Zi = ( v̂i − μiv

∗
i )/σi. We first evaluate P2. By (13) and the

definition of V , Zi = v̂i/σi for i ∈ V and {Zi : i ∈ V} are i.i.d.
samples from N(0, 1). By the definition of θi,n,ε , we have

P2 = P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V

{
v2

i > 0
}⎤⎥⎥⎥⎥⎥⎦



HAGIWARA: NONPARAMETRIC REGRESSION METHOD BASED ON ORTHOGONALIZATION AND THRESHOLDING
1619

≤ P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V

{
v̂ 2

i > θi,n,ε

}⎤⎥⎥⎥⎥⎥⎦
= P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V

{
v̂ 2

i /σ
2
i > Cn,ε

}⎤⎥⎥⎥⎥⎥⎦
= P

[
max
i∈V

Z2
i > Cn,ε

]
. (A· 8)

Since Kn ≤ n, it is easy to see (A· 8) is bounded above by
O((log n)−1/2n−ε/2) by (A· 4) in Appendix A. This goes to
zero as n→ ∞ since ε > 0.

We evaluate P1: We define events E1,i = {γi(vi − v∗i )2 >
αi} and E2,i = { v̂ 2

i ≤ θi,ε}. P1 is bounded by

P1 = P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗

(
E1,i ∩ (E2,i ∪ EC

2,i)
)⎤⎥⎥⎥⎥⎥⎦

≤ P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V∗

(
E1,i ∩ E2,i)

)⎤⎥⎥⎥⎥⎥⎦ + P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V∗

(
E1,i ∩ EC

2,i)
)⎤⎥⎥⎥⎥⎥⎦ ,

(A· 9)

where EC
2,i denotes the complement of E2,i. We denote the

first and second terms of (A· 9) as P1,1 and P1,2 respectively.
By the definition of αi, we obtain

P1,2 ≤ P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V∗

(
E1,i

⋂
{v2

i = v̂
2
i }
)⎤⎥⎥⎥⎥⎥⎦

≤ P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V∗

{
γi( v̂i − v∗i )2 > αi

}⎤⎥⎥⎥⎥⎥⎦
= P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗

{
( v̂i − v∗i )2/σ2

i > Cn,ε

}⎤⎥⎥⎥⎥⎥⎦
= P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗

{
| v̂i − v∗i |/σi >

√
Cn,ε

}⎤⎥⎥⎥⎥⎥⎦
= P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗

{
| v̂i − μiv

∗
i + μiv

∗
i − v∗i |/σi >

√
Cn,ε

}⎤⎥⎥⎥⎥⎥⎦
≤ P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗

{
|Zi| >

√
Cn,ε − Dn

}⎤⎥⎥⎥⎥⎥⎦ , (A· 10)

where Dn = |v∗i ||μi − 1|/σi. By the definition of μi and σ2
i ,

we have Dn = |v∗i |λi/(σ
√
γi). This is bounded above by

O(1) if (A2) holds. By the definition of Cn,ε , we thus have√
Cn,ε/2 <

√
Cn,ε − Dn for large n. (A· 10) is bounded above

by P
[⋃

i∈V∗
{
Z2

i > Cn,ε/2

}]
. By (A· 4) in Appendix A, this is

bounded above by O((log n)−1/2n−ε/4) since Z1, . . . ,Zn are
i.i.d. samples from N(0, 1). Therefore, P1,2 goes to zero as
n→ ∞ since ε ≥ 0.

If we assume that v∗i > 0, we obtain, by (15),

E2,i =
{
| v̂ i| ≤ σi

√
Cn,ε

}
=

{
|Zi + μiv

∗
i /σi| ≤

√
Cn,ε

}
=

{
−√

Cn,ε ≤ Zi + μiv
∗
i /σi

}
⋂{

Zi + μiv
∗
i /σi ≤

√
Cn,ε

}

⊆
{
Zi + μiv

∗
i /σi ≤

√
Cn,ε

}
=

{
Zi ≤

√
Cn,ε − |v∗i |

√
γi/σ

}
⊆

{
Zi ≤ −

√
Cn,ε

}
, (A· 11)

where we use the definition of Zi in the second line, μi/σi =√
γi/σ in the fifth line, and (A1) in the last line. Similarly,

we also have E2,i ⊆ {Zi >
√

Cn,ε} if v∗i < 0. Since Zi ∼
N(0, 1), we have P

[
E2,i

] ≤ P [Zi >
√

Cn,ε

]
for any v∗i � 0.

We then have

P1,1 ≤ P
⎡⎢⎢⎢⎢⎢⎣⋃

i∈V∗
E2,i

⎤⎥⎥⎥⎥⎥⎦
≤ P

⎡⎢⎢⎢⎢⎢⎣⋃
i∈V∗
{Zi >

√
Cn,ε}

⎤⎥⎥⎥⎥⎥⎦
= P

[
max
i∈V∗

Zi >
√

Cn,ε

]
. (A· 12)

Since K∗n ≤ n, this is bounded by O((log n)−1/2n−ε/2) by
(A· 2) in Appendix A. This goes to zero as n → ∞ since
ε > 0.
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