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LETTER

Artificial Cohort Generation Based on Statistics of Real Cohorts
for GMM-Based Speaker Verification

Yuuji MUKAI†, Nonmember, Hideki NODA†a), and Takashi OSANAI††, Members

SUMMARY This paper discusses speaker verification (SV) using
Gaussian mixture models (GMMs), where only utterances of enrolled
speakers are required. Such an SV system can be realized using artifi-
cially generated cohorts instead of real cohorts from speaker databases.
This paper presents a rational approach to set GMM parameters for artifi-
cial cohorts based on statistics of GMM parameters for real cohorts. Equal
error rates for the proposed method are about 10% less than those for the
previous method, where GMM parameters for artificial cohorts were set in
an ad hoc manner.
key words: speaker verification, Gaussian mixture model, artificial cohort,
score normalization, background model

1. Introduction

Speaker verification (SV) is the task of determining whether
the claimed identity of a speaker is correct. Statistical ap-
proaches using Gaussian mixture models (GMMs) are com-
monly used for text-independent SV [1]. An important issue
in the statistical approaches is that of score normalization,
and several normalization methods have already been pro-
posed. Popular normalization methods include normaliza-
tion using universal background model [1], cohort normal-
ization method [2], and T-norm [3].

All of the above score normalization methods need
speaker databases. However, preparation of a database is
a burden particularly in a small-scale SV system such as
one for home security, where the number of enrolled speak-
ers is very small. In such an SV system, it is desirable
to perform SV using only utterances of enrolled speakers.
This issue was already addressed in text-dependent SV us-
ing hidden Markov model [4] and text-independent SV us-
ing GMM [5], [6].

In [5], a background model was estimated using the
training data for a claimed speaker, i.e., the same data was
used to build the claimed speaker model and its background
model. The difference between the two models is the num-
ber of Gaussian mixtures, where the smaller number was
used for the background model. In [6], artificial cohorts
were used instead of real cohorts from speaker databases.
Considering that GMMs for cohorts for a claimed speaker
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are relatively close to that for the claimed speaker, GMMs
for cohorts were generated by changing model parameters of
the GMM for the claimed speaker. SV performance by this
approach was better than that by [5]. However the GMMs
for cohorts were generated in an ad hoc manner, i.e., varia-
tion ranges of GMM parameters for cohorts were set merely
experimentally. Alternatively, this paper proposes a rational
approach to set GMM parameters for artificial cohorts based
on statistics of GMM parameters for real cohorts.

The use of artificial cohorts can be most effective in
case that the universal background model or real cohorts
from a database cannot be available in an SV system because
of the recording condition (including transmission channel)
for the SV system being different from that for the database.
Assuming that a different recording condition changes fea-
ture vectors only by adding a speaker independent vector,
the difference between GMM for a claimed speaker and that
for a cohort is considered to be independent of the record-
ing condition. Then, once necessary parameters to gener-
ate artificial cohorts (see Sect. 4) have been estimated based
on statistics of GMM parameters for real cohorts from a
database, we can expect that those parameters can be uti-
lized in any SV system.

2. Score Normalization Methods for Speaker Verifica-
tion

Let Y = {yt; t = 1, · · · ,T } denote a sequence of fea-
ture vectors obtained from input speech, and let ps(yt) and
po(yt) be probability density functions (pdfs) of yt for a
claimed speaker (true speaker) and all other possible speak-
ers (impostors), respectively. Here both pdfs are modeled
by GMMs. Assuming that yts are mutually independent and
then ps(Y) =

∏T
t=1 ps(yt) and po(Y) =

∏T
t=1 po(yt), log-

likelihood ratio S (Y) is given as

S (Y) = log
ps(Y)
po(Y)

(1)

=

T∑
t=1

log
ps(yt)
po(yt)

. (2)

In fact, instead of ps(Y) and po(Y), the normalized likeli-
hood by the length T of the vector sequence Y (the number
of frames), i.e., ps(Y)1/T and po(Y)1/T are usually used. In
that case, the log-likelihood ratio S (Y) is given as

S (Y) =
1
T

log
ps(Y)
po(Y)

(3)
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=
1
T

T∑
t=1

log
ps(yt)
po(yt)

. (4)

Using S(Y), the decision on the hypothesis that Y is from
the claimed speaker is made as follows.

S (Y) ≥ θth, accept the hypothesis (5)

S (Y) < θth, reject the hypothesis, (6)

where θth is a decision threshold.
Taking the aforementioned general procedure into ac-

count, two popular score normalization methods are de-
scribed as follows.

(1) Use of universal background model [1]
Speech samples from a large number of speakers are
used to train a single GMM for po(yt), which is called
a universal background model or a world model.

(2) Cohort normalization [2]
Cohort normalization uses a set of other speakers called
cohorts whose pdfs are close to that for a claimed
speaker. Cohorts for the claimed speaker are selected
from speaker databases. Given the selected cohorts
ci, i = 1, · · · ,N and their pdfs pci (Y), the following
po(Y),

po(Y) =
1
N

N∑
i=1

pci (Y) (7)

is used instead of the universal background model.

3. Previous Artificial Cohort Model

In this section, after a brief introduction of GMM, we re-
view the previous method to generate GMMs for artificial
cohorts [6].

A mixture of K Gaussian distributions is described as

p(yt) =
K∑

k=1

akgk(yt; mk,Σk),
K∑

k=1

ak = 1, (8)

gk(yt; mk,Σk) =
1

(2π)D/2|Σk |1/2

· exp

{
−1

2
(yt −mk)TΣ−1

k (yt −mk)

}
, (9)

where yt is a D dimensional feature vector at t-th frame and
ak is the mixing coefficient of the k-th Gaussian distribution
gk(yt; mk,Σk) with mean vector mk and covariance matrix
Σk. The model parameters, ak,mk,Σk, k = 1, · · · ,K are iter-
atively estimated by the EM method [7]. Explicit procedures
of the EM method are found in [8], [9]. The initial values to
start the iterative procedure are obtained by clustering train-
ing samples using the VQ method [10].

Given model parameters, ak,mk,Σk, k = 1, · · · ,K of
the GMM ps(yt) for a claimed speaker, those parameters
aci

k ,m
ci

k ,Σ
ci

k for its artificial cohorts ci, i = 1, · · · ,N were set
as

aci

k = ak, (10)

mci

k = mk + αrci

k , (11)

Σ
ci

k = βΣk, (12)

where α and β are parameters which should be set exper-
imentally, and rci

k is a random vector whose components
rci

k,d, d = 1, · · · ,D are uniformly distributed in the interval
−1 ≤ rci

k,d ≤ 1. The parameter α controls variations of mci

k
for cohorts from mk, and the parameter β > 1 increases
variances for cohorts from those for the claimed speaker.
α = 0.2 and β = 2 were used in [6].

4. Artificial Cohort Model Based on Statistics of Real
Cohorts

We take a rational approach where GMM parameters for ar-
tificial cohorts are set based on statistics of GMM parame-
ters for real cohorts. In order to realize it, we investigate the
differences of the GMM parameters between claimed speak-
ers and their real cohorts. To investigate those differences,
each of mixed Gaussians for a claimed speaker needs to have
a corresponding Gaussian among mixed ones for each co-
hort. We find out such a correspondence relation using the
Kullback-Leibler (KL) divergence. The KL divergence DKL

for two Gaussians, g1(y; m1,Σ1) and g2(y; m2,Σ2) is given
as [11]

DKL =

∫ ∞
−∞

g1(y; m1,Σ1) ln
g1(y; m1,Σ1)
g2(y; m2,Σ2)

dy (13)

=
1
2

tr(Σ−1
2 Σ1 − I) +

1
2

(m1 −m2)TΣ−1
2 (m1 −m2)

+
1
2

ln
|Σ2|
|Σ1| . (14)

Taking one Gaussian from the mixtures for a claimed
speaker as the above g1(y; m1,Σ1) and taking one Gaussian
among the mixtures for a cohort as the above g2(y; m2,Σ2),
the one among the mixtures for a cohort which gives the
smallest KL divergence is decided as the corresponding one
for that Gaussian for a claimed speaker.

Let mk,d and mci

k′ ,d
be the d-th component of the mean

vector mk of k-th Gaussian for a claimed speaker and that
of mci

k′
of the corresponding k

′
-th Gaussian for its real co-

horts ci, i = 1, · · · ,N, respectively, and σk,d and σci

k′ ,d
be the

d-th diagonal component of the covariance matrix Σk for a
claimed speaker and that of Σci

k′
for its real cohorts, respec-

tively, assuming that the covariance matrices are diagonal.
The data of mci

k′ ,d
−mk,d and 1/(σci

k′ ,d
/σk,d) = σk,d/σ

ci

k′ ,d
for all

speakers are collected, where the number of data is the num-
ber of speakers × the number of cohorts per each speaker ×
the number of mixed Gaussians. As an example, the dis-
tribution of mci

k′ ,d
− mk,d and that of σk,d/σ

ci

k′ ,d
both for fifth

component (d = 5) are shown in Fig. 1 and Fig. 2, respec-
tively. According to the experimental conditions described
in Sect. 5, where the number of speakers is 100, the number
of cohorts per each speaker is 50, and the number of mixed
Gaussians is 16, the number of data used for these figures is
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Fig. 1 Distribution of difference of means mci

k′ ,d −mk,d for d = 5 for real

and artificial cohorts.

Fig. 2 Distribution of ratio of two variances σk,d/σ
ci

k′ ,d for d = 5 for real

and artificial cohorts.

Table 1 Estimated parameters: standard deviation parameter λ for Gaus-
sian distribution and parameters θ1 and θ2 for gamma distribution.

d (component number)
1 3 5 7 9 11

λ 0.300 0.210 0.150 0.124 0.098 0.088
θ1 1.318 1.586 1.716 1.576 2.156 1.774
θ2 0.691 0.555 0.509 0.567 0.409 0.495

100×50×16 = 80, 000. As for d, the number of components
is 12 according to 12 dimensional feature vectors used in the
following experiments. Considering these distributions and
that in Bayesian parameter estimation for Gaussian distri-
bution, Gaussian distribution is used as conjugate prior for
mean and gamma distribution is used as that for inverse vari-
ance [12], we describe the distribution of mci

k′ ,d
− mk,d as a

Gaussian distribution with zero mean and that of σk,d/σ
ci

k′ ,d
as a gamma distribution.

Model parameters of these Gaussian and gamma dis-
tributions are estimated using the above-mentioned 80,000
samples for each component d = 1, · · · , 12, and estimated
parameters for odd number components are shown in Ta-
ble 1. In the table, λ is the standard deviation parameter for
Gaussian distribution and θ1 and θ2 are the parameters for
gamma distribution described as

p(x) =
1

θθ12 Γ(θ1)
xθ1−1 exp(−x/θ2), (15)

where Γ(θ1) is the gamma function. As for θ1 and θ2, the
averaged values of those for all ds, θ1 = 1.727 and θ2 =
0.526 are used in the following experiments because of not
very strong dependency on d. In fact, as is shown in Table 2
in Sect. 5, SV performance using artificial cohorts generated
with these averaged θ1 and θ2 is almost the same as that with
d-dependent ones.

Using these estimated parameters and given parameters
mk,d and σk,d for a claimed speaker, the parameters mci

k,d and
σci

k,d for its artificial cohorts ci, i = 1, · · · ,N are set as

mci

k,d = mk,d + λduci

k,d, (16)

σci

k,d = σk,d/v
ci

k,d, (17)

where λd is the above λ parameter for the d-th component,
uci

k,d is a random number from the standard normal distri-
bution (Gaussian with zero mean and unit variance), and
vci

k,d is a random number from the gamma distribution with
θ1 = 1.727 and θ2 = 0.526. The distribution of mci

k′ ,d
− mk,d

and that of σk,d/σ
ci

k′ ,d
for artificial cohorts, which are de-

rived by the same procedure as aforementioned one for real
cohorts, are also shown in Fig. 1 and Fig. 2, respectively. As
for difference of means mci

k′ ,d
− mk,d, the distribution for ar-

tificial cohorts is close to that for real cohorts. However,
as for ratio of variances σk,d/σ

ci

k′ ,d
, considerable difference

exists between the two distributions.
With regard to the mixing coefficient ak of the k-th

Gaussian, we take a similar approach to that for mk,d. First,
the data aci

k′
− ak for all speakers are collected, where ak and

aci

k′
are the mixing coefficient of k-th Gaussian for a claimed

speaker and that of the corresponding k
′
-th Gaussian for its

real cohorts ci, i = 1, · · · ,N, respectively. Then we describe
the distribution of aci

k′
− ak as a Gaussian distribution with

zero mean. Using the estimated standard deviation parame-
ter λa = 0.040 for Gaussian distribution and a given ak for a
claimed speaker, the parameters aci

k for its artificial cohorts
ci, i = 1, · · · ,N are set as

aci

k =
ak + λauci

k∑K
k=1(ak + λauci

k )
, (18)

where uci

k is a random number from the standard normal dis-
tribution. However, effect of changing ak on performance
improvement was very small or almost nothing. For exam-
ple, in the following experiment using 50 frames shown in
Table 4, error rates with and without changing ak was 5.52%
and 5.54%, respectively.

5. Speaker Verification Experiments

For SV experiments, telephone speech data-set was used,
which consists of isolated uttered Japanese 20 words pro-
duced two repetitions by 100 male speakers in two sessions
spaced three to four months apart [13]. The speech data was
low-pass filtered at 4.5 kHz and digitized at 10 kHz sam-
pling rate. The digitized speech was pre-emphasized with
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Table 2 Equal error rates (%) in SV experiments with different numbers
of frames using artificial cohorts generated with two kinds of parameters θ1
and θ2: d-dependent parameters and the averaged ones.

the number of frames
50 100 150 200

d-dependent parameters 5.58 3.57 3.11 2.86
averaged parameters 5.52 3.58 3.17 2.79

a first-order adaptive filter and subjected to 12th order LPC
analysis with 25.6 msec Hamming window and 12.8 msec
frame rate. In fact, the selective LPC analysis was applied
to use the spectral information up to 4 kHz considering that
the speech data is telephone speech. The twelve LPC cep-
stral coefficients obtained by this analysis were used as a
feature vector for each time frame.

The data-set was divided into two sets: one set con-
sists of first-uttered 20 words in two sessions and the other
consists of second-uttered ones in two sessions. The for-
mer set was used for training and the latter set for test. For
SV experiments, word utterances of each speaker are con-
nected and used in an endless way. The number of tests per
speaker is 100 for utterances of the same speaker and 100
for those of impostors, i.e., 10,000 in total for both cases.
In each test, starting point of input is randomly selected and
impostors are also randomly selected from 99 speakers ex-
cluding the relevant true speaker. Experiments with 20,000
tests are carried out five times, where different artificial co-
horts are generated for each experiment. SV performance
is measured by average of equal error rates (EERs) for five
experiments.

In the following experiments, the covariance matrix Σk

of each Gaussian distribution gk(yt; mk,Σk) is assumed to be
diagonal. The number of mixtures for GMM is 16, and the
number of cohorts used are 50 for both real and artificial
cohorts, both of which follow [6]. Given the likelihood for a
claimed speaker ps(Y) and that for an other speaker among
99 speakers pi(Y), the speaker i is selected as a member
of 50 cohorts for the claimed speaker if the difference of
likelihood |ps(Y) − pi(Y)| is within the smallest 50 among
99. The universal background model, which is used as a
conventional method in the following experiments, was here
estimated by using training data from all 100 speakers.

With regard to the parameters θ1 and θ2 for gamma dis-
tribution in Eq. (15), SV experiments are carried out using
artificial cohorts generated with two kinds of parameters θ1
and θ2: d-dependent parameters and the averaged ones of
those for all ds. Experimental results are shown in Table 2.
Both of two parameter settings produce almost same SV per-
formance.

The proposed SV method using artificial cohorts is
evaluated by comparing it with the previous method as well
as several conventional methods: methods using the univer-
sal background model, real cohorts from the data-set, and a
background model in [5], which we call pseudo background
model. For reference, SV experiments using a method with-
out background model were also carried out where only the
log-likelihood for a claimed speaker log ps(Y) is used in-

Table 3 Equal error rates (EERs) in SV experiments using several
pseudo background models with different numbers of mixtures, where the
number of frames used is 50.

the number of mixtures
8 4 2 1

EER (%) 24.9 13.4 8.8 7.2

Table 4 Equal error rates (%) for several SV methods with different
numbers of frames.

the number of frames
method 50 100 150 200

universal background 3.3 1.9 1.5 1.4
real cohort 2.5 1.5 1.4 1.4

artificial cohort (previous) 6.4 4.1 3.4 3.1
artificial cohort (proposed) 5.5 3.6 3.2 2.8

pseudo background 7.2 4.1 3.2 2.8
without background 7.6 5.4 4.8 4.5

stead of the log-likelihood ratio S (Y) in (1). Regarding the
method using pseudo background model [5], we have found
out that a single Gaussian model instead of mixture models
is best for the pseudo background model, which is shown in
Table 3.

Experimental results are shown in Table 4. SV perfor-
mance by the method without background model is naturally
worst among all methods. EERs for the proposed method
using artificial cohorts are about 10% less than those for
the previous method, and EERs for the proposed method
are less than those for the method using pseudo background
model when the number of frames used is small. However,
SV performance by the proposed method using artificial co-
horts is still much worse than that using real cohorts.

6. Conclusions

This paper discussed how to generate artificial cohorts in or-
der to realize GMM-based SV method using only utterances
of enrolled speakers, i.e., without using speaker databases
including many other speakers’ utterances. In this paper, we
proposed a rational approach to set GMM parameters for ar-
tificial cohorts based on statistics of GMM parameters for
real cohorts. EERs for the proposed method using artifi-
cial cohorts are about 10% less than those for the previous
method, where GMM parameters for artificial cohorts were
set in an ad hoc manner.
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