
1628
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

PAPER

Sound Specific Vibration Interface for Enhancing Reality in
Computer Games

Kyungkoo JUN†a), Member

SUMMARY This paper presents the development of a sound–specific
vibration interface and its evaluation results by playing three commercial
games with the interface. The proposed interface complements the pitfalls
of existing frequency–based vibration interfaces such as vibrating headsets,
mouses, and joysticks. Those interfaces may bring negative user experi-
ences by generating incessant vibrations because they vibrate in response
to certain sound frequencies. But the proposed interface which responds
to only target sounds can improve user experiences effectively. The hard-
ware and software parts of the interface are described; the structure and
the implementation of a wrist pad that delivers vibration are discussed.
Furthermore, we explain a sound-matching algorithm that extracts sound
characteristics and a GUI-based pattern editor that helps users to design vi-
bration patterns. The results from evaluating the performance show that the
success ratio of the sound matching is over 90% at the volume of 20 dB and
the delay time is around 400 msec. In the survey about user experiences,
the users evaluates that the interface is more than four times effective in
improving the reality of game playing than without using the vibration in-
terfaces, and two times than the frequency–based ones.
key words: vibration interface, sound, frequency, haptics, reality, games

1. Introduction

Reality in games and virtual reality applications has been
sought by various research efforts. Graphics and sound ar-
eas have been the central focus of such efforts. Recently,
haptics, i.e. sense of touch, has emerged as a next step to
move on for further enhanced user experience. Such moves
share the motivation discussed in [1], insisting that haptic ef-
fects accompanying visual and audio effects can enrich user
experience.

A simplest way to apply haptic effects to applications is
via vibration interfaces such as vibrating mouses [2], head-
sets [3], joysticks [4]. There are two types of such inter-
faces depending on how the vibration is triggered. The
first type is program-based. Applications themselves embed
codes to control the vibration interfaces. The second type is
frequency-based. The interfaces of this type are able to an-
alyze the frequency distribution of sound. On detecting the
presence of certain frequency bands, the interfaces generate
vibration.

However, since the program-based ones are tightly cou-
pled with applications, the compatibility issues between in-
terfaces and applications pose an obstacle to its widespread
adoption. The frequency-based interfaces have the problems

Manuscript received September 27, 2010.
Manuscript revised March 21, 2011.
†The author is with the Dept. of Embedded Systems Engineer-

ing, University of Incheon, Korea.
a) E-mail: kjun@incheon.ac.kr

DOI: 10.1587/transinf.E94.D.1628

to trigger vibrations unnecessarily often and improperly.
According to the survey undertaken in [5], a group of people
who used vibrating mouses and headsets for game play com-
plained that the vibration occurs too often and sometimes at
unwanted moments, having them feel haptically-numb soon
and even being annoyed. It was because the frequency bands
to which the headset and the mouse vibrates exist in many
sound effects of the game including background music.

Therefore, the frequency-based interfaces need to be
able to generate vibration only at certain types of sounds,
referred to hereafter as target sounds, while not respond-
ing to frequency bands. To do so, the sound detection and
recognition capability is crucial. Past research efforts related
with the sound matching are as follows. Speech recognition
by Hidden Markov model (HMM) [6] uses the fast Fourier
transformation (FFT) and the learning process to search for
the match of a target sound over input sound. However, the
computing requirements of HMM can easily exceed the ca-
pacity that gaming interfaces provide. SOLAR [7] compares
the frequency distribution with less computing overhead to
recognize occurrences of target sounds. However, it is a
non realtime solution that cannot be used for game play. [8]
tries to detect and recognize impulsive sounds such as glass
breaks, human screams. It uses the non-linear median fil-
ter for the detection and two statistical classifiers based on
Gaussian Mixture Models and HMM for the recognition.
However, it is too complex to put into gaming interfaces
and it is not designed for real time use. [9] combines statis-
tical pattern recognition methods with statistical signal pro-
cessing and [10] proposes a detection method using dyadic
trees of wavelet coefficients and a recognition method using
GMM. However, neither of them is designed for realtime
use and light enough to be embedded in gaming interfaces.

This paper proposes a sound specific interface that
vibrates responding to only a set of pre-specified target
sounds. It can provide real-time sound matching with low
computing overhead. In addition, a GUI-based software tool
by which users design various vibration patterns for target
sounds is introduced.

This paper is organized as follows. Section 2 intro-
duces the proposed vibration interface by explaining its
hardware and software aspects. Section 3 presents the test
results of the proposed interface. The results from the per-
formance measurement of the sound matching and the sur-
vey about user experiences are discussed. Section 4 con-
cludes this paper.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

JUN: SOUND SPECIFIC VIBRATION INTERFACE FOR ENHANCING REALITY IN COMPUTER GAMES
1629

2. Sound–Specific Vibration Interface

The proposed interface consists of hardware and software
parts. The hardware parts are a device that delivers vibra-
tion to human users and a board that runs a sound matching
algorithm. Regarding the software parts, there is a vibration
pattern editor along with the sound matching algorithm.

2.1 Hardware

The proposed interface consists of a sound analyzer and a
wrist pad as shown in Fig. 1 and its implementation is in
Fig. 2. The sound analyzer receives sounds from game play
as input and performs a sound matching algorithm on them
to check whether it is the sound to trigger vibration. It then
requests the wrist pad to generate vibration. The vibration
varies depending on the matched sounds. Since the sound
input is given in realtime, the algorithm should also run in
the same way.

The sound analyzer is implemented by using a Davinci
evaluation board [11] equipped with a TMS320DM6437

Fig. 1 The proposed interface consists of a sound analyzer and a wrist
pad.

Fig. 2 The implementation of the proposed interface.

digital media processor of Texas Instruments. It runs at the
speed of 400 MHz. Among the peripherals on the board,
only UART port is required to communicate with the wrist
pad.

The wrist pad consists of an array of vibration motors
and a controller. The vibration motors which are coin type
require 3 V as input voltage and can produce 9,000 RPM (ro-
tations per minute) vibration. These motors are widely used
in most mobile phones that generate haptic output. The ar-
ray of the motors are attached to a pad, which human users
wrap it around their arms or wrists when they play games.
The array is composed of sixteen motors. There are two
types of the pad. One is a protector type as shown in Fig. 2
and the other is a bandage type as shown in Fig. 7. The
protector type is more durable and can deliver the vibration
more sensitively than the bandage type.

The controller that steers the vibration of the motors is
connected with them as shown in Fig. 3. The controller is
operated by an ATMEGA128 MCU [12] which is 8-bit mi-
croprocessor. It connects with the motors through general
purpose input/output (GPIO) ports. Since one GPIO port
can manage up to eight motors, two GPIO ports are used to
control a total of sixteen motors. The motors are controlled
by writing one byte value into the port. Each bit corresponds
to one of the eight motors. Setting 1 on a bit causes a corre-
sponding motor to vibrate, 0 is to stop the vibration. The
duration of the vibration is controlled by the interval be-
tween the bit value changes. However, the strength is not
manageable.

The controller stores different vibration patterns de-
pending on target sounds. The pattern is a description about
which motors start vibrating, from when, for how long. It is
created by a pattern editor which will be discussed shortly.
The controller is connected with the sound analyzer through
a serial port. Once one of target sounds are detected, the
sound analyzer sends to the controller a unique identifier of
the target sound. The identifier is predefined by the pattern
editor.

Fig. 3 The controller steers the vibrations of the motors.

1630
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

Fig. 4 The pattern editor extracts the characteristics from target sounds
and allows users to design vibration patterns.

2.2 Software

This section discusses the pattern editor and the sound
matching algorithm. The pattern editor is a GUI-based tool.
Given a target sound, it generates a sound vector that repre-
sents the characteristics of the sound. Technically, the sound
vector of a sound is a set of pairs of selected frequencies and
their magnitudes. In addition, the editor allows users to de-
sign the vibration pattern for the sound. The sound match-
ing algorithm is to detect and recognize target sounds from
sound input in realtime. For matching, it uses the sound
vectors from the pattern editor.

Figure 4 shows the pattern editor. Given a target sound,
the top half shows that the editor analyzes the frequency dis-
tribution of the sound to extract the characteristics. The bot-
tom half presents an interface that allow users to design a
vibration pattern for the sound. The circles correspond to
the sixteen motors and the time bar at the bottom represents
the duration of the vibration. Users can create a pattern by
mouse clicking and dragging.

The sound vector of a target sound is made from the
results of applying FFT on the sound. It is a set of pairs
whose elements are a frequency and its magnitude. From the
FFT results, n frequencies with highest magnitudes are se-
lected. The vectors have their own unique identifiers to de-
note matched sounds. The details about producing the sound
vectors are discussed when presenting the sound matching
algorithm.

Figure 5 shows the format of the vibration pattern cre-
ated by the pattern editor. The first field is the pattern length
in bytes since the patterns have variable lengths. The second
field denotes the identifier of the sound vector with which
this vibration pattern associates. The rest is a list of pairs
having the duration and the pattern. The duration in mil-

Fig. 5 The format of the vibration pattern.

liseconds specifies the lasting time of the pattern. The pat-
tern is 2 byte-long and each bit matches with one of the six-
teen motors. If the bits are set 1, the corresponding motors
are on to vibrate. Using a total of 16 motors that are placed
in 4 rows each row with 4 motors, for example, the vibration
pattern for the gunshot of rifle is to vibrate only 8 motors,
two each from the four rows, for 100 msec. For a sniper rifle,
the pattern of 8 motors with a longer duration of 300 msec.
is used because the sniper rifle has a more lasting resonance
than a rifle. Another pattern that vibrates all the 16 motors
for 300 msec. is for the gunshot of a long range rifle that has
bigger reactionary shock than a sniper rifle. For a machine
gun, each row of the motors vibrates for 100 msec. row by
row sequentially and repeatedly, producing a wave-like form
of vibration.

The sound vectors are stored in the sound analyzer to
find matched sounds, while the vibration patterns are loaded
into the wrist pad. Once matching a target sound, the sound
analyzer delivers the identifier of the matched sound vector
to the wrist pad, which then controls the vibration according
to the corresponding pattern.

Challenges in developing a sound matching algorithm
for the proposed interface are as follows. Firstly, the com-
parison of the frequency distributions is a time-consuming
operation, if done in a sequential way it is not able to
meet the real-time requirements. Secondly, the FFT re-
sults change depending on sound volume, producing differ-
ent magnitude values as the volume changes. Thirdly, it is
unknown exactly at what moments target sounds start within
continuous sound signal, thus easily missing the right mo-
ment to apply the FFT.

To face these challenges, the proposed algorithm in-
troduces the following techniques. Firstly, selective com-
parison and silence filtering are used to reduce computation
overhead. The selective comparison is to compare frequen-
cies only over a small set of frequency bands by using the
sound vector. The silence filtering is to skip the compu-
tation over the silence periods. Secondly, normalization is
for volume independency. It exploits the magnitude ratio
which is not affected by the volume change. The magnitude
values are normalized by dividing by the maximum magni-
tude. Thirdly, a sliding FFT reduces the probability to miss
the target sounds by moving a FFT window along the input
sound signal overlapping with the previous window.

The sound vectors used by the selective comparison are
created as follows. From the FFT results of a target sound
S , n frequencies, f0, f1, · · · fn−1, are selected in descending
magnitudes where f0 is the frequency with the biggest mag-
nitude. One restriction imposing on the selection is that any
two fi, f j, i � j should be apart at least a pre-specified δ

JUN: SOUND SPECIFIC VIBRATION INTERFACE FOR ENHANCING REALITY IN COMPUTER GAMES
1631

Fig. 6 The flow diagram of the sound matching algorithm.

guard band, i.e.

| fi − f j| > δ, i � j (1)

δ has the effect to spread fis over Bin, the bandwidth of in-
terest, particularly in this paper between 150 Hz to 500 Hz
because most of sound effects have their characteristic fre-
quencies over that range. Otherwise, fis are cluttered over
narrow band and comparison becomes less effective. Thus,
δ is determined by dividing Bin by n, then it becomes in-
versely proportional to n as follows.

δ =
Bin

n
(2)

The normalization is the next step. The magnitude of
f0 which has the biggest value divides the magnitudes of fis,
producing the normalized magnitudes mis i = 0, 1, · · · , n−1
where 0 ≤ mi ≤ 1. Comparing mis at only fis can reduce the
computation amount to determine the sound matching.

Figure 6 shows the flow diagram of the proposed sound
matching algorithm. It is assumed that there are l target
sounds to match and the sound vector of a target sound snd j

has n frequencies f j
i s and corresponding normalized magni-

tudes mj
i , i = 0, 1, · · · , n − 1. The steps of the algorithm are

as follows.

1. Input sound is sampled at t Hz. When determining t,
it should be considered whether its Nyquist frequency
is able to cover the whole range of target sounds. The
resulting samples are stored in a circular buffer. The
buffer capacity is equal to the FFT window size, which
is in turn equal to the number of FFT points. And the
number of FFT points should be determined by consid-
ering whether its resulting frequency resolution is fine
enough to capture variations of target sounds. Once the
buffer becomes full, it drops off oldest samples first as
new samples arrive. And, the number of samples to be

dropped at a time is s, which is the sliding size of the
FFT window

2. Test whether the buffered samples represent a non-
silence period by comparing the sum of all the samples
with a silence-filter threshold γ. If the sum is smaller
than γ, go back to the step 1 to avoid processing the si-
lence period. Otherwise it proceeds to the next step. To
determine γ, it is necessary to perform a set of tests to
actually obtain the sum values during silence periods.

3. Apply the FFT on the buffered samples. For the sound
vector of each target sound, snd j, 0 ≤ j ≤ l − 1, calcu-
late the sum of absolute differences as follows.

sumj =

n−1∑

i=0

|mj
i − μ j

i | (3)

where mj
i is the magnitude at the frequency f j

i of a tar-
get sound snd j, μ

j
i is the magnitude at the frequency

f j
i of the sample. μ j

i s are normalized by max(μ j
i)∀i = 0, 1, · · · , n − 1 before the calculation.

4. Decide the matched sound by finding a target sound
sndk of which sumk is as follows.

sumk ≤ min(sumj, summax)∀ j = 0, 1, · · · , l−1 (4)

where summax is a difference threshold to impose the
required similarity level. If no sumj satisfies the con-
dition, the matching fails. If so, go back to the step 1,
otherwise move to the next step.

5. Command the wrist pad to vibrate by sending the ID
that corresponds to the matched target sound. The ID
is the one defined by the pattern editor earlier.

6. Go back to the step 1.

To analyze the complexity of the sound matching al-
gorithm, let q, l, and n denote the number of FFT points,
the number of target sounds, and the number of frequencies
that compose a sound vector of a target sound, respectively.
Firstly, the step 2 performs q−1 additions and 1 comparison
to determine whether the samples represent non-silence pe-
riod, resulting in q operations. Secondly, only in the case of
non-silence period, the FFT is applied in the step 3 which is
known to have the time complexity of O(q log2 q). Thirdly,
the step 3 also calculates the sum of absolute differences on
n frequencies of a sound vector for each of l target sounds.
It involves n subtractions and n − 1 additions for each target
sound and additional n − 1 comparisons and n division that
normalize the magnitude values, thus resulting in l(4n − 2)
operations. Finally, the step 4 performs l − 1 comparisons
to find matching sounds. The sum of all the numbers of op-
erations becomes q + O(q log2 q) + 4ln − l − 1, and hence
the complexity is O(q log2 q+ ln). In game-playing environ-
ments, q is significantly larger than l or n, e.g. 2048 points
of FFT is used while there are less than 10 target sounds
and less than 50 frequency bands to be compared. Thus the
performance largely depends on the amount time that the
FFT consumes rather than the number of target sounds or
the sound vectors.

1632
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

Regarding the amount of computation, the average or
expected value EC can be obtained because the step 3 and
4 are performed only in the case of non-silence period. Let
ps denote the probability that the samples of the step 2 rep-
resent a silence period ps = Pr{∑ samples < γ}. Then,

EC = q + (1 − ps)(q log2 q + 4ln − l − 1) (5)

Since γ determines ps, it can influence the amount of the
computation, although it does not change the complexity it-
self. However, another parameter δ introduced in the sound
matching algorithm does not influence either the complexity
or the computation amount. It is because the preparation of
sound vectors in which δ involves is performed only once
and before starting real–time processing. Eq. (5) also im-
plies that the FFT computation is a dominant factor that in-
fluences on delays. Also, since the number of target sounds
in games is not expected to be large, in most cases less than
10, the delays by the increasing number of target sounds
would be insignificant, typically compared with that of the
FFT.

3. Performance Evaluation

The evaluation of the proposed interface is carried out in the
aspects of performance and user experience. For that, the
interface is applied to the play of commercial games. Three
different genres of the games are selected to test the interface
under various environment. As shown in Fig. 7, 8, 9, the
games are a First Person Shooting (FPS) game, a car driving
game, and a role–playing action game. The FPS game has
four different types of gun shots as the target sounds. The car
driving game has three target sounds: acceleration, brake,
and crash. The role–playing game has three target sounds:
sword swing, sword clang, and explosion.

As the algorithm parameters, the sampling rate is
8 KHz and each sample is 16-bit long. 2048-point FFT is
applied and old 36 samples slides out at every FFT window
moving, thus 2012 samples being overlapped between win-
dows. γ and summax are set to 5 and 1.0 respectively.

For the performance evaluation, the ratio of success in
the target sound matching and the delay for the computation
are measured. While playing the games, the success ratio

Fig. 7 The first person shooting game is played with the proposed inter-
face.

is calculated for each target sound. For this, the sound an-
alyzer is modified to output the names of matched sounds
through its debug port whenever it matches target sounds.
Checking whether the names are really those of the actual
sounds can determine the success. Regarding the volume,
the measurements are performed under five different levels.
At least over 100 attempts for one target sound at each vol-
ume are tried. For the delay, the times only from the correct
matching attempts are averaged.

The audio output jack of a PC on which games run
is connected through a wire to the audio input jack of the
sound analyzer. Because such wiring is susceptible to noise,
sound volume relative to noise is a major factor that influ-
ences the success probability of sound matching. Figure 10
shows the success ratios of the three games under different
noise levels. Figure 10 (a), Fig. 10 (b) and Fig. 10 (c) are the
results from the FPS game, the car driving game and the
role-playing game, respectively. The success ratios esca-
late rapidly as the SNR level increases from 3.9 to 6.9 dB
of SNR, but since then grow smoothly until the success ra-

Fig. 8 The car driving game is played with the proposed interface.

Fig. 9 The role–playing game is played with the proposed interface.

JUN: SOUND SPECIFIC VIBRATION INTERFACE FOR ENHANCING REALITY IN COMPUTER GAMES
1633

(a)

(b)

(c)

Fig. 10 The success ratio in matching target sounds in three games; (a)
the results from the FPS game (b) the results from the car driving game, (c)
the results from the role–playing game.

tios in all the three games reach over 90% at 20 dB, which is
around 70% to 80% of the maximum audio output of the PC
that was used in the experiment. The rapid increase in the
ratios between 3.9 dB and 6.9 dB shows that the matching
success in this interval is heavily dependent on signal at-
tenuation due to noise because small changes in SNR levels
bring about large improvement in the ratios. Meanwhile, the
smooth increase beyond 6.9 dB indicates that the algorithm
itself is a major determinant of the matching success.

The performance of playing games with background
music on is also investigated. Three sets of background mu-
sic are used, lord of the sky [14], I will come for you [15],
and world of ice [16], which are freely available in the in-
ternet. While the volume level of game sounds is set to the
maximum SNR, the background music has only 40% of the

(a)

(b)

(c)

Fig. 11 The success ratio when background music is on; (a) the results
from the FPS game (b) the results from the car driving game, (c) the results
from the role–playing game.

volume level of the game sounds, which is considered as a
casual setting in game play. The experiments use a sepa-
rate media player running in background to play the music
and are repeated at least five times for each target sound to
average the success ratios.

Figure 11 shows the success ratios from each of three
games along with the titles of the three sets of background
music and ‘No BM’ which means the case without back-
ground music. The success ratios with background music
are least 10% to 25% lower than without it. It is because
background music is a major interfering factor in sound
detection. However, it was observed that the performance
varies depending on the style of background music and also
what part of music was in play when target sounds occurred.
For example, since ‘world of ice’ is softer and more delicate
than ‘lord of the sky’ which is rather grandeur, it less in-
terferes with target sounds. But, even ‘lord of the sky’ still
has partially softer duration during which sound detection is
easier than other parts.

1634
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

Fig. 12 The computing delays for the sound matching in the three games.

Figure 12 shows the box plots of the delays in the sound
matching of the three games. The delays were measured in
milliseconds each for the three games with the volume set to
20 dB. Since the amount of computation remains the same
regardless of the volume, the delay would not be affected by
the volume. In the box plots, the middle line inside a box in-
dicates the median value, the top line of a box is the 75 per-
centile and the bottom line is 25 percentile. The top–most
and bottom-most bars are 90 and 10 percentiles, respec-
tively. The median delay of the FPS game is at 415 msec.,
while those of the other two games are around 409 msec.
and 406 msec. Users barely recognized 415 to 416 delays
according to [5].

A survey was carried out to evaluate how much the
proposed interface contributes to the improvements of user
experiences. The surveyees of twenty two university stu-
dents, randomly chosen 17 males and 5 females, were asked
to play the three games in three different settings: without
vibration interface, with vibrating headset and mouse, and
with the proposed interface. They played all the combi-
nations of the games and the interfaces for one and a half
minute and answered for each game the following two ques-
tions by the integer scale of 0 to 5; “how much reality im-
provement do you feel comparing with the case without vi-
bration?”, and “how much inconvenience do you feel com-
paring with the case without vibration?”. In addition, they
were also asked about areas of improvements regarding the
proposed interface.

Figure 13 shows the survey results about the question,
“how much reality improvement do you feel comparing with
the case without vibration?”. The results show that the pro-
posed interface is two times more effective in improving re-
ality than the headset and mouse; the scores of the proposed
interface are evenly over 4 in all the three games, while those
of the headset and mouse vary depending on the games. Ac-
cording to the surveyees, the ability to produce different vi-
bration patterns for different target sounds was the main rea-
son that the proposed interface was highly evaluated. On the
contrary, the monotonic vibration of the headset and mouse
worked well only with the gunshots of the FPS game. But

Fig. 13 The results about the question, “How much reality improvement
do you feel comparing with the case without vibration?” (5: the highest
level of reality - 0: no reality at all).

Fig. 14 The results about the question, “How much inconvenience do
you feel comparing with the case without vibration?” (5: very inconvenient
- 0: no inconvenience at all).

it was not impressive in the role playing game and the car
driving game.

Figure 14 shows the results of “how much inconve-
nience do you feel comparing with the case without vibra-
tion?”. The scores of the proposed interface were uniformly
under 1 meaning little inconvenience, while those of the
headset and mouse were above 3 that indicates a notable
level of inconvenience. The surveyees complained that the
headset and mouse vibrated almost incessantly regardless of
the occurrences of target sounds, thus disturbed their game
play. The surveyees felt awkwardness about the proposed
interface at first because they should wear the wrist pad. But
they soon became familiar with the proposed interface, feel-
ing very low level of inconvenience.

Regarding the areas of improvements, 14 of the survey-
ees pointed out its design issues; particularly recommended
to arrange neatly the wires that connect the wrist pad with
the sound analyzer and mentioned about the comfortable-
ness of the pad itself. 10 of them commented about the need
to diversify the vibration patterns by increasing the number

JUN: SOUND SPECIFIC VIBRATION INTERFACE FOR ENHANCING REALITY IN COMPUTER GAMES
1635

of either the patterns or the vibration motors. Besides, there
were opinions that suggested to modify the pad to be attach-
able to other parts of the body such as legs and upper arms.

Another experiment was conducted to investigate
whether the playing order between vibration and non-
vibration versions of a same game influences the human
perception about reality improvement. Firstly, half of the
twenty two surveyees were asked to play the FPS game with
the proposed interface first and the same game without vi-
bration later, while the other half played the same game in
the opposite order. Then they were asked to score the reality
improvement by the integer scale of 0 to 5. Secondly, they
played the same game again but in the opposite order to the
previous try and repeated the scoring. The average scores
were different depending on the playing order such as 4.36
for the vibration version first and 3.87 for the non-vibration
version first. The conjecture about the difference is that hu-
mans can perceive changes from the loss of sensory input
more significantly than from the addition of sensory input.

4. Conclusions and Future Works

This paper presents the development of the sound specific
vibration interface and its evaluation results. The proposed
interface complements the pitfalls of the frequency–based
vibration interfaces; those interfaces may bring negative
user experiences by generating improper vibrations. But the
proposed interface which responds to specific sounds is able
to improve user experiences effectively. The hardware and
software parts of the interface are described. The structure
and the implementation of the wrist pad that delivers vibra-
tion are discussed. The sound matching algorithm and the
pattern editor that extracts the sound vector and help users
to design the vibration patterns are explained. The results
from evaluating the performance of the interface show that
the success ratio of the sound matching is over 90% at the
volume of 20 dB and the delay time is around 400 msec. In
the survey about user experiences, the users evaluated that
the interface was more than four times effective in improv-
ing the reality of the game playing than without using the vi-
bration interfaces, and two times than the frequency–based
ones. The inconvenience from using the interfaces is one
fourth of the frequency–based ones.

The interface has, however, the following limitations
that require further works. First of all, the delay increases
as the number of target sounds grows in spite of the selec-
tive comparison. To meet this challenge, the longest prefix
matching technique [17] which is widely used in the routing
table matching is under consideration. Secondly, the match-
ing success ratio should be improved more by providing a
new method to extract the sound vectors that can differenti-
ate a target sound from others more effectively. In the third
place, the FPS game has the cases that the interface responds
to the gunshot of other users. The fact that the gunshot of
user’s own is louder than the others’ should be considered
by the sound matching algorithm. The fourth one is that the
proposed algorithm may entail a probability of false detec-

tion because there exists the case that the sum of differences
are the same for more than two different target sounds, thus
matching with multiple target sounds. In a future work, an
additional step should be provided to deal with the multi-
ple matching; for example, calculating the sum of differ-
ences again only for the matched sounds, but with different
weights depending on frequency bands.

References

[1] A. Chang and C. O’Sullivan, “Audio haptic feedback in mobile
phones,” Proc. Conference on Human Factors in Computing, 2005.

[2] http://www.sound-scape.com
[3] http://www.xfxforce.com
[4] http://www.logitech.com
[5] H. Lee, Y. You, C. Song, J. Jeong, M. Sung, K. Jun, and S. Lee,

“Analysis of tactitle effects on the different body parts by the various
vibration patterns,” Proc. HCI 2008, Korea, 2008.

[6] L.R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEE, vol.77, no.2, pp.257–
286, Feb. 1989.

[7] D. Hoiem, Y. Ke, and R. Sukthankar, “SOLAR: Sound object lo-
calization and retrieval in complex audio environments,” Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2005.

[8] A. Dufaux, L. Besacier, M. Ansorge, and F. Pellandini, “Automatic
sound detection and recognition for noisy environment,” Proc. Eu-
ropean Signal Processing Conference 2000, 2000.

[9] C. Couvreur, Environmental Sound Recognition: A Statistical Ap-
proach, Ph.D. Thesis, Faculte Polytechnique de, 1997.

[10] M. Vacher, D. Istrate, and J. Serignat, “Sound detection and clas-
sification through transient models using wavelet coefficient trees,”
Proc. European Signal Processing Conference 2004, 2004.

[11] http://www.ti.com
[12] http://www.atmel.com
[13] J. Oh, D. Cho, Y. You, M. Sung, and K. Jun, “Wrist strip and pattern

editor for sound specific vibration interface,” Proc. HCI 2008, Korea,
2008.

[14] http://www.mikseri.net/music/play.php?id=223080&type=dl
[15] http://www.mikseri.net/music/play.php?id=222840&type=dl
[16] http://www.mikseri.net/music/play.php?id=222841&type=dl
[17] K. Sklower, “A tree-based routing table for Berkeley Unix,” Techni-

cal report, Univ. California, Berkeley, 1993.

Kyungkoo Jun received his B.S. degree
in computer science from Sogang University,
Korea in 1996 and his M.S. and Ph.D. degree in
computer science from Purdue University, U.S.
in 1998 and 2001. Then he joined Samsung
Electronics, Korea as a Senior Research Engi-
neer. Since 2004, he has been with the Depart-
ment of Embedded Systems Engineering, Uni-
versity of Incheon where he is currently an as-
sociate professor. His research interests include
human computer interfaction, mobile solutions,

and wireless networks.

