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PAPER

Constraints on the Neighborhood Size in LLE

Zhengming MA†a), Member, Jing CHEN†b), and Shuaibin LIAN†, Nonmembers

SUMMARY Locally linear embedding (LLE) is a well-known method
for nonlinear dimensionality reduction. The mathematical proof and ex-
perimental results presented in this paper show that the neighborhood sizes
in LLE must be smaller than the dimensions of input data spaces, other-
wise LLE would degenerate from a nonlinear method for dimensionality
reduction into a linear method for dimensionality reduction. Furthermore,
when the neighborhood sizes are larger than the dimensions of input data
spaces, the solutions to LLE are not unique. In these cases, the addition
of some regularization method is often proposed. The experimental results
presented in this paper show that the regularization method is not robust.
Too large or too small regularization parameters cannot unwrap S-curve.
Although a moderate regularization parameters can unwrap S-curve, the
relative distance in the input data will be distorted in unwrapping. There-
fore, in order to make LLE play fully its advantage in nonlinear dimension-
ality reduction and avoid multiple solutions happening, the best way is to
make sure that the neighborhood sizes are smaller than the dimensions of
input data spaces.
key words: locally linear embedding, nonlinear dimensionality reduction,
manifold learning, principle component analysis

1. Introduction

Nonlinearity is the main advantage that almost all manifold
learning methods [1]–[5] claim to have and Locally Linear
Embedding (LLE) [1], [6] is no exception. The mathemat-
ical proof and experimental results presented in this paper
show that when the neighborhood sizes are larger than the
dimensions of input data spaces, LLE will degenerate from
a nonlinear method for dimensionality reduction into a lin-
ear method for dimensionality reduction. The mathematical
relation between input data and output data as well as the
experimental results are much similar to those of principal
component analysis (PCA). Saul and Rowels, the authors
of original LLE papers, have pointed out that the neighbor-
hood sizes cannot be too large, otherwise the locally linear
assumption would break down and the solutions to LLE are
not unique. However, Saul and Rowels have never pointed
out that too large neighborhood size would make LLE de-
generate from a nonlinear method into a linear method, nei-
ther have other researchers. Wu et al. [7] have discussed the
useful results LLE could lead to if LLE had been a linear
method, but they did not specify the conditions under which
LLE would become linear.
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It is argued that the choices of neighborhood sizes less
than the dimensions of input data spaces are most natural
because for most real-world data the neighborhood sizes are
always less than the dimensions of input data spaces. How-
ever, for most artificial data which are widely used to visu-
alize the effectiveness of manifold learning algorithms, the
neighborhood sizes are larger than the dimensions of input
data spaces [8]–[10]. Therefore, it is meaningful to make
clear the constraints on the selection of neighborhood sizes.

When the neighborhood sizes are larger than the di-
mensions of input data spaces, the solutions to LLE are not
unique. In these cases, people often pay much attention to
the uniqueness of solutions, but overlook or do not realize
at all the degeneration of LLE from nonlinearity into lin-
earity. Saul and Rowels [6] proposed that some regulariza-
tion method must be added to get a unique solution. An-
other algorithm [11] for selecting a regularization parame-
ter has been proposed. However, Wang et al. [12] and Hou
et al. [13] have pointed out that the regularization method
is not robust as the embedding results are quite sensitive
to the regularization parameters. The experimental results
presented in this paper show that the too large regulariza-
tion parameter will make the regularized LLE far away from
the genuine LLE, while too small regularization parameter
makes the regularized LLE much similar to PCA. In theory,
the employment of regularization violates the principle of
minimum reconstruction error, a basic idea of LLE.

Therefore, in order to make LLE play fully its advan-
tage in nonlinear dimensionality reduction and avoid multi-
ple solutions happening, the best way is to make sure that
the neighborhood sizes are smaller than the dimensions of
input data spaces.

The rest of this paper is organized as follows. LLE will
be formulated in the next section. In Sect. 3, we will prove
that when the neighborhood size is larger than the dimen-
sion of input data space, LLE will become a linear method
for dimensionality reduction. The experimental results are
given in Sect. 4. Finally, some concluding remarks will be
given in Sect. 5.

2. Locally Linear Embedding

Given a set of N points X = {x1, x2, · · · , xN} in input data
space RD, the data points are assumed to lie on or near a
nonlinear manifold of intrinsic dimensionality d. Let us de-
note the corresponding set of N points in output data space
Rd by Y = {y1, y2, · · · , yN}. LLE consists of three steps, and
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we formulate them as follows.

2.1 Step I: Neighborhood Selection

For each data point xi, find its k neighbors xi1 , . . . , xik , where
1 ≤ ip ≤ N, 1 ≤ p ≤ k. The k-nearest neighbors is widely
used due to its simplicity and ease of implementation. There
are a lot of other ways to find the neighbors [8]–[10].

2.2 Step II: Local Representation

For each data xi and its k neighbors xi1 , . . . , xik , find k re-
construction weights by solving the constrained least square
problem of following form:

arg
wi j

min

∥∥∥∥∥∥∥∥xi −
k∑

p=1

wipixip

∥∥∥∥∥∥∥∥
2

s.t.
k∑

p=1

wipi = 1.

(1)

This is what local linearity means. The above prob-
lem can be also restated as follows: find an element in the
following convex set (not subspace described in) which is
closest to xi:⎧⎪⎪⎪⎨⎪⎪⎪⎩

k∑
p=1

wipixip

∣∣∣∣∣∣∣wipi ∈ R, p = 1, . . . , k;
k∑

p=1

wipi = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (2)

Note that the above convex set is not complete and
therefore the element closest to xi can not be unique.

When the weights for each data point have been found,
the reconstruction weight matrix Ω can be constructed as
follows:

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω11 · · · ω1N
...
. . .

...
ωN1 · · · ωNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (3)

where

ω ji =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 j = i
0 x j is not a neighbor of xi

−wji x j is a neighbor of xi

,

i, j = 1, . . . ,N. (4)

Then, Eq. (1) becomes:

arg
Ω

min ‖XΩ‖2

s.t. 1TΩ = 0T ,
(5)

Note that generally XΩ � 0.

2.3 Step III: Global Embedding

Find a matrix Y to minimize the following objective func-
tion:

arg
Y

min ‖YΩ‖2

s.t. Y1 = 0, YYT = I
(6)

The column vectors of Y are the output data after dimen-
sionality reduction.

3. Constraints on the Size of Neighborhood in LLE

In this section, we will firstly analyze the LLE in the case
where k > D by two steps in a strictly mathematical way
and then summarize several insights to get the constraints
on k.

3.1 Optimal Local Representation

The objective function in (1) can be rewritten as:

arg
Wi

min ‖GiWi‖2

s.t. 1T Wi = 1,
(7)

where Gi = [xi1 − xi, . . . , xik − xi], and Wi = [wi1i, . . . ,wiki]T

is the reconstruction weight vector.
Definition 1. If a vector Wi satisfies

‖GiWi‖2 = 0, s.t. 1T Wi = 1, (8)

then the Wi is said to be the optimal local representation of
xi.

Because rank(GiGT
i ) = rank(GT

i Gi) = r and r ≤
min{D, k}, Gi can be decomposed by SVD decomposition
as

Gi = UiΣiV
T
i , (9)

where Ui and Vi are column-orthogonal matrices of size
D × r and k × r respectively, the column vectors of them
are the orthonormal eigenvectors of GiGT

i and GT
i Gi respec-

tively corresponding to the nonzero eigenvalues, Σi is a di-
agonal matrix of size r × r whose elements are the square
roots of the nonzero eigenvalues of the matrix GiGT

i or the
matrix GT

i Gi.
If k > D, then r < k. This means that the matrix GT

i Gi

has k−r orthonormal eigenvectors corresponding to the zero
eigenvalue. Let Vi0 be a matrix of size k× (k− r) whose col-
umn vectors are the orthonormal eigenvectors correspond-
ing to the zero eigenvalues of GT

i Gi, then

VT
i Vi0 = 0. (10)

If let

Wi =
Vi0A

1T Vi0A
, (11)

where A ∈ Rk−r and A � 0, then by (10) we have

‖GiWi‖2 =
∥∥∥∥∥UiΣiV

T
i

Vi0A
1T Vi0A

∥∥∥∥∥
2

= 0, 1T Wi = 1. (12)

It means that (11) gives the optimal local representation of
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xi. Note that A is a degree of freedom.
The above derivation shows that, if k > D, no matter

how to choose neighbors for each data point, the optimal
local representation can be found. Consider all data points,
in this case, and we have

XΩ = 0, 1TΩ = 0T . (13)

Also mention that k > D is a sufficient but not neces-
sary condition to obtain the optimal local representations of
data points. When k neighbors for a data point are exces-
sively linear dependent, the Eq. (8) will be established.

3.2 Optimal Global Embedding

Definition 2. If a matrix Y satisfies

‖YΩ‖2 = 0, Y1 = 0, YYT = I, (14)

the Y is said to be the optimal global embedding.
If rank(XXT ) = rank(XT X) = γ, by SVD decomposi-

tion, X can be expressed as

X = UΣVT . (15)

Where U and V are column-orthogonal matrices of size D×
γ and N × γ respectively, the column vectors of them are
the orthonormal eigenvectors of XXT and XT X respectively
corresponding to the nonzero eigenvalues, Σ is a diagonal
matrix of size γ × γ whose elements are the square roots
of the nonzero eigenvalues of the matrix XXT or the matrix
XT X. It is evident that

VT V = I, VT 1 = 0. (16)

When k > D, by (13) and (15) we have

UΣVTΩ = 0. (17)

Then we obtain

VTΩ = 0. (18)

Now let

Y = PVT , (19)

where P is a matrix of size d × γ which satisfies

PPT = I (20)

and in fact defines a linear mapping from γ-dimensional
space to d-dimensional space, then by (16), (18), (19) and
(20) we have

‖YΩ‖2 = ‖PVTΩ‖2 = 0, Y1 = 0, YYT = I. (21)

This means that (19) gives the optimal global embedding.
Note that P is a degree of freedom.

3.3 Discussions on the Neighborhood Size in LLE

Based on the above derivations, several insights are pre-
sented as follows.

By (15) we have

VT = Σ−1UT X. (22)

Substituting (22) into (19), we rewrite the optimal
global embedding Y as

Y = PΣ−1UT X = CX, (23)

where C = PΣ−1UT . This means that Y can be expressed
as the linear combination of X and LLE becomes a method
of linear dimensionality reduction if k > D. Note that UT X
in (23) is the PCA of X. PCA is a commonly-used linear
method for dimensionality reduction.

Some degrees of freedom for the LLE algorithm are
provided by the matrix A in (11) and the matrix P in (19)
which can be reasonably used to get better embedding re-
sults. For example, set

A = arg
A

min(‖Wi‖2) = arg
A

min

(∥∥∥∥∥ Vi0A
1T Vi0A

∥∥∥∥∥
2)

(24)

to pick the weight vector which minimize the sum of the
squared weights.

To some extent, this solution is similar to the using of
regularization in [6]. The intention of employing regulariza-
tion in [6] is originally to obtain unique local reconstruction
weights in the unusual case where k > D. In this case, regu-
larization is employed and (7) changes to

arg
wi j

min(‖GiWi‖2 + ε‖Wi‖2),

s.t. 1T Wi = 1.
(25)

Set ε = Δ2/(k · trace(GT G)), where Δ2 � 1 is regular-
ization parameter. Not that (7) is what local linearity means.

The employment of regularization prevents the LLE
becoming globally linear. At the same time, it violates the
locally linear assumption, the basic idea of LLE. In addition,
regularization can be problematic for the following reasons.
On one hand, too small regularization parameter makes reg-
ularization useless (see Fig. 2 in Sect. 4). On the other hand,
when the regularization parameter is not small enough, it
was shown in [12] that the correct vectors cannot be well
approximated by (25). Moreover, when the regularization
parameter is relatively high, it produces weight vectors that
tend towards the uniform vector Wi = (1/k, . . . , 1/k). Con-
sequently, the solution for LLE with a large regularization
parameter does not reflect a solution based on reconstruction
weight vectors. The regularization parameter must be tuned
carefully, since LLE can yield completely different embed-
dings for different values of this parameter [14]. Therefore,
it is not practical to utilize the regularized solution to ap-
proximate the true solution.

In conclusion, only set the neighborhood size smaller
than the dimension of input data space can LLE play its ad-
vantage of nonlinearity.

4. Experimental Results

We draw some experimental results in Fig. 1, Fig. 2 and
Fig. 3 for illustration. The 1000 points are randomly sam-
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Fig. 1 Dimensionality reduction results by LLE and PCA. (a) Three data
sampled from two dimensional manifold S-curve and Twin Peaks respec-
tively; (b) LLE embeddings; (c) PCA embeddings.

Fig. 2 Dimensionality reduction results by our LLE and LLE using small
regularization parameter. (a) Sampled S-curve and Twin Peaks; (b) Our
LLE embeddings, A in (11) is set to satisfy (24); (c) LLE embedding with
Δ2 = 1e − 9.

Fig. 3 LLE embeddings with different regularization parameters (a)
Sampled S-curve; (b) Δ2 = 1e − 9; (c) Δ2 = 1e − 6; (d) Δ2 = 1e − 3;
(e) Δ2 = 1e − 2; (f) Δ2 = 1.

pled from the three-dimensional S-curve and Twin Peaks.
Parameters are set to be d = 2, k = 8.

Firstly, we give an experiment to illustrate when k > D,
LLE is not a globally nonlinear but a globally linear method
of dimensionality reduction. As evident by Fig. 1, the re-
sults by our LLE and PCA are almost similar. As all know,
PCA is a linear method for dimensionality reduction. In
this experiment, the LLE embeddings are obtained by let
P = [I2×2, 02×1] in (19).

Figure 2 illustrates that the LLE embeddings with Δ2 =

1e − 9 are similar to the results of LLE. Here the results of

our LLE are obtained by set the matrix A in (11) to satisfy
(24). This experimental results show that too small regular-
ization parameter makes regularization useless. We can see
from Fig. 1 (b) and Fig. 2 (b) that different LLE embedding
results can be obtained if the A or P is set differently.

Figure 3 shows that LLE employing regularization can
yield completely different embeddings for different regular-
ization parameters. Too small or too large regularization pa-
rameters make the LLE break down. Acceptable result can
be obtained only when Δ2 = 1e−2. Obviously, the so-called
acceptable result drawn in Fig. 3 (e) is still different from the
ideal embedding. The results of LLE are closely related to
the regularization parameter. It implies that the regularized
problem is not stable to Δ2. Therefore, it is not practical to
utilize the regularized solution to approximate the true solu-
tion.

5. Conclusions

LLE has found wide applications and demonstrated excel-
lent performance [15]–[19] since it was proposed in 2000.
In the application to head pose recognition implemented by
us, LLE outperformed PCA greatly. The superiority of LLE
over PCA has also been reported in many previous litera-
tures. In all these cases, the neighborhood sizes are smaller
than the dimensions of input data spaces. If the neigh-
borhood sizes are larger than the dimensions of input data
spaces, as shown in this paper, LLE will become a kind of
PCA.

When the neighborhood sizes are larger than the di-
mensions of input data spaces, some regularization method
is often added to get a unique solution. However, the reg-
ularization method is not robust. S-curve can not been un-
wrapped if using too large or too small regularization param-
eters. Even if S-curve can been unwrapped as using a mod-
erate regularization parameter, the relative distance between
the input data will be distorted in unwrapping. Therefore,
the best way to apply LLE is to make sure the neighborhood
sizes smaller than the dimensions of input data spaces.

It should be mentioned that the neighborhood sizes
smaller than the dimensions of input data spaces is a neces-
sary but not sufficient condition for LLE becoming a method
for globally nonlinearly dimensionality reduction. Saul and
Rowels have mentioned that LLE could only be expected
to recover embeddings whose dimensionality is strictly less
than the neighborhood size, k, because the k neighbors span
a space of dimensionality at most k − 1 and some margin
between the intrinsic dimensionality and the neighborhood
size is generally necessary to obtain a topology-preserving
embedding. Finding the exact relation between the neigh-
borhood size and the faithfulness of the resulting embedding
is our future work.
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