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PAPER

Class-Distance-Based Discriminant Analysis and Its Application to
Supervised Automatic Age Estimation

Tetsuji OGAWA†a), Member, Kazuya UEKI††, Nonmember, and Tetsunori KOBAYASHI†††, Member

SUMMARY We propose a novel method of supervised feature projec-
tion called class-distance-based discriminant analysis (CDDA), which is
suitable for automatic age estimation (AAE) from facial images. Most
methods of supervised feature projection, e.g., Fisher discriminant anal-
ysis (FDA) and local Fisher discriminant analysis (LFDA), focus on de-
termining whether two samples belong to the same class (i.e., the same
age in AAE) or not. Even if an estimated age is not consistent with the
correct age in AAE systems, i.e., the AAE system induces error, smaller
errors are better. To treat such characteristics in AAE, CDDA determines
between-class separability according to the class distance (i.e., difference
in ages); two samples with similar ages are imposed to be close and those
with spaced ages are imposed to be far apart. Furthermore, we propose an
extension of CDDA called local CDDA (LCDDA), which aims at handling
multimodality in samples. Experimental results revealed that CDDA and
LCDDA could extract more discriminative features than FDA and LFDA.
key words: FDA, LFDA, CDDA, LCDDA, dimensionality reduction, auto-
matic age estimation

1. Introduction

Many researchers have attempted to develop techniques of
estimating individual characteristics of humans, such as
gender and age [1]–[5]; these techniques are useful in mar-
keting surveys on consumer ages. We have developed au-
tomatic age estimation (AAE) systems that can estimate
age from facial images [1], [2]. Appearance-based AAE
requires dimensionality reduction that extracts information
that is useful for estimating ages.

Fisher discriminant analysis (FDA) [6] has been fre-
quently applied to supervised dimensionality reduction. The
projection matrix in FDA is estimated such that the between-
class scatter is maximized while the within-class scatter is
minimized. Many researchers have studied manifold learn-
ing in recent years, which aims at preserving the neighbor-
hood structure of input samples in feature projection, e.g.,
locally linear embedding (LLE) [7], [8], Isomap [9], and lo-
cality preserving projection (LPP) [10]. LPP in some tasks
outperformed FDA [10], [11]. Many researchers have at-
tempted to extend LPP [12]–[20]. Local Fisher discriminant
analysis (LFDA) [16] has the advantages of both FDA and

Manuscript received December 13, 2010.
Manuscript revised April 18, 2011.
†The author is with the Waseda Institute for Advanced Study,

Waseda University, Tokyo, 169–8555 Japan.
††The author is with the NEC Soft, Ltd., Tokyo, 136–8606

Japan.
†††The author is with the Department of Computer Science,

Waseda University, Tokyo, 169–8555 Japan.
a) E-mail: ogawa@pcl.cs.waseda.ac.jp

DOI: 10.1587/transinf.E94.D.1683

LPP and outperforms FDA and LPP. In LFDA, data pairs of
different classes are imposed to be far apart and nearby data
pairs of the same class are imposed to be close. In addition,
data pairs of the same class but which are far apart are not
imposed to be close. As a result, LFDA has one very use-
ful property that the multimodality of samples is not lost by
dimensionality reduction.

FDA and LFDA, however, basically aim at projecting
samples in an input space such that the samples of each class
are separated in a projected feature space. Here, class dis-
tances, i.e., the difference between the class labels of two
samples, are not explicitly considered in feature projection.
Therefore, these methods are suitable for systems whose
performance can only be measured in terms of accuracy of
estimation, which indicates whether an estimate obtained
from the system belongs to the correct class or not. In con-
trast, ages, which are considered as class labels in AAE sys-
tems, consist of integer values with order relations. This
indicates that AAE systems should be evaluated in terms of
errors, which are represented by the difference between the
estimated and real ages. Smaller errors would be better in
AAE systems, and these systems would be worse with an
increase in errors. The above discussion indicates that for
AAE systems, between-class separability should be deter-
mined according to the class distance (i.e., age difference)
between two samples.

We propose a method of feature projection called class-
distance-based discriminant analysis (CDDA) in this paper,
which determines between-class separability according to
the class distance. In CDDA, two samples with similar class
labels (i.e., close ages) are projected such that they are close
in a projected space, while two samples with distant class
labels are projected such that they are far apart in a pro-
jected space. These characteristics make the performance of
the system more intuitive for humans. Furthermore, we ex-
tended CDDA such that the multimodality of samples was
not lost due to feature projection, as it was with LFDA. We
called this method local class-distance-based discriminant
analysis (LCDDA). These methods can be used for im-
proving the performance of AAE systems because they can
deal with class distances and class continuity at the feature-
extraction stage.

The rest of this paper is organized as follows. Section 2
reviews existing methods of linear feature projection. Sec-
tion 3 describes details on CDDA and LCDDA. Section 4
discusses the effectiveness of CDDA and LCDDA, which
were experimentally investigated in terms of mean absolute
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errors (MAEs) and cumulative scores. Finally, concluding
remarks are made in Sect. 5.

2. Linear Feature Projection

A two-dimensional image with a height of h pixels and a
width of w pixels is generally treated as an h × w dimen-
sional vector xi ∈ Rd (d = h × w). This vector, however,
has high dimensionality and redundant information. There-
fore, the dimensionality of this vector has to be reduced and
only informative features that are required for age estima-
tion should be extracted. Existing methods of feature pro-
jection such as FDA [6], LPP [10], and LFDA [16] are re-
viewed in this section.

2.1 Formulation

Assume that a set of observed samples X = {xi}Ni=1, xi ∈ Rd

and their class labels Y = {yi}Ni=1 are given. Using a d′ × d
matrix Φ, lower-dimensional feature samples {zi}Ni=1, zi ∈
R

d′ , d′ < d are computed with the following projection:

zi = Φ
T xi (1)

Our aim was to determine the low-dimensional projection
matrix Φ.

2.2 Fisher Discriminant Analysis (FDA)

Let S(w) be the within-class scatter matrix and S(b) be the
between-class scatter matrix defined by

S(w) =

l∑
i=1

∑
j:y j=i

(x j − μi)(x j − μi)
T (2)

S(b) =

l∑
i=1

Ni(μi − μ)(μi − μ)T , (3)

where Ni denotes the number of samples in class i, μi de-
notes the mean of samples in class i, and μ denotes the mean
of all samples given as:

μi =
1
Ni

∑
j:y j=i

x j (4)

μ =
1
N

N∑
j=1

x j (5)

FDA projection matrix ΦFDA is estimated so that the
between-class scatter is maximized while the within-class
scatter is minimized as:

ΦFDA = arg max
Φ

(
tr
[
ΦTS(b)Φ

ΦTS(w)Φ

])
(6)

Projection matrix Φ is computed by solving a general-
ized eigenvalue problem as:

S(b)Φ = λS(w)Φ (7)

Here, the solution to FDA, ΦFDA, is given as:

ΦFDA = (φ1,φ2, . . . ,φl), (8)

where ΦFDA denotes a d × l matrix and {φi}li=1 denote the
eigenvectors associated with eigenvalues λ1 ≥ λ2 ≥, · · · ,≥
λl.

Here, S(w) and S(b) are expressed as pairwise expres-
sions, as [16]:

S(w) =
1
2

N∑
i, j=1

A(w)
i, j (xi − x j)(xi − x j)

T (9)

S(b) =
1
2

N∑
i, j=1

A(b)
i, j (xi − x j)(xi − x j)

T , (10)

where

A(w)
i, j =

{
1/Nc if yi = y j = c,
0 if yi � y j,

(11)

A(b)
i, j =

{
1/N − 1/Nc if yi = y j = c,
1/N if yi � y j.

(12)

2.3 Locality Preserving Projection (LPP)

LPP preserves the geometrical structure of neighborhood
samples before and after projection; nearby samples in the
input space are embedded close in the projected (i.e., low-
dimensional) feature space. LPP projection matrix ΦLPP is
estimated as:

ΦLPP = arg min
Φ

1
2

n∑
i, j

Ai, j ‖ ΦTxi−ΦTx j ‖2 (13)

subject to ΦT X DXTΦ = I, (14)

where A denotes an affinity matrix, the (i, j)-th component
of which reflects the locality (i.e., geometrical distance)
between xi and x j. By using the constraint described in
Eq. (14), we can avoid trivial solution Φ = 0.

LPP reduces to the following generalized eigenvalue
problem.

XLXTΦLPP = λX DXTΦLPP (15)

Here, the solution to LPP, ΦLPP, is given as:

ΦLPP = (φ1,φ2, . . . ,φl), (16)

where ΦLPP denotes a d × l matrix and {φi}li=1 denote the
eigenvectors associated with the eigenvalues λ1 ≤ λ2 ≤
, · · · ,≤ λl. Here, L = D − A is a Laplacian matrix, and
D is a diagonal matrix given by

Di, j =

{ ∑
j Ai, j, i = j

0, i � j,
(17)

whose (i, i)-th component Di,i represents the locality around
xi; xi becomes more informative with an increase in Di,i.

A is arbitrarily defined such that {zi}Ni=1 would have the
same structure as {xi}Ni=1 for neighborhood samples. In [10],
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the affinity matrix is defined using a heat kernel as:

Ai, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
exp

(
−‖xi−x j‖2

σ2

)
,

if xi ∈ NNK
j or x j ∈ NNK

i

0, otherwise

(18)

where σ denotes a tuning parameter that controls the decay
of affinity and NNk

i denotes a set of k-nearest neighbor sam-
ples of xi.

Scaling parameter σ in Eq. (18) cannot treat the differ-
ent scales for each sample. A local scaling method [21] is
proposed to equalize the density around each sample. The
affinity weight is described as:

Ai, j = exp

(
−‖ xi − x j ‖2

σiσ j

)
, (19)

where σi denotes the local scaling of input samples around
xi computed as:

σi =‖ xi − x(k)
i ‖ (20)

Here, x(k)
i is the k-th nearest neighbor of xi, such that for all

x j, yi = y j.

2.4 Local Fisher Discriminant Analysis (LFDA)

In LFDA [16], two adjacent samples of the same class are
imposed to be close, and those of different classes are im-
posed to be far apart. In addition, two samples of the same
class but distant in the input space are not imposed to be
close. As a result, the application of LFDA ensures that the
multimodality of samples is not lost by dimensionality re-
duction.

LFDA projection matrix ΦLFDA is computed as:

ΦLFDA = arg max
Φ

(
tr
[
ΦTS̄

(b)
Φ

ΦTS̄
(w)
Φ

])
, (21)

where S̄
(w)

and S̄
(b)

correspond to the local within- and
between-class scatter matrices. These matrices are ex-
pressed as pairwise forms as:

S̄
(w)
=

1
2

N∑
i, j=1

Ā(w)
i, j (xi − x j)(xi − x j)

T (22)

S̄
(b)
=

1
2

N∑
i, j=1

Ā(b)
i, j (xi − x j)(xi − x j)

T , (23)

where

Ā(w)
i, j =

{
Ai, j · 1

Nc
if yi = y j = c,

0 if yi � y j,
(24)

Ā(b)
i, j =

{
Ai, j( 1

N − 1
Nc

) if yi = y j = c,
1
N if yi � y j.

(25)

In [16], affinity weight Ai, j was computed using the local
scaling method described in Eq. (19). ΦLFDA can be opti-
mized with the generalized eigenvalue problem as can FDA.

3. Class-Distance-Based Discriminant Analysis
(CDDA)

Data pairs of the same and different classes are basically
imposed to be close and far apart in FDA and LFDA. When
evaluating AAE systems, even if the system induces errors,
smaller errors are better, and the system would worsen with
an increase in errors. To introduce this property to feature
projection, we attempted to project two samples with similar
class labels (i.e., close ages) such that they would be close
in the projected feature space, while projecting two samples
with class labels that were far apart (i.e., apart ages) such
that they would be far apart in the projected feature space.
We called this discriminant analysis taking into considera-
tion the differences in class labels (i.e., differences in ages)
of two samples as “class-distance-based discriminant anal-
ysis” (CDDA). From this discussion, CDDA has a human-
intuitive property where class continuity, which is the or-
der relation in ages, is introduced by dimensionality reduc-
tion; this method can increase between-class separability in
achieving class continuity.

Furthermore, we attempt to extend CDDA such that
class continuity of projected feature samples can be more
accurately achieved and the multimodality of input samples
can be preserved through dimensionality reduction. We call
this extended method “local class-distance-based discrimi-
nant analysis” (LCDDA). The property of LCDDA can be
realized by introducing the weight applied to LFDA, which
is described in Eq. (19), to the affinity matrix for CDDA;
this weight ensures that two samples that have close class
labels but are far apart in the input space are not forced to be
close [16].

3.1 Formulation of CDDA

In CDDA, an aggregated scatter matrix S̄
(a)

and a diffuse
scatter matrix S̄

(d)
are defined as:

S̄
(a)
=

1
2

N∑
i, j=1

A(a)
i, j (xi − x j)(xi − x j)

T (26)

S̄
(d)
=

1
2

N∑
i, j=1

A(d)
i, j (xi − x j)(xi − x j)

T (27)

Here, A(a)
i, j denotes the affinity matrix that is taken to be equal

to one if a data pair has the same age and zero if the age
difference between the data pair is large. A(d)

i, j denotes the
affinity matrix that is taken to be equal to zero if a data pair
has the same age and one if the age difference between the
data pair is large. In the present study, we define A(a)

i, j and

A(d)
i, j such that these matrices satisfy the aforementioned con-

straints as

A(a)
i, j = exp

(
−|yi − y j|2

t2

)
(28)
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A(d)
i, j = 1 − exp

(
−|yi − y j|2

t2

)
(29)

Using S̄
(a)

and S̄
(d)

, CDDA projection matrixΦCDDA is com-
puted as:

ΦCDDA = arg max
Φ

(
tr
[
ΦTS̄

(d)
Φ

ΦTS̄
(a)
Φ

])
(30)

The optimization ofΦCDDA reduces to the same generalized
eigenvalue problem as FDA and LFDA.

3.2 Formulation of LCDDA

LCDDA decreases the affinity weight for two samples with
close class labels but is far apart in input space while CDDA
gives a large affinity weight for two samples with close class
labels, irrespective of the distance of input samples. The
affinity weight for the aggregated scatter matrix (i.e., A(a)

i, j ) is
defined for that purpose using not only the class-distance of
the two samples but also the distance of two input samples.
Here, A(a)

i, j and A(d)
i, j are defined as:

A(a)
i, j = exp

(
−|yi − y j|2

t2

)
· exp

(
−||xi − x j||2
σi · σ j

)
(31)

A(d)
i, j = 1 − exp

(
−|yi − y j|2

t2

)
, (32)

where σi denotes the local scaling, which is the distance be-
tween xi and the k-th nearest neighbor sample of xi. Unlike
LFDA, the k-th nearest neighbor sample is not limited to that
of the same class as xi.

By computing the scatter matrices in Eqs. (26) and (27)
by using the affinity matrices in Eqs. (31) and (32), LCDDA
projection matrix ΦLCDDA is computed as:

ΦLCDDA = arg max
Φ

(
tr
[
ΦTS̄

(d)
Φ

ΦTS̄
(a)
Φ

])
(33)

4. Experiments on Age Estimation

We carried out experimental comparisons using AAE. We
evaluated four methods of feature projection of FDA,
LFDA, CDDA, and LCDDA. We set parameter k in Eq. (20)
to five for LFDA and LCDDA, which yielded the best per-
formance.

4.1 Facial Image Resources

We used a large-scale facial-image database to automati-
cally estimate human characteristics, which was called the
Waseda Human Computer Interaction Technology Database
(WIT-DB), developed by Waseda University and NEC Soft,
Ltd. It comprises frontal facial images of Japanese individu-
als taken in various environments (e.g., companies and uni-
versities). In addition, the database includes various lighting

Table 1 Number of facial images we used.

age female male
–10 846 1,486

11–15 209 212
16–20 641 1,316
21–25 329 580
26–30 403 640
31–35 404 700
36–40 400 676
41–45 437 722
46–50 317 635
51–55 431 785
56–60 436 610

61– 613 1,130
total 5,466 9,492

conditions without occlusion. Most of the images have neu-
tral facial expressions and some images show people smil-
ing. The image size was 64 × 48 pixels. The actual age of
subjects ranged from 5 to 70 years, with a step size of one
year (66 classes). Table 1 lists the number of facial images
we used.

4.2 Classifiers

We used k-nearest neighbor (kNN) classifiers. We estimated
the age of the subjects as the average of the class labels of
kNN samples in this case. We set k to eight in this study.

We evaluated kNN-based AAE systems using two-fold
cross validation tests for each gender. In the images of fe-
males, one and the other fold comprised 2,455 and 3,011
images, respectively. In the images of males, one and the
other fold comprised 4,636 and 4,856 images, respectively.

4.3 Evaluation Measures

We used two objective evaluation measures, mean absolute
errors (MAEs) [3], [4], [22] and cumulative scores [4], [5],
which are frequently applied in studies on AAE.

4.3.1 Mean Absolute Error

The MAE, which is the average of errors for all ages, was
computed as:

MAE =
1
Nt

Nt∑
i=1

|ai − âi|, (34)

where Nt denotes the number of test samples we used and ai

and âi correspond to the real and estimated ages of the i-th
sample. Note that a small MAE indicates excellent perfor-
mance in feature projection systems. Greatly overestimating
the age of a 20-year-old person to be 45 years is more seri-
ous than slightly overestimating it to be 25 years in AAE
systems. MAE can prove to be useful in such situations.
MAE increases with an increase in the number of samples
that induce large errors in the estimated age.
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(a) Female facial images. (b) Male facial images.

Fig. 1 MAE as function of scaling parameter in affinity matrices of CDDA and LCDDA.

4.3.2 Cumulative Score

The cumulative score was computed as:

CumScore(l) =
N≤l

Nt
× 100 (%), (35)

where Nt denotes the number of test samples we used and
N≤l denotes the number of test samples whose error levels
(i.e., difference between real and estimated ages) are lower
than l. The cumulative scores in this study were measured
as a function of the error levels. The accuracy of AAE can
be evaluated in detail by using the cumulative score as com-
pared to the MAE. In addition, this criterion is useful in
investigating the relation between the accuracy of systems
and tolerance against errors.

It should be noted that a better cumulative score in-
dicates that samples in the projected feature space are dis-
tributed with more accurate order relation in ages (i.e., class
continuity) because the score is computed by using the esti-
mated age given by the k-NN-based classifiers, which use
the geometrical structure of neighborhood samples in the
projected feature space.

4.4 Experimental Results

Figure 1 plots MAE as a function of scaling parameter t used
in Eqs. (28), (29), (31), and (32). This figure shows the av-
erage MAEs for dimensionality, ranging from 1 to 50, of the
projected samples. The AAE systems based on CDDA and
LCDDA yielded better MAEs than the conventional FDA-
and LFDA-based AAE systems, irrespective of the scaling
parameters. In addition, the LCDDA-based system yielded
the best MAEs of the four feature projection methods, ir-
respective of the scaling parameters. Here, we determined
optimal scaling parameter t of CDDA and LCDDA from
this result; the CDDA-based system performed the best for
t = 4.1 for female facial images and 4.5 for those of males.
The LCDDA-based system performed the best for t = 4.9

for female facial images and 4.5 for those of males. In the
rest of the experiments, these values were set to the scaling
parameter to evaluate the CDDA- and LCDDA-based sys-
tems.

Figure 2 plots MAE as a function of the dimensionality
of the projected samples for female and male facial images.
This figure shows that the CDDA- and LCDDA-based sys-
tems yielded better MAEs than the conventional FDA- and
LFDA-based systems, irrespective of the dimensionality of
the projected samples. The MAEs from the LCDDA-based
system exceeded that from the CDDA-based system espe-
cially for the female facial images, irrespective of dimen-
sionality.

Table 2 lists the best MAEs and corresponding dimen-
sionality of the projected samples for all methods of feature
projection. The results indicate that the LCDDA-based sys-
tem performed the best; it reduced the MAE of the FDA-
and LFDA-based systems by 0.42 points for the former and
0.43 points for the latter, which were averaged for gender.
In addition, the LCDDA-based system reduced the MAE of
the CDDA-based system by 0.12 points.

Figure 3 plots cumulative scores as a function of the
error levels for ages ranging from 0 to 30 years for the fe-
male and male facial images. The dimensionality of the
projected feature samples used in this experiment were op-
timized in the MAE-based evaluation, which are listed in
Table 2. The CDDA- and LCDDA-based systems yielded
similar and slightly better scores than the FDA- and LFDA-
based systems, irrespective of the gender or error level. The
cumulative score was 60% in the CDDA- and LCDDA-
based systems when the tolerance against error in age esti-
mation was 7 years for the female facial images and 5 years
for the male facial images, and 90% for the male and female
facial images when the tolerance against error was 18 years
for the former and 13 years for the latter.

As described in 4.3.2, a better cumulative score in-
dicates that more accurate class continuity of samples is
achieved in the projected feature space. Therefore, the re-
sults in Fig. 3 show that CDDA and LCDDA can more ac-
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(a) Female facial images. (b) Male facial images.

Fig. 2 MAE as function of dimensionality of projected samples.

Table 2 Best MAE for all projection methods. “Dimension” and “Parameters” denote corresponding
dimensionalities of feature vectors and tuning parameters (i.e., k in Eq. (20) and t in Eqs. (28), (29), (31),
and (32)).

Female MaleMethod
MAE Dimension Parameters MAE Dimension Parameters

FDA 7.74 14 5.64 9
LFDA 7.72 15 k = 5 5.68 16 k = 5
CDDA 7.35 23 t = 4.1 5.44 14 t = 4.5
LCDDA 7.13 36 k = 5, t = 4.9 5.42 18 k = 5, t = 4.5

(a) Female facial images. (b) Male facial images.

Fig. 3 Cumulative score as function of error level for ages ranging from 0 to 30 years.

curately achieve class continuity of the projected feature
samples than FDA and LFDA. In addition, since LCDDA
gave approximately the same cumulative score as CDDA,
as shown in Fig. 3, CDDA and LCDDA may give the same
performance in preserving class continuity. On the other
hand, LCDDA improved the mean absolute errors compared
to CDDA, as shown in Figs. 1 and 2. This improvement may
have been derived from the difference between CDDA and
LCDDA; the difference is represented by the effect of the
weight in Eq. (19), which preserves multimodality through
dimensionality reduction. Therefore, LCDDA can more
precisely preserve the multimodality of input samples than

CDDA.
These experimental results indicate that CDDA and

LCDDA had the best discrimination of the conventional
methods, since they took into account not only the within-
and between-class scatter but also the order relation of class
labels.

5. Conclusion

We proposed a new method of supervised feature projec-
tion called CDDA and applied it to AAE. We also proposed
an extension of CDDA called LCDDA. These methods ex-
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plicitly utilized class distances of two samples and could
extract discriminative features. The experimental results
revealed that CDDA and LCDDA outperformed FDA and
LFDA in terms of MAE and the cumulative score. The re-
sults showed that CDDA and LCDDA could achieve slightly
more accurate class continuity for the projected feature sam-
ples than FDA and LFDA. In addition, LCDDA may more
precisely preserve multimodality of input samples through
feature projection than CDDA. Therefore, the proposed
methods contribute to achieving human-intuitive and high-
performance AAE systems.
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