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PAPER

Pedestrian Detection with Sparse Depth Estimation

Yu WANG†a), Nonmember and Jien KATO†, Member

SUMMARY In this paper, we deal with the pedestrian detection task in
outdoor scenes. Because of the complexity of such scenes, generally used
gradient-feature-based detectors do not work well on them. We propose to
use sparse 3D depth information as an additional cue to do the detection
task, in order to achieve a fast improvement in performance. Our proposed
method uses a probabilistic model to integrate image-feature-based classi-
fication with sparse depth estimation. Benefiting from the depth estimates,
we map the prior distribution of human’s actual height onto the image, and
update the image-feature-based classification result probabilistically. We
have two contributions in this paper: 1) a simplified graphical model which
can efficiently integrate depth cue in detection; and 2) a sparse depth esti-
mation method which could provide fast and reliable estimation of depth
information. An experiment shows that our method provides a promising
enhancement over baseline detector within minimal additional time.
key words: pedestrian detection, depth estimation, stereo matching

1. Introduction

Pedestrian detection is a fundamental component in many
applications, such as smart vehicle, robot navigation and
various first person vision applications. Typical methods
for this task slide a window over all the scales and posi-
tions of the image, extract image features from each detec-
tion window, and apply a pre-trained classifier to do the
pedestrian/non-pedestrian classification. For this kind of
method, image features are very important for the perfor-
mance. A robust feature set is the key to discriminate pedes-
trians from background and other objects. Recent studies
suggest that gradient-based features (such as Histogram of
Gradient [1] and edgelets [2]) work very well in human de-
tection, because they have strong ability in catching the sil-
houette information in image.

However, in many real world scenes where complex
background and occlusion exist, such gradient-based image
features encounter difficulties in achieving sufficient robust-
ness. Take Fig. 1 for an example, we apply the pedestrian
detector proposed by N. Dalal et al. [1] to find pedestrians in
the street view image. The detector uses HOG (Histogram
of Gradient) as feature and linear Support Vector Machine
as classifier. When we use it to select the pedestrian can-
didates strictly, outputs shown in red, we found that many
true pedestrian instances were not detected. As we make the
selecting standard a little looser, more candidates could be
found as shown by the green boxes. Inside these augmented
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Fig. 1 Detect pedestrians using a typical HOG based detector. Select
candidates strictly as shown in red, many true instances were missed; use
looser criterion, more candidates were found in green, but the number of
false positives also increased.

candidates, we can see some missed true instances were suc-
cessfully detected. However, the number of false detections
was also increased simultaneously.

In order to meet the requirement of real world applica-
tions, researchers have tried different ways to build a more
discriminative detector. W.R. Schwartz et al. [7] proposed
to combine different types of local image features together
to become a strong feature set. In their work, gradient-
based feature is augmented with color, textures and their
co-occurrence statistics. They compute a 170,820 dimen-
sional feature vector in each detection window for classi-
fication, and showed that the high dimensional feature set
could bring significant improvement to detection accuracy.
For their method, speed is a remaining issue. Because such a
high dimensional feature set brings severe burdens on com-
putation, it is not easy to adapt them in applications which
require a fast processing speed.

In another work, instead of developing a stronger fea-
ture set, P. Felzenszwalb et al. [5] proposed to use ob-
ject’s part information for detection. They introduced a de-
formable part model to represent object, and use it to do
additional analysis in each detection window. In their work,
a detection window is classified as human not only because
it looks like a human (based on image feature), but also be-
cause it has parts (such as head and feet), and these parts
are in the appropriate positions. They show that using part
information could also effectively improve the detection ac-
curacy. However, doing additional analysis with such an
elegant object model also comes with high computational
cost, thus make the system become relative slow. As a re-
sult, even though it can improve detection accuracy, such
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kind of object model is also hard to adopt in many applica-
tions.

Actually in many applications, such as those in smart
vehicle and robot navigation, the detection needs to be done
not only accurately but also fast. So the method that used to
improve detection performance should also preserve a fast
processing speed. From this point of view, in this paper, we
propose to use the 3D depth information beside 2D image
features to do the pedestrian detection task. In our method,
the depth of each detection window is computed and used
to map a prior distribution of human’s actual height onto
the image plane. The resulted imaged height distribution is
then used to update the image-feature-based detection result
for the corresponding detection window. The final detec-
tion result is contributed by both image features and depth
information, and could provide stronger ability to discrim-
inate pedestrian from other objects. There are mainly two
contributions in our work: 1) a probabilistic model for the
efficient use of depth information in detection; 2) a sparse
depth estimation method for a fast and reliable estimation of
depth information. We show that our method could provide
over 33% enhancement in detection accuracy comparing to
the baseline detector, with minor additional processing time.

2. Related Works

Depth information is valuable for human detection and has
been explored in many previous works. Earlier works, such
as [8] and [9], group the depth value of neighbouring pix-
els to generate the region of interest (ROI) in the image.
Only the ROIs are expected to have pedestrians’ existence
and are further to be applied with a pedestrian detector. In
these works, depth information was mainly used to do pre-
processing to reduce the image searching space.

In [9], D.M. Gavrila et al. also implemented a way to
use depth information to verify detector’s output. They as-
sumed pixels of a true detection should have similar depth
values, and introduced a rejecting mechanism to get rid of
detection windows which have large deviation of depth in-
side. This could help to filter out detections which contain
an appreciable amount of background. However, because
the depth was only used for post-verification on detector’s
output and could not contribute to the detection accuracy,
such kind of usage was still limited and did not make the
full use of depth information.

Recently, A. Ess et al. [4] presented a system which in-
tegrate dense depth estimation, visual odometry and pedes-
trian detection together for an on-board tracking purpose. In
their system, the detector’s output is integrated with depth
information in a probabilistic way, which is similar with our
proposed method. However, their approach is quite differ-
ent with us. In A. Ess’ work, the depth information is esti-
mated for every single pixel by doing dense matching (find
pixel wise correspondence) between stereo images. Though
the resulted dense depth map is very informative, the dense
matching itself is computationally complex (because it re-
lies on global optimization) and sensitive with some image

conditions (such as image noise, textureless regions, and oc-
clusions). Contrast to them, we put the computational ef-
ficiency and robustness in the first place of consideration
and use sparse matching to obtain the depth information of
the scene. Though our method could only obtain the sparse
depth information of the scene, it is fast, reliable, and suffi-
cient for our purpose.

There also exist some other works that use range sen-
sors to get the depth information and use in detection task.
For example, S. Ikemura and H. Fujiyoshi [3] proposed to
obtain the depth information estimated from a TOF (Time
of Flight) camera, and use as a feature in human detection.
The TOF camera measures the depth information by calcu-
lating the time it takes for the light reflect by object sur-
face to arrive at the camera. It could provide quite accurate
measurement of the depth. However, the TOF cameras are
still limited to use in indoor environment and have a limited
working range. As a result, such kind of method is not easy
to be adapted in different applications, such as the outdoor
pedestrian detection task we are dealing with in this work.

The purpose of our work is to use depth information
to achieve better detection accuracy, while preserving a fast
processing speed. To do this, it is necessary to appropri-
ately deal with the following two problems: 1) how to effi-
ciently integrate the depth information and detector’s output
together, and 2) how to fast and reliably estimate the depth
information of the scene. For the first problem, we intro-
duce a simplified graphical model to probabilistically inte-
grate these two kinds of estimation together. Different with
many prior works which use the depth for pre-processing
or post-verification purpose, we use the depth as additional
cue for discriminating pedestrians out of background and
other objects. For the second problem, we introduce a sparse
matching method to estimate the depth information of the
scene. Our method uses key point descriptor to measure the
similarity of points and select only confident matches for the
depth computation. This makes the resulted depth informa-
tion reliable for use.

3. Approach

Our basic idea is to use the 3D depth information as an ad-
ditional cue to do the pedestrian detection. The detection
results in our work are contributed by both image features
and depth evidence, and could better discriminate pedestri-
ans from background and other objects. In order to effi-
ciently use the depth information, we apply a probabilistic
way in this work.

3.1 Overall Strategy

Take stereo images as input, our method mainly consists of
two complementary modules which are able to run in par-
allel. The first one is an image-feature-based pedestrian de-
tector, which applies on one of the stereo images to generate
a set of pedestrian hypotheses. For every pedestrian hypoth-
esis in that image, the detector will assign a bounding box
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Fig. 2 System overview.

to indicate the location and a detection score to indicate its
confidence. The second one is depth estimation, which ap-
plies on both stereo images to estimate a sparse depth map
of the scene. The resulted sparse depth map contains a set
of sparely distributed points corresponding to the key points
in the stereo images, each attaches a 3D depth value. In our
current system, the detection is performed on the left cam-
era’s image, and the system overview is shown in Fig. 2.

For every pedestrian hypothesis output from the detec-
tor, a distance will be computed by using the depth value
from the depth map. The distance is further used to up-
date the hypothesis’ corresponding confidence. With human
knowledge, such kind of updating is not difficult because
we know how the size of a human should be and “things
become smaller when get further”. Take the pedestrian in-
stance in the middle of Fig. 2 for example, we know what
size it should be in the image given the corresponding dis-
tance. If the observed size is close to it, we will be more
confident, and vice versa. Inspired by such human experi-
ence, we use a graphical model to probabilistically integrate
the detection with depth estimation, and introduce a prior
height distribution of adult human to enable the confidence
updating.

3.2 Graphical Model

We assume object’s imaged height is conditioned on its cat-
egory and the distance with respect to the camera, but the
object identity and the distance are independent from each
other. Using a graphical model, we can represent the condi-
tional interdependence over the pedestrian identities oi, their
imaged height hi, and the corresponding 3D distance di, as
shown in Fig. 3. The I denotes the left camera image and the
D indicates the sparse depth map estimated from the stereo

Fig. 3 Graphical model that represent the interdependence among hy-
pothesis’ properties, image and depth evidences.

image pair, both are observed evidence in the model. We
have n pedestrian hypotheses for each stereo pairs.

With the model, the overall joint probability could be
written in the following equation as:

P(o, d, h, I,D)

=
∏

i

P(oi)P(di)P(D | di)P(I | oi)P(hi | oidi). (1)

Using Bayes rule, we can give the likelihood of the proper-
ties of pedestrian hypotheses that conditioned on the image
and depth evidences as:

P(o, d, h | I,D) ∝
∏

i

P(oi | I)P(hi | oidi)P(di | D). (2)

The proportionality equation in Eq. (2) is with respect to I
and D which are constant given a stereo pair. In the right
hand side, P(oi | I) means the confidence of a pedestrian
hypothesis oi given image evidence, which we estimate us-
ing a pedestrian detector. P(hi | oidi) means the probability
of a hypothesis observed with imaged height hi, conditioned
on its category and 3D distance. We estimated it by map-
ping a prior distribution of pedestrians’ actual height to the
image plane. The P(di | D) is the confidence of the depth
estimation given the evidence from depth map.

In this work, we determine the depth in an explicit
way, where the depth for each pedestrian hypothesis is ex-
act given the depth evidence. This kind of solution could
significantly simplify the computation while preserving the
effectiveness of the use of depth. This allows us to margin
out the d on both left and right hand side, for a single object
hypothesis, we then get:

P(oi, hi | I,D) ∝ P(hi | oidi)P(oi | I), (3)

where in the left hand side, P(oi, hi | I,D) indicates given
the image evidence I and D, the probability of an pedestrian
hypothesis oi exits with its imaged height hi. It is propa-
gated with the P(hi | oidi) and P(oi | I), and is a updated
confidence estimation of pedestrian hypothesis which not
only take into account the image evidence but also the depth
information. We get updated confidence for every pedes-
trian candidates by propagating the P(oi, hi | I,D) from
P(hi | oidi) and P(oi | I). The resulted confidence are then
be resorted and high ones are selected as the novel detection
output. In the following paragraph, we will introduce the
way we estimate the P(oi | I) and P(hi | oidi) in detail.
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4. Generate Pedestrian Hypotheses

Pedestrian hypotheses oi are generated by applying a pedes-
trian detector on left camera images. Each hypothesis has
a bounding box to indicate the location and a classification
score xi to indicate the confidence. In order to integrate this
detection result with depth evidence, we convert each raw
classification score xi to its corresponding probabilistic form
P(oi | I) with logistic regression.

4.1 Baseline Pedestrian Detector

The baseline pedestrian detector in our work is similar with
the one proposed by N. Dalal et al. [1]. We also use the
Histogram of Oriented Gradients (HOG) as the local image
feature and linear support vector machine as the classifier.
Different with the proposed method, we replace the origi-
nal 36-dimensional feature set with a novel 31-dimensional
one that described in [5]. The lower dimensional feature
set could make the classifier with less parameter therefore
simplify the training process and speed up the runtime per-
formance.

The overall processing flow of the detector is outlined
in Fig. 4. It could be coarsely divided into learning phase
where a linear classifier function is being learned from la-
belled image samples, and detection phase where trained
classifier function is to be applied on novel image to find
object hypotheses.

Our baseline detector was trained on the INRIA person
data set [1]. From the dataset, we arranged 3610 positive
samples of adult pedestrian and 15000 person-free negative
samples. All these samples are of the size 70 × 134. Using
the 31-dimensional HOG proposed by P. Felzenszwalb et
al. [5], we computed a 3255 dimensional feature vector x
for each sample.

In the learning phase, we learn a linear model β from
these training samples using SVM [11]. So that for the pos-
itive samples, their feature vector x have βT x > b and neg-
ative ones have βT x < b. The training returns a 3255 di-
mensional linear classifier which has the same size with the
samples’ feature vector.

Fig. 4 Processing flow of training and applying the baseline pedestrian detector.

When novel image comes, we slide a window over its
scales and positions, and use the linear model β to evaluate
a classification score for each sub window. Because we use
a linear model, the searching could be simplified. The clas-
sification score could be computed by doing a dot product
of the pre-trained linear model and the feature vector of the
image patch. Therefore, searching over a single scale of the
image is equivalent to convolve the βwith a single scale fea-
ture map of the image. Additionally, searching over scales
of the image could be implemented by doing single scale
searching over the image’s pyramid.

In practice, we implement the sliding window search-
ing by convolving the linear model β with the feature pyra-
mid. By doing this, we obtain a classification score for each
position with a scale. In general, for an image portion that
is likely to be a pedestrian instance, the classification score
for its surround bounding boxes will be all very high. We
therefore perform non-maxima suppression to eliminate the
overlapped bounding boxes by selecting only one box for
each instance.

4.2 Confidence Converting

From the results of the detector described above, we filter
out detections windows which have very low confidence,
and leaves relative high scored hypotheses oi which are ex-
pected to be pedestrian instances. However, their corre-
sponding classification score xi that output from the linear
model is within the interval (−∞,+∞), and our graphical
model wants a probabilistic input p(oi | I) which should in
the interval [0, 1]. We therefore transform the SVM output
into a probability form with logistic regression.

In our case, because the classification score is the only
explanatory variable, we define the logistic function in the
following form:

p =
1

1 + eAx+B
. (4)

where, x is the classification score that output from our
classifier, p is the corresponding probability form. A
and B are the parameters, which are estimated by using
a set of collected classification score and the correspond-
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ing pedestrian/non-pedestrian label. The resulting function
takes x within (−∞,+∞) and outputs the corresponding p
within (0, 1).

In this way, for a given image, we generate a set
of pedestrian hypotheses and its corresponding probability
given the image evidence. Our method is free for the choice
of pedestrian detector as long as they could output a score
to indicate the confidence, thus is easy to be generalized to
other detectors.

5. Utilizing Depth Evidence

The probability for the imaged height of a pedestrian hy-
pothesis P(hi | oidi) is estimated by observing the height hi

of its bounding box in a distance-conditioned height distri-
bution p(h | oidi). The later one is obtained with the distance
and a prior distribution of pedestrian’s actual height.

5.1 Sparse Depth Estimation

In many prior works, depth is estimated by performing
dense matching on stereo images. In general, dense match-
ing methods use pixel intensity as similarity measurement,
neighbouring smoothness as prior, and apply inference
method (such as belief propagation or graph cuts) to find
the pixel wise correspondence between stereo images. Such
kind of methods could provide dense depth map which is
quite informative, but also has some shortcomings. One is
because they rely on the smoothness prior, in case the scene
is complicated, the smoothness prior will lose its power and
causes erroneous correspondences. Also, doing global in-
ference is computationally complex, and not easy to be im-
plemented in parallel for a faster speed.

Different with these works, we adapt sparse matching
to obtain the depth information of the scene. Our approach
involves detecting distinctive key points in stereo images,
computing the descriptor of each point, and finding matches
by measuring the similarity of their descriptors. Similar
method was mainly used for camera calibration or structure
initialization in 3D reconstruction. It has not yet been used
in detection tasks because the sparse correspondence some-
times was not sufficient and the computational speed is not
fast enough. In our work, to make the depth map not “too
sparse”, we adapt the multiple operator key point matching
approach proposed in [12] to obtain the raw matching re-
sult of the stereo pairs. In the other hand, we implemented
the key point detection and descriptor computation in paral-
lel, and used a GPU to support the computation for a faster
processing speed.

In Fig. 5, we summarized the sparse matching al-
gorithm. In this work, we used two operators, namely
the Difference-of-Gaussian operator [13] and Harris opera-
tor [10]. For each key point that founded by the DOG oper-
ator, a 128-dimensional SIFT descriptor is computed as its
descriptor. We use the Euclidean distance as the distance
function to measure the similarity between two SIFT de-
scriptors. The Harris operator is used to find corner key

Fig. 5 Multiple operator key point matching algorithm.

points. For this kind of key points, we extract their sur-
rounding 11 × 11 pixels, and concatenate to an 121 dimen-
sional vector as their descriptor. The distance of two such
descriptors is defined as their normalized cross-correlation.

In the raw matching step, both key point detection and
descriptor computation consist of a lot of independent com-
putation. We therefore implement them in parallel for the
efficiency purpose. With the raw matching result, Epipo-
lar constrain is applied to remove correspondences that ex-
ist apart from their Epipolar line more than a threshold ω
(ex. 2 pixels). This could further remove outlier matches
and guarantee the quality of matching. In our method, the
matching quality is controlled by setting three thresholds
(two for matching, one for refining), and is not dependent
on the complexity of the scene. This makes it possible to
provide reliable measurement for different kind of scenes.

The refined matches are used to do linear triangula-
tion and get the 3D coordinates of each match, with pre-
calibrated camera matrices. We set the left camera’s optical
center as the world origin, then the z coordinate is the depth
d. Figure 6 visualizes a sample sparse depth map and their
corresponding key points in the image. For each object hy-
pothesis oi that we obtained, we collect all the matched key
points inside its bounding box and select one that is repre-
sentative for its depth. Here we use a simple way to select
the representative point. We find the nearest k feature points
Pt(t = 1, . . . , k) around the diagonals’ intersection of the
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Fig. 6 Keypoints (left) and their 3D coordinates.

Fig. 7 Similarity relation between pedestrian’ height and its imaged one.

bounding box, and select the point Pi which has the mini-
mum sum of distance in depth with other points. We think
it is not a good solution and have tried to use mean-shift to
directly find the coordinates of the 3D points’ mass center.
However, it did not perform well enough even comparing
to our simplest solution. The reason may be that a lot of
matched point is found around the object’s boundary, and
the mean-shift stops at local maxima frequently.

With the representative point Pi, the distance di could
be computed by taking into account the point’s imaged de-
viation with respect to the optical center. In case the camera
does not have a wild field of view, di approximates to the
depth.

5.2 Mapping the Prior Height Distribution

With class conditioned object hypothesis oi, its distance di

and known camera’s focal length f , we map a prior height
distribution H of pedestrians to the imaged one p(h | oidi).

We specify that the height H of adult pedestrian is nor-
mally distributed with a mean of 1.7 meters and a standard
deviation of 0.085, therefore we have H ∼ N(1.7, 0.0852).
This statistic is firstly estimated by D. Hoiem [17] based
on the data from the National Center for Health Statistics
(www.cdc.gov/nchs/), and has been proved to be effective.
However, a limitation is that such distribution does not work
for children. And also, our baseline detector is trained for
adult pedestrian of the size 70 × 134 which has a quite dif-
ferent ration with respect to kids. To overcome this issue,
one possible way is to train one more baseline detector with
different size and utilize a different prior height distribution
to detect children only.

Using the similarity relation of the two triangles as
shown in Fig. 7, we can represent the imaged pedestrian’s
height as h = H f /d. Since H ∼ N(1.7, 0.0852), h is
also a simple Gaussian with 1.7 f /di as mean and 0.085 f /di

as standard derivation. Therefore we get p (h | oidi) ∼

N
(
1.7 f /di, (0.085 f /di)

2
)
.

With this imaged height distribution and the observed
height hi of each bounding box in the image, confidence
of every single hypothesis could be updated by propagat-
ing from p(oi | I) and p(hi | oidi). The updated confidence
obtained in this way has thus taken into account the depth
information and is expected to be more discriminative than
the visual-features-only estimated result.

6. Experimental Result

In this section, we present the experimental results. We start
by introducing the dataset and our evaluation criterion, then
give the quantitative results. After all, we will show concrete
results and give some discussion.

6.1 Dataset and Evaluation Criterion

The purpose of the experiment is to see if estimating and
using depth information in our proposed way can efficiently
improve image-feature-based pedestrian detection in com-
plex scenes. For this, we prepared a difficult dataset by se-
lecting images from the ETHZ tracking sequence [4]. Our
dataset contains 133 pairs 640 × 480 stereo images of com-
plex street view scenes, with 798 annotations as ground
truth. It could be found on our project page [14].

In the experiment, we have four systems for compar-
ison: the baseline detector, the UoCTTI detector [5] (base-
line + deformable part model), our proposed detection sys-
tem (baseline + sparse depth) and a simplified implementa-
tion of the ETHZ system [4] (baseline + dense depth). As
we have mentioned previously, the UoCTTI detector adapts
a very expressive model called mixtures of multiscale de-
formable part model, and uses the part information for de-
tection. The main difference between our proposed system
and the UoCTTI detector is that our system uses depth infor-
mation for detection, while the UoCTTI detector uses part
information for detection. In the other hand, the ETHZ sys-
tem [4], which also uses depth information for detection, is
very close to our proposed system. The crucial difference
between it and our proposed system lies in the depth esti-
mation method: ETHZ system uses dense depth estimation
but our proposed system uses sparse depth estimation. In
order to investigate how different kind of depth estimation
affect the practical performance, we implemented a simpli-
fied ETHZ system by integrating to our proposed system the
dense stereo algorithm [16] that used in [4].

In our experiment, every detection system outputs a set
of predicted pedestrian candidates for the left camera im-
age. For each predicted bounding box, to be considered as
a correct detection, the area of overlap ao between itself Bp

and ground truth bounding box Bgt must exceed 50% by the
formula:

ao =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
. (5)

Multiple detections of the same instance in an image are
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Fig. 8 PR curve for the detection performance.

Table 1 Average Precision for the detection performance.

Proposed System 0.2325
Simplified ETHZ System 0.2232
UoCTTI Detector 0.2530
Baseline Detector 0.1738

considered as false detections. For example, four detections
of a pedestrian instance is counted as one correct detection
and three false detections.

All our experiment was done on a 2.83 G Intel Core 2
Quad CPU with 4 G RAM. The sparse depth map computa-
tion was partially supported by a NVIDIA GeForce 9800GT
GPU with 512 M VRAM.

6.2 Quantitative Evaluation

Our quantitative experiment uses precision-recall (PR)
curve [15] to measure how a detection system performs in
practice. The PR curve makes it easy to observe the trade-
off between the accuracy and how many instances in the im-
age that have been detected. The result is plotted in Fig. 8.
Under most recall, the UoCTTI detector, which is shown in
blue curve, has maintained a precision near 0.5. By inte-
grating sparse depth information, our proposed system out-
performs the baseline detector, and slightly better than the
simplified ETHZ system.

Besides PR, we also compute an interpolated Average
Precision (AP) [15] to summarize the overall performance
of each detection system. It measures the mean precision
at a set of equally spaced recall levels, therefore includes
measurements of precision across the full range of recall. It
penalizes methods which achieve low total recall as well as
those with consistently low precision, therefore is ideal for
measuring the overall performance in experiments. The AP
for the four systems is summarized in the Table 1. Our pro-
posed system brings near 33% improvement to the baseline
detector.

Because all the four systems work by scanning image
windows and applying classification on each window, in or-
der to evaluate the combinational performance of detection
and scanning, we additionally use the false positives per im-
age (FPPI) as a metric. The plot is shown in the Fig. 9. We

Fig. 9 The plot shows the false positives per image of the four systems.

Table 2 Details of the one frame detection speed of the four systems.

Proposed baseline detector: 1.7 s
System sparse depth estimation: 0.15 s 1.88 s

integration: 0.03 s
Simplified baseline detector: 1.7 s

ETHZ System dense depth estimation: 9.49 s 11.22 s
integration: 0.03 s

UoCTTI Detector 8.4 s
Baseline Detector 1.7 s

can see with the same number of false positives, our pro-
posed system is comparable with the UoCTTI detector and
better than the other two systems.

The speed of the four systems is listed in Table 2. The
baseline detector runs the fastest, only cost about 1.7 second
on a single 640 × 480 image. The UoCTTI detector is quite
time consuming and cost near five times as much time as the
baseline detector. Since the UoCTTI detector also uses the
HOG feature as low level image feature, such disadvantage
in speed may mainly boil down to the computational cost
from the expressive model it used.

In the current implementation of our proposed method,
the detection and depth estimation are done in serial. It costs
0.18 second per frame to update the detection result from the
detector, thus the overall speed is 1.88 seconds per frame.
Since the two modules in our method are able to be done in
parallel, in that case, the speed will be 1.73 per frame. This
overall runtime performance is not good enough and it still
has space to improve. Because our proposed system is free
with the choice of baseline detector, using other faster detec-
tor or implementing current detector with GPU processing
could make the overall speed be able to meet more applica-
tions.

Comparing to our proposed system, the simplified
ETHZ system is relatively slow due to the dense depth esti-
mation module. In a sparse depth estimation setting, for one
kind of key point operator, our matching algorithm runs in
O(nlnr) time, where nl is the number of key points in the left
image and nr is the number of key points in the right image.
In case of dense depth estimation, the computation is usu-
ally formulated as an image labelling problem, which aims
to assign one optimal depth label to each pixel. Standard
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(1a) TP: 3, FP: 7 (1b) TP: 3, FP: 7 (1c) TP: 4, FP: 6 (1d) TP: 5, FP: 5

(2a) TP: 6, FP: 4 (2b) TP: 8, FP: 2 (2c) TP: 6, FP: 4 (2d) TP: 7, FP: 3

(3a) TP: 4, FP: 6 (3b) TP: 5, FP: 5 (3c) TP: 9, FP: 1 (3d) TP: 6, FP: 4

(4a) TP: 4, FP: 6 (4b) TP: 7, FP: 3 (4c) TP: 9, FP: 1 (4d) TP: 7, FP: 3

Fig. 10 Some results of the four systems. The four rows from top to bottom correspond to the results
from the baseline detector, the UoCTTI detector, the simplified ETHZ system and our proposed system,
respectively. (TP: true positive, FP: false positive.)

Belief Propagation based algorithm for solving this prob-
lem runs in O(nk2T ) time, where n is the number of pixels
in the image, k is the number of possible labels for each pixel
and T is the number of iterations for optimization. That is
to say, for a same pair of stereo image, dense depth esti-
mation is computationally much more complex than sparse
depth estimation (especially when the images are of high
resolution). However, with the rapid development of GPU
computing, it has been reported that a GPU approximation
of the dense depth estimation [16] could run at 300 ms per
frame on 640× 480 images, which is fast enough for practi-
cal applications. In this means, we believe that there are still
rooms for us to improve our sparse depth estimation method
to become faster in the future work.

6.3 Results and Discussion

In Fig. 10 we display some example detection results out-
putted by the four systems on difficult images from our
dataset. The top ten ranked detections are shown in red

bounding boxes in each image. The four rows from top to
bottom displays the outputs from the baseline detector, the
UoCTTI detector, the simplified ETHZ system and our pro-
posed system, respectively.

Compare to the raw output of the baseline detector, our
proposed system has made significant improvement in dif-
ferent kinds of scenes. The reason is that we integrated the
depth information, and with this cue, the system could better
discriminate pedestrians by taking into account the observed
height of detection window and update their confidence to
become more reasonable. With the confidence updating, the
rank of some detections which could get support from their
observed height will rise. At the same time, some detection
will lose confidence for their inappropriate height observa-
tion. This leads to an all-side improvement from the baseline
detector.

On the whole, the UoCTTI detector did better than all
other systems, especially for some crowded scenes. This
may mainly benefit from a very expressive part model it
used. The detector uses part information as additional cue,
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Fig. 11 Examples of sparse matching (top row) and dense matching (bottom row) results. In the top
row, we produce a color composite of the left (cyan) and right (red) image, and randomly plot 1/10 of
the matches in the composite image (red circles: key points in left images; blue crosses: key points in
right images). There is hardly any mismatches. In the bottom row, we show the dense matching result
of the same stereo pairs. In case of complex scene, the dense matching sometimes output noisy result.

which leads to the detector be able to preserve sufficient ro-
bustness even when heavy occlusion exist. As we can see
in the first two columns of the example results, even when
the scenes are crowed, it could achieve very good results.
However, in some board scene images such like the last two
columns of Fig. 10, our proposed system and the simplified
ETHZ system sometimes could do even better. We think
this is because the UoCTTI detector may face the trade-off
between different sources of information. While it uses a
deformable part model and utilize the position of parts to
improve the detection, it may also suffer from that model.
Because the final detection result is partially based on the
parts and their corresponding locations, in case the parts are
not visually clear enough, their model will penalize that de-
tection and result in a low detection score. Contrast to it,
using depth information does not have such kind of issues.
It brings stable improvements over the baseline detector in
different kind of scenes.

Our proposed system and the simplified ETHZ sys-
tem have similar performance in most images. However, in
some complex scenes, our proposed system did a better job.
This is mainly because of the difference in depth estima-
tion method. Though the dense depth estimation can provide
pixel-wise depth maps which are very informative, it some-
time fails in complex scenes (Fig. 11 bottom right). Differ-
ent with it, the sparse depth estimation in our proposed sys-
tem only provides confident depth information for a small

set of key points. Though the resulted sparse depth map is
less informative, it is stable in difference kind of scenes.

7. Conclusion

In this paper, we proposed an efficient approach to pedes-
trian detection in outdoor scenes by using 3D sparse depth
information as additional cue. Our method applies a sim-
plified graphical model to update the detector’s output using
depth information. It leads to the nature use of context infor-
mation and effectively improves the performance of baseline
detector. To reliably obtain the depth information, we use a
novel descriptor based key point matching approach to ar-
range sparse depth information of the scene. Our depth esti-
mation technique is more stable and computational efficient
than dense estimation. The efficiency of our method was
shown in our experiment. With minimal additional process-
ing time, our method could improve the detection accuracy
of the baseline detector significantly.

However, there are also issues exist in our current
method. First is that though the sparse depth estimation in
our work is reliable, the depth for every single hypothesis
is determined in an explicit way. This may cause the re-
sulting detection system to be sensitive to the error in depth
determination. A better way should be used to eliminate the
risk from such kind of determination. Secondly, our method
currently does not have any occlusion handling mechanism,
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therefore is still weak in some crowded scenes. In order to
be more applicable in real world applications, such aspect
also should be improved. Since the part information [5] is
very robust for occlusion, extending our method by using
such information will be a very interesting topic. In the fu-
ture work, we will mainly deal with these two aspects.
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