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PAPER

Drastic Anomaly Detection in Video Using Motion Direction
Statistics

Chang LIU†, Student Member, Guijin WANG†a), Member, Wenxin NING†, and Xinggang LIN†, Nonmembers

SUMMARY A novel approach for detecting anomaly in visual surveil-
lance system is proposed in this paper. It is composed of three parts: (a)
a dense motion field and motion statistics method, (b) motion directional
PCA for feature dimensionality reduction, (c) an improved one-class SVM
for one-class classification. Experiments demonstrate the effectiveness of
the proposed algorithm in detecting abnormal events in surveillance video,
while keeping a low false alarm rate. Our scheme works well in compli-
cated situations that common tracking or detection modules cannot handle.
key words: visual surveillance, anomaly detection, motion vector, one-
class SVM, PCA

1. Introduction

Detecting anomalies plays a crucial role in the understand-
ing and interpretation of visual phenomenon. It has many
applications, such as emergency detection of indoor or out-
door visual surveillance and satellite cloud image analysis.
Figure 1 illustrates two applications of anomaly detection.
In Fig. 1 (a), by analyzing the sequence of the cloud im-
age, some hazardous weather (typhoons, severe convective
weather or tropical storm) can be detected automatically. In
Fig. 1 (b), in the surveillance video, an ideal analysis can get
a lot of useful information, including the prohibition area
alarm, exception event alarm or customary path analysis etc.

Numerous efforts have been made to detect anomaly in
visual phenomenon. Related works fall into two categories
roughly. The first category analyzes the abnormal behavior
based on object detection and tracking; the second category
observes the anomaly based on statistical low-level features.

Methods in the first category extract trajectory fea-
tures [1], [2] or do semantic analysis [3]–[7] to detect
anomaly using detection or tracking results as foundation.
Ding et al. [1] addressed the problems of track matching and
dynamic event detection in a sequence of frames. Trajectory
clustering [2] was used to discriminate between normal and
abnormal events. On the other side, with the help of co-
occurrence matric, spatial histogram of the detected objects
was also employed as features to detect unusual activities
unsupervised [4]. Spatial-temporal volumetric features [5]
were used to efficiently scan video sequences in space and
time. Cui et al. [6] used the probability of an observation
with each event state to estimate prior and posterior state
distribution, as well as sequential Monte Carlo framework
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(a) Satellite cloud image (b) Visual surveillance

Fig. 1 Typical applications of anomaly detection.

extended by Markov Random Field for tracking interactive
events. However, surveillance scenarios usually have com-
plex occlusion, complex illumination condition and low res-
olution. Therefore, precise detection or tracking of individ-
ual human is very difficult.

In the second category, low-level features such as
shape, position or motion are utilized. Some researchers
treated the anomaly detection as a human shape recognition
problem [8]. But it depended on accurate human edge detec-
tion, which is very difficult to achieve in surveillance video.
A novel statistical framework was presented for modeling
local spatio-temporal motion pattern [9]. It dealt with mov-
ing in reverse or irregular patterns in an extremely crowded
scene. Some researchers also used motion direction as base
feature and used hierarchical Bayesian models to do activ-
ity estimation [10]. Mehran [11] exploited abnormal crowd
behavior to search and analyze the different movements in
the surrounding. In Ihaddadene’s research [12], the result
was measured by scalar product of the normalized values of
several factors calculated by motion vector. They success-
fully detected collapsing events at an airport escalator exit.
Among these features, motion is one of the most widely
used features.

The above works [9]–[12] used motion as feature to de-
tect anomalies, but they only detected a special pattern of
anomaly rather than the opposite of normal events. Some
pioneering works were in the direction of these. For exam-
ple, some researchers [13] dealt with the anomaly as all the
events other than normal ones. Binary foreground image
is employed as features, and one-class SVM [14] was used
to train an anomaly detector. One advantage of one-class
SVM is that only normal samples are required. It is espe-
cially suitable for ATM or similar scenes. It can handle fight
events as well as peep events. However, it is sensitive to po-
sition and does not perform very well in busy environments
such as a hall or plaza. Lin et al. [15] used integral motion
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of separate objects with Lie algebraic representation to de-
scribe the motion pattern. The outlier can be detected by the
model afterward.

Anomaly include several categories that are extremely
different from each other. So using a common method to
detect all anomaly is impossible. In the literature, there is
no universally accepted anomaly classification method. But
for a solution by computer, a strict classification is essential.
We classify the anomaly into two types: drastic anomaly and
calm anomaly. Drastic anomaly is the anomaly with a large
number of unusual movement. The calm anomaly means
anomaly with no special movement. In this paper, we fo-
cus on drastic anomaly. We employ motion direction statis-
tics feature to detect anomaly in surveillance video. One-
class SVM is utilized to train a detector. A motion direc-
tional PCA method is proposed to extract useful principles
from gross features. In other words, using motion direc-
tional PCA and one-class SVM, we use low level features to
achieve anomaly detection which is a high level description
of surveillance video.

The rest of the paper is organized as follows: Section 2
describes the framework of our method. Section 3 gives the
foundation of motion field statistics features. The proposed
motion directional PCA algorithm is presented in Sect. 4.
The method of features summing up in time span and the
domain description is in Sect. 5. Some implementation de-
tails and discussion are in Sect. 6. Experiment results are
presented in Sect. 7. Section 8 gives the conclusion.

2. Drastic Anomaly Detection Framework

In order to train an anomaly detector, we need to prepare
samples and corresponding features. The abnormal event
happens very rarely and so is hard to obtain. In addition,
unlike the normal walking videos in feature space, every ab-
normal video is different from the others. Fortunately, only
the normal case samples are needed for training the detector
by one-class SVM.

Our proposed algorithm consists of a detector training
part (Fig. 2) and a detection part (Fig. 3). We first compute
motion vector of blocks in every frame. Then we use a
statistics method to obtain a motion direction statistics fea-
tures. After we obtain the features for a set of frames, a
dominant direction of these features can be derived. We only
use videos containing normal scenes for training. A mo-
tion directional PCA is operated on the features, followed by
training a detector using the one-class SVM which describes

Fig. 2 Framework of training algorithm.

Fig. 3 Framework of detection process.

the domain of normal samples. In the detection procedure
(Fig. 3), features are obtained in the same manner, and then
classified by one-class SVM to get detection results. The
event will be determined abnormal if the features do not fit
the domain description.

3. Motion Vector Statistics Feature

This section describes an effective feature extracting method
constructed by block motion vector. Many existing ap-
proaches extract features based on the magnitude and di-
rection of the motion vectors in a frame [9], [12], which can
reflect the characteristics of object movements, especially
with fixed camera.

3.1 Dense Motion Field

In conventional technologies like video compression algo-
rithms, an image frame is divided into many k × k blocks
and then the motion vector of each block is calculated,
which provides insufficient amount of useful motion vec-
tors from one frame, especially in surveillance video. For
example, in a 640 × 480 sized video in underground park-
ing lot, a typical pedestrian in the video only corresponds to
about 8 motion vectors. Insufficient motion vectors will lead
to incorrect direction statistics. Grid effect also significantly
degrade direction statistics. Therefore, a dense motion field
is needed.

To get more motion vectors, overlapping blocks are
adopted. In practice, we use 2-pixel shift both horizontally
and vertically. By doing this, we get 64 times more motion
vectors than before, as shown in Fig. 4. This improvement
makes the statistics more reliable.

3.2 Motion Vector Direction Statistics

We use motion vector statistics as features. Statistics is first
operated on the direction of all the blocks. The directional
features are then derived from the set of motion vectors Vi, j.
Let ∣∣∣Vi, j

∣∣∣ = √
(V x

i, j)
2 + (Vyi, j)

2 (1)

Φi, j = arctan(Vyi, j/V
x
i, j) (2)

(a) The dense motion field
for a pedestrian

(b) Motion statistics
in single frame

Fig. 4 Dense motion field.
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respectively denote the amplitude and direction of the mo-
tion vector Vi, j.

We are more concerned about direction, because the
major feature of objects in surveillance video is motion di-
rection. For instance, a pedestrian usually moves towards a
certain destination with little deviation or rotational move-
ment. On the contrary, in abnormal condition, the motion
field tends not to have a constant direction and move in dis-
order. Therefore motion vector direction can be employed
to distinguish between normal and abnormal events. We di-
vide angle of circumference into eight equal angles to make
the statistics.

4. Motion Directional PCA

With the motion directional features in a single frame, it is
still hard to distinguish between abnormal events and nor-
mal walking, especially when several people are walking.
Therefore, we need to combine a sequence of motion di-
rectional features. If we connect the features directly, the
connotative organization in the high dimensional features is
dissipated.

So an effective feature dimensionality reduction
method by motion directional PCA is described.

4.1 Feature Series in Time-Span

In practice, we use motion field statistics in every consecu-
tive T frames to form feature vectors. We first extract a main
direction in each frame, then find the dominant direction for
the entire sequence and set this as the first element in the
feature vector for each frame. We set the rotational shift m
as follows

m = arg max
0≤i≤n−1

⎛⎜⎜⎜⎜⎜⎜⎝
T−1∑
t=0

Dt,i

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

T is the frame number to form the feature vectors, and n is
the direction number. Dt,i is the statistics in the tth frame and
the ith direction. We use this m to rotate the features, mak-
ing the first feature column as the column with the greatest
strength. (As shown in Fig. 5) In this example, every fea-
ture’s sequence number reduces the number of two. In order
to illustrate this process more clearly, the feature rotation of
every single frame is shown in Fig. 6.

revised : Dt,i = Dt,i−m (4)

The second subscript is defined as cycled by n, that means
Dt,i is the same as Dt,i+n. In this way, we can make the fea-
ture vectors direction invariant.

4.2 Motion Directional PCA

After obtaining the motion vector statistics, we will use
these features to train a detector. The dimension of feature
is set to the number of frames in a sample, times the direc-
tion number. However, such high-dimensional feature will

Fig. 5 Main direction arrangement.

Fig. 6 Main direction arrangement in single frame.

degrade the efficiency of training one-class SVM, due to the
large amount of redundant dimensions. We use PCA (prin-
ciple component analysis) [16] on features before training.

Let D = {Dn ∈ Rd |n = 1, . . . ,N} be an ensemble of fea-
ture vectors obtained from the video, where d is the original
feature dimension. Let

E(D) =
1
N

N∑
n=1

Dn (5)

be the mathematical expectation of feature vectors. And the
global covariance matrix M is calculated after subtracting
the mathematical expectation.

M(D) =
1
N

N∑
n=1

(Dn − E(D))(Dn − E(D))T (6)

M(D) is a d × d matrix. It is proved that the matrix M(D) is
positive definite and has only real non-negative eigenvalues,
then we can compute d positive eigenvalues λ1, λ2, . . . , λd

with the corresponding eigenvectors e1, e2, . . . , ed using Sin-
gular Value Decomposition. The first few eigenvectors con-
tain higher energy of the training samples. Therefore we
ignore some of the small eigenvalues to reduce the compu-
tation pressure on training detector. In order to determine
how many eigenvectors to be ignored, we use a threshold
value Tenergy

Pk =

k∑
i=1

λi/

d∑
i=1

λi > Tenergy (7)

Pk is the energy proportion of the first k largest eigenvalues
with respect to all eigenvalues. In our experiments, Tenergy

is chosen to be 95% to obtain best results.
Because the features are formed by the number of

frames and the direction, we can take the feature vector more
likely to a feature matrix (As shown in the left of Fig. 7). In
practical, the motion has interdependency in time line, so
we excavate the information from this.
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Fig. 7 Motion directional PCA.

A modified PCA is adopted on the features to make
them more informative and compact. Instead of using tradi-
tional PCA directly on high-dimensional features, we apply
PCA to each separate direction of the features, keeping only
the top 95% energy of each direction in the result. As shown
in Fig. 7, the PCAs on different directions are independent.
Every PCA pack the motion vector statistics features in the
same direction into a smaller feature vector. We call this
motion directional PCA.

Ti = {E jDj,i}| j = {[e j,1, e j,2, . . . e j,k]T Dj,i}| j (8)

where j = 0, 1, 2, . . . , 7.
After integrating the motion directional PCA into the

framework, we use single-walking and multi-walking as
normal samples, and succeed in distinguishing anomaly
from the normal ones.

5. Improved One-Class SVM

5.1 One-Class Classification

Generally speaking, with the absence of one side samples,
the problem of one-class classification is harder than the
problem of two-class classification. Some related efforts
have been made before. Hanson et al. solved this prob-
lem of fitting a model to the data in [17]. Laaksonen et al.
used a Self-Organizing Maps to do one-class classification
in 1999 [18]. And Tax referred to a method called one-class
SVM, inspired by the support vector machine [14]. They use
a hypersphere instead of the hyperplane to define those one
class samples. Among the above mentioned one-class clas-
sification methods, one-class SVM is resistant to the over-
fitting problem and model nonlinear relations in an efficient
and stable way. When dealing with high dimensional feature
and numerous samples, it performs exceptionally well.

5.2 One-Class SVM

The One-Class SVM [14] has been successfully applied to
various learning problems [13]. It consists of learning the
minimum volume contour that encloses most of the data in
a dataset. Its original application is outlier detection, to de-
tect data that differ from most of the data within a dataset.
Let X = {xi}ni=1, xi ∈ Rd. Here, each xi is the feature vector of
a sample. The aim of One-Class SVM is to use the training

data so as to learn a function fX : Rd− > R, such that most
of the data in X belong to the set RX = {x|x ∈ Rd, fX(x) > 0}
while the volume of RX is minimal. It attempts to find a hy-
persphere in the feature space that separates the data from
the outskirt space. This can be formulated into an optimiza-
tion problem. We want the hypersphere to be as small as
possible while at the same time, including most of the train-
ing data. We only consider the positive points and get the
objective function.

More precisely, the One-Class SVM solving the fol-
lowing quadratic optimization problem,

min

⎛⎜⎜⎜⎜⎜⎝R2 +C
n∑

i=1

ξi

⎞⎟⎟⎟⎟⎟⎠ (9)

s.t. (xi − c)T (xi − c) ≤ R2 + ξi, ξi ≥ 0, where c and R
are the center and radius of the sphere.

The tradeoff between the radius of the hyper-sphere and
the number of training samples that it can hold is set by the
parameter C. When C is small, the optimization is tend to
put more data into the hyper-sphere. When C is larger, we
try to squeeze the size of the hyper-sphere.

5.3 Time-Span Penalty Factor

According to our hypothesis, all the samples get from train-
ing video are in the period of normal condition, so after
time-span filtering, the final results need to approach con-
tinuous normality. Under this analysis, we classify the
false alarm into faculative false alarm and intrinsically false
alarm. We believe that faculative false alarm does not af-
fect the final result in general. So we need to decrease the
intrinsically false alarm as much as possible. We present an
improved one-class SVM training method to solve this prob-
lem. In traditional one-class SVM training, the optimization
does not consider the timeline relationship between training
samples. We add a punishment term into the optimization
problem as follows:

min

⎛⎜⎜⎜⎜⎜⎜⎜⎝R2 +C1

n∑
i=1

ξi +C2

m∑
j=1

ωj

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10)

where the third term shows the punishment in consequent
false alarm in time span, representing the intrinsically false
alarm.

6. Depression Angle and Motion Mapping

6.1 Reflecting the Motion Direction on Ground Plane

We need to use motion in ground plane to describe normal
or abnormal events. But the motion in ground plane can not
be obtained directly. The motion vectors we can get directly
are the motion vector in frame. So we need to use motion
vector in frame to calculate motion in ground plane. In order
to do this, we need to set three hypotheses.

• All the objects concerned are below the camera.
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• All the motions of object are horizontal
• Ignore the camera distortion

In reality, surveillance video camera is always set on a
high position, that is higher than all the concerned objects
in the scene. And secondly, in walking video, over 95% or
the motion is horizontal. In scuffle video, limb motion is
not always horizontal. But we do not care about whether
the limb direction in fight is horizontal or vertical so much.
Thirdly, the camera distortion is not very serious in surveil-
lance camera. The error caused by camera distortion is un-
der the magnitude of percentage. This is negligible on the
following statistics. Under these three hypotheses, we can
get the real motion mapping. This mapping is directed by
pixel position in video frame while independent of depth
from camera, which is unobtainable by video itself. There
are two parameters for different positions, first is depres-
sion angle, it can be calculate by vertical viewing angleΓ
and pixel position.

γ =

(
h − h0

H

)
Γ (11)

where h is the pixel y-axis position and h0 is the horizontal
line pixel position. H is the video resolution height.

The second is horizontal angle which can be calculate
by horizontal viewing angleΘ and pixel position.

θ =

⎛⎜⎜⎜⎜⎝w −
W
2

W

⎞⎟⎟⎟⎟⎠Θ (12)

where w is the pixel x-axis position and W is the video res-
olution width.

With these parameters, we can find the mapping from
motion direction on ground β to motion direction in frame α
as

tanα = tan

(
β − tan−1

(
tan θ
cos γ

))
/ sin γ (13)

tanα = tan

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝β − tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
tan

(
w−W

2
W

)
Θ

cos
(

h−h0
H

)
Γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ / sin

(
h − h0

H

)
Γ

(14)

So we can deduce the inverse mapping from motion
direction in frame α to motion direction on ground β as fol-
lows.

β = tan−1

(
tanα sin

(
h − h0

H

)
Γ

)
+ tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
tan

(
w−W

2
W

)
Θ

cos
(

h−h0
H

)
Γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

An schematic graph of reflect result is shown in Fig. 8 and
Fig. 9 set out an example of mapping from α to β with some
related parameters.

6.2 Depression Angle

In extreme circumstances, when depression angle is 90 de-
gree, the motion direction on ground β to motion direction

Fig. 8 Reflecting the motion direction on ground plane.

Fig. 9 Mapping from α to β.

in frame α is the same. The mapping from α to β does not
produce new errors. When depression angle is 0 degree, the
mapping can not be found, or we can not get the motion di-
rection on ground β. Generally speaking, when depression
angle is larger, the mapping is more accurate, and when de-
pression angle is smaller, the mapping is more unauthentic.
We discuss in this section about in which depression angle
range the mapping is trustworthy.

We do error analysis on β’s calculation, the only inde-
pendent variable is the motion direction in frame α.

Δβ =
dβ
dα
Δα

=
1

1 +
(
tanα sin

(
h−h0

H

)
Γ
)2

sin

(
h − h0

H

)
Γ sec2 αΔα

(16)

It can be used in a different form of expression as

Δβ=
1

cos2 α+sin2 α sin2
(

h−h0
H

)
Γ

sin

(
h−h0

H

)
ΓΔα (17)

We can estimate the mean square error when calculat-
ing β from α at different depression angle γ.

MS E =
1

2π

∫ 2π

0
(Δβ)2dα|γ (18)

We find that if the depression angle is lower, the error mag-
nification from α to β is larger and harder to use. We use
Fig. 10 to estimate the depression angle threshold. The bin
difference in motion directional histogram is 22.5 degrees.
When the mean square error of β is over half of the differ-
ence, we decide the statistics is trustless. From that, we can
introduce a lower limit of depression angle of our method as
9 degrees.
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Fig. 10 Mean square error of β under different depression angle.

7. Experiments

7.1 Datasets

We used three datasets to test our algorithm. In the first
dataset, PETS2004 dataset, the camera looks downward us-
ing a wide angle camera len. The resolution is 384 × 288,
with 25 frames per second. It includes actions such as walk-
ing, browsing, resting, meeting, walking together, splitting
up and two people fighting.

As shown in Fig. 11, the second dataset we used is from
an underground parking lot surveillance video. The resolu-
tion is 640 × 480, with 30 frames per second. The illumina-
tion conditions are much worse than the PETS2004 dataset.
In a 2.5hr duration, events including single-walking, group-
walking, talking, meeting and fighting were captured by two
camera.

The last dataset we used is CASIA dataset. The
dataset’s resolution is 320 × 240 with 25 frames per second
and was compressed with the huffyuv code in avi format.
We use this dataset as no-training test. We test our algo-
rithm without scene demarcation and training. We used the
model that has trained in the underground parking dataset
to test this scene. In other words, the model does not use
any information from the same dataset. The ability to detect
anomaly is from universal character. This experiment shows
our model’s commonality and universality. After training a
normal model, the model can be used in all the other surveil-
lance video with little degradation in the quality.

7.2 Results of Anomaly Detection

We manually labled the abnormal period in the video as
ground truth. The beginning of the period is set as the first
physical contact of the opposite sides. The end of the period
is set as one of the opposite sides leaving the visible region.
A time domain filtering is used on the results of detection
module.

Under this criterion, we evaluated our algorithm in the

Fig. 11 Example frames of Underground parking dataset.

Fig. 12 Detected anomaly periods (The time when black line is at high
level is the time of anomaly detected. It is the same for the following fig-
ures) and example frames (The time of the dots) in PETS2004 dataset.
(Frame 105, 155, 187 in Fight OneManDown and Frame 139, 164, 224
in Fight RunAway2) (A short miss-detecting period around Frame187 in
Fight OneManDown)

Fig. 13 Detected anomaly periods and example frames (The time of the
dots) in Underground Parking dataset A.

above datasets. A frame number of T=50 is used. In the
PETS2004 dataset (Fig. 12), there are 24 normal videos in-
cluding walking, browsing, leaving bags, meeting and walk-
ing together and splitting up and 4 abnormal videos of two
men fighting. We use 7 normal videos as training samples.
We succeed in detecting 3 fight videos with no false alarm
in the other 17 normal videos. The only incorrectly rejected



1706
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

Fig. 14 Detected anomaly periods and example frames (The time of
the dots) in Underground Parking dataset B (The algorithm described in
Sect. 6.1 is used and has contributed greatly).

Fig. 15 Example frames of precise anomaly detection in CASIA dataset.

abnormal video is Fight Chase.mpg in which the fighting
only last for a very short duration and the limb movements
are not intensive.

In the Underground Parking dataset (Fig. 13), there are
17 fighting events in the 2.5hr duration. We used 25 min-
utes of the video without fighting as normal samples. Af-
ter training the anomaly detector, we test it on the complete
video. It detects 15 fight events. And also, there are about
3-minute false alarms in the 140 minutes normal duration.
Most of the false alarm is caused by the intense illumina-
tion change when vehicle headlamps are turned on, which
seriously affects the accuracy of motion vector. The algo-
rithm described in Sect. 6.1 plays an important role in Un-
derground Parking dataset B (Fig. 14). In this dataset, the
depression angle of camera is lower. The precision rate of
abnormal period increases from 47% to 83% after using this
algorithm.

In the CASIA test (Fig. 15), we test our algorithm with-
out scene demarcation and training. The model is trained by
features in Underground Parking dataset A. All the normal
video are detected as normal and over 70% of ‘Fight’ and

Table 1 Different datasets results.

Results Detect as Detect as Precise Rate
Abnormal Normal

PETS2004 Normal 0 s 387 s 100%
Dataset Abnormal 17 s 3 s 85%

Underground Normal 180 s 8268 s 98%
Dataset A Abnormal 364 s 46 s 89%

Underground Normal 204 s 8110 s 98%
Dataset B Abnormal 339 s 71 s 83%
CASIA Normal 0 s 1032 s 100%
Dataset Abnormal 100 s 41 s 71%

‘Punching a car’ video shows an alarm in the detection re-
sults. In another word, the false alarm is 0% and the detec-
tion rate is over 70%. From this experiment, we prove that
the anomaly detector has the universality. The detector is
not scene-specific. By using the detector training under one
specific scene, we can utilize it on other scenes as well. On
one hand, the detector is universal and acceptable for dif-
ferent scene; on the other hand, further retrain for specific
scene will improve the performance. The results are sum-
marized in Table 1.

8. Conclusion

In this paper, we have proposed an anomaly detection
method in surveillance video. Our algorithm employed a
feature of motion vector statistics. The proposed feature is
easy to calculate and does not rely on any detection or track-
ing module, making the system easier to handle event detec-
tion in complicated situations. A motion directional PCA
was applied for feature down dimension, which is important
for the efficiency of subsequent training. One-class SVM
was employed to overcome the problem of lacking abnormal
data. Experimental results show that most drastic anomaly
events are detected by the proposed algorithm with a low
false alarm rate. The proposed algorithm do not have the
ability to detect calm anomaly, such as person’s collapse or
hesitation. It should be considered in the following works.
In the future, we will also consider anomaly detection based
on multi-camera analysis. The results from single-camera
will be involved into a broader range to understand.

Acknowledgement

Portions of the research in this paper use the CASIA Ac-
tion Database collected by Institute of Automation, Chinese
Academy of Sciences.[19]

We also acknowledge with thanks that the research was
supported by Sony China Research Lab.

References

[1] T. Ding, M. Sznaier, and O.I. Camps, “Fast track matching and event
detection,” CVPR, pp.1–8, June 2008.

[2] F. Jiang, Y. Wu, and A.K. Katsaggelos, “Abnormal event detection
based on trajectory clustering by 2-depth greedy search,” Proc. IEEE
International Conference on Acoustics, Speech and Signal Process-
ing, pp.2129–2132, March-April 2008.



LIU et al.: DRASTIC ANOMALY DETECTION IN VIDEO USING MOTION DIRECTION STATISTICS
1707

[3] F. Cupillard, A. Avanzi, F. Bremond, and M. Thonnat, “Video un-
derstanding for metro surveillance,” Proc. IEEE International Con-
ference on Networking, Sensing and Control, pp.186–191, March
2004.

[4] H. Zhong, J. Shi, and M. Visontai, “Detecting unusual activity in
video,” CVPR, vol.2, pp.819–826, 2004.

[5] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event de-
tection using volumetric features,” IEEE Computer Society, ICCV,
pp.166–173, Washington, DC, USA, 2005.

[6] P. Cui, L. Sun, Z. Liu, and S. Yang, “A sequential monte carlo ap-
proach to anomaly detection in tracking visual events,” CVPR, pp.1–
8, June 2007.

[7] W. Lao, J. Han, and P. de With, “Automatic surveillance analyzer us-
ing trajectory and body-based modeling,” Proc. Digest of Technical
Papers International Conference on Consumer Electronics, pp.1–2,
Jan. 2009.

[8] Y. Wang, K. Huang, and T. Tan, “Human activity recognition based
on r transform,” CVPR, pp.1–8, June 2007.

[9] L. Kratz and K. Nishino, “Anomaly detection in extremely crowded
scenes using spatio-temporal motion pattern models,” CVPR,
pp.1446–1453, June 2009.

[10] X. Wang, X. Ma, and E. Grimson, “Unsupervised activity perception
by hierarchical bayesian models,” CVPR, 2007.

[11] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd behavior de-
tection using social force model,” CVPR, vol.0, pp.935–942, 2009.

[12] N. Ihaddadene and C. Djeraba, “Real-time crowd motion analysis,”
ICPR, pp.1–4, Dec. 2008.

[13] K. Sudo, T. Osawa, K. Wakabayashi, H. Koike, and K. Arakawa,
“Estimating anomality of the video sequences for surveillance using
1-class SVM,” IEICE Trans. Inf. & Syst., vol.E91-D, no.7, pp.1929–
1936, July 2008.

[14] D. Tax and R. Duin, “Support vector domain description,” Pattern
Recognit. Lett., vol.20, pp.1191–1199, 1999.

[15] D. Lin, E. Grimson, and J. Fisher, “Learning visual flows: A lie
algebraic approach,” CVPR, vol.0, pp.747–754, 2009.

[16] A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall,
Upper Saddle River, NJ, USA, 1989.

[17] S.J. Hanson, G.S. new Brunswick, C. Kulikowski, and N.
Japkowicz, “Concept-learning in the absence of counter-examples:
An autoassociation-based approach to classification,” Technical Re-
port, July 1999.

[18] J. Laaksonen, M. Koskela, and E. Oja, “Picsom: Self-organizing
maps for content-based image retrieval,” IJCNN ’99, pp.2470–2473,
July 1999.

[19] CASIA action database, http//www.sinobiometrics.com/

Chang Liu was born in 1984. He received
his B.S. degree in department of Electronics En-
gineering, Tsinghua University, China in 2006.
He is currently pursuing the Ph.D. degree at
Department of Electronics Engeering, Tsinghua
University, China. His research interests are fo-
cused on image and video processing, pedes-
trian detection and tracking, surveillance video
analysis, etc.

Guijin Wang was born in 1976. He re-
ceived the B.S. and Ph.D. degree (with honor)
from the department of Electronics Engineer-
ing, Tsinghua University, China in 1998, 2003
respectively, all in Signal and Information Pro-
cessing. From 2003 to 2006, he has been with
Sony Information Technologies Laboratories as
a researcher. From Oct., 2006, he has been
with the department of Electronics Engineering,
Tsinghua University, China as an associate pro-
fessor. He has published over 30 International

journal and conference papers, hold several patents. He is the session chair
of IEEE CCNC’06, the reviewers for many international journals and con-
ferences. His research interests are focused on wireless multimedia, mesh
network, image and video processing, object detection and tracking, online
learning, etc.

Wenxin Ning was born in 1985. He re-
ceived his B.S. degree in department of Elec-
tronics Engineering, Tsinghua University, China
in 2008. He is currently pursuing the M.S. de-
gree at Department of Electronics Engeering,
Tsinghua University, China. His research inter-
ests are focused on image and video processing,
surveillance video analysis, etc.

Xinggang Lin received B.S. degree in Elec-
tronics Engineering, Tsinghua University, China
in 1970; M.S. degree in 1986 and Ph.D. degrees
in 1982, both in information science, Kyoto
University, Japan. He joined the Department
of Electronics Engineering at Tsinghua Univer-
sity in 1986 where he has been a full profes-
sor since 1990. He received “Great Contribution
Award” from Ministry of Science and Technol-
ogy of China, and “Promotion Awards of Sci-
ence and Technology” from Beijing Municipal-

ity. He was a General Co-chair of the second IEEE Pacific-Rim Confer-
ence on Multimedia, an associate editor of IEEE T. on CSVT, and a techni-
cal/organizing committee member of many international conferences. He
is a fellow of China Institute of Communications, and he published over
140 referred conference and journal papers in diversified research fields.




