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Modeling of Electric Vehicle Charging Systems in Communications
Enabled Smart Grids∗

Seung Jun BAEK†a), Daehee KIM†, Nonmembers, Seong-Jun OH†, Member, and Jong-Arm JUN††, Nonmember

SUMMARY We consider a queuing model with applications to electric
vehicle (EV) charging systems in smart grids. We adopt a scheme where
an Electric Service Company (ESCo) broadcasts a one bit signal to EVs,
possibly indicating ‘on-peak’ periods during which electricity cost is high.
EVs randomly suspend/resume charging based on the signal. To model the
dynamics of EVs we propose an M/M/∞ queue with random interruptions,
and analyze the dynamics using time-scale decomposition. There exists a
trade-off: one may postpone charging activity to ‘off-peak’ periods during
which electricity cost is cheaper, however this incurs extra delay in com-
pletion of charging. Using our model we characterize achievable trade-offs
between the mean cost and delay perceived by users. Next we consider
a scenario where EVs respond to the signal based on the individual loads.
Simulation results show that peak electricity demand can be reduced if EVs
carrying higher loads are less sensitive to the signal.
key words: queuing systems, time-scale decomposition, quality of service,
plug-in hybrid electric vehicles

1. Introduction

As part of global efforts to reduce CO2 emission, the mi-
gration to plug-in hybrid electric vehicles (PHEVs, EVs in
short) in automotive industry has recently gained much im-
petus. Deployment of EVs on a large scale, however, will
impose new demands on the current electrical grid infras-
tructure [1], i.e., it calls for intelligent management and es-
timation of the power consumed by EVs in future grids. As
envisioned by the recent development of smart grids [2] and
energy-aware ‘smart’ appliances, we assume that communi-
cation links are established between Electric Service Com-
pany (ESCo) and EVs. In our setup a one-bit signal denoted
by U(t) is broadcast from ESCo to EVs. When U(t) changes
from 0 to 1, EVs randomly decide whether to stop charging,
which we will call disconnecting, during U(t) = 1. Such
disconnected EVs resume charging when U(t) returns to 0.
The assertion U(t) = 1 may indicate that the grid undergoes
an ‘on-peak’ period, i.e., the unit cost of electricity is unusu-
ally high. Thus U(t) is an implicit control for the number of
actively charging EVs in the system which is assumed to be
proportional to the power consumed in the grid.

In this letter we consider a queueing model capturing
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simple control of charging EVs on a large scale. EVs enter
a grid requesting random amounts of electricity to recharge
their batteries. Thus the grid can be viewed as a queue with
infinite number of servers where the service offered by the
queue (grid) corresponds to charging activities by EVs. We
consider a queue subject to interruptions to model such ran-
domized charging activities by EVs. Using time-scale de-
composition, we propose simple estimates for the average
EV population in steady state. Similar approaches [3] have
been made to evaluate flow level performances of mobile
users assuming wireless channels to be in either infinitely
fast or slowly varying limit regimes. We leverage the results
on queues with interruptions [4]. The work [5] models the
EV demand systems as M/M/n queues, but does not con-
sider the dynamically disconnecting scenarios as in smart
grids.

Using the estimates we explore the trade-off between
mean delay (sojourn time) experienced by users and the cost
of electricity usage. Suppose the unit cost of electricity us-
age during on-peak periods is substantially higher than that
in off-peak periods. As more users disconnect during on-
peak periods and shift charging activity to off-peak periods,
the mean cost will decrease. However such shifting of loads
will incur an increase in the mean sojourn time of EVs. We
propose an approximation to mean cost, and show how dif-
ferent degrees of trade-off between cost and delay can be
achieved by controlling U(t). We find that for a system in
which users are more sensitive to U(t) in the sense that more
users disconnect at U(t) = 1 on average, a larger set of cost-
delay trade-off points can be achieved. This allows ESCo
to offer various degrees of QoS to users. By contrast when
there is a stringent constraint on delay, we show that it incurs
less cost if users are less sensitive to U(t). We demonstrate
these results using numerical evaluation of the derived ex-
pressions for average cost and delay. Finally we consider
the case where the probability of disconnecting depends on
the residual amount of electricity to charge at EVs. We
model such responsiveness via an ‘elasticity’ function that
maps residual work (demand) to the likelihood of discon-
necting in response to control (price) signals. We consider
several simple elasticity functions. By simulation we show
that peak demands can be reduced if EVs with larger loads
disconnect with lower probability. Presumably owners of
EVs with nearly depleted batteries will be less willing to
disconnect. This demonstrates that, such natural behavior
by users helps reducing peak electricity demand on the grid.
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2. Model

2.1 Time-Scale Decomposition

We assume that EVs enter the grid according to a homoge-
neous Poisson process with rate λ. We denote the amount of
electricity to be charged by a random variable (RV) S which
is exponentially distributed with mean μ−1. The system is
modeled as an M/M/∞ queue with utilization ρ = λμ−1.
Once an EV is in the system it is charged at a rate of unit
power. A binary signal U(t) is a continuous time Markov
process where the transition rate from 0 to 1 (resp. 1 to 0)
is given by α (resp. β). When U(t) = 0 EVs charge their
batteries normally: when U(t) changes to 1 EVs indepen-
dently disconnect with probability (w.p.) p. Newly arriv-
ing EVs during U(t) = 1 immediately disconnect w.p. p at
the arrival. Note p quantifies the responsiveness of users to
U(t), e.g., higher p implies higher sensitivity to the signal
U(t). The system corresponds to a queue with random inter-
ruptions which turns out to be difficult to analyze. Instead
we consider the following two cases of time-scale decom-
position as follows. The first case is where U(t) changes at
a much faster rate than those of arrivals and service times.
The other limiting case is where the variation of U(t) is rel-
atively slow: specifically ‘off-peak’ period, i.e., the duration
of U(t) = 0, is significantly longer than dynamics of EVs.
Denote the total number of EVs in the system in steady state
in a normal regime, in the regimes of infinitely slow and fast
varying U(t) by RVs N, Ns and N f respectively.

We first consider the case where U(t) has a long off-
peak period, i.e., α vanishes, as follows.

Proposition 2.1: Suppose λ, μ and β are fixed. As α tends
to 0, Ns is distributed according to N1+N2 where N1 and N2

are independent random variables where N1 ∼ Poisson(ρ)
and the probability mass function (PMF) of N2 is given by,
up to the first order of α,

P (N2 = n) =
β

α + β
P(M1 = n) +

α

α + β
P(M2 = n) (1)

where the random variable M1 (resp. M2) has negative Bino-
mial distribution with parameters (αμ−1, β(pλ + β)−1) (resp.
(αμ−1 + 1, β(pλ + β)−1)).

Proof: Consider a M/M/∞ system that independently tags
arriving EVs as class D EVs w.p. p and as class C EVs oth-
erwise, where only class D EVs disconnect at U(t) = 1 w.p.
1. Class C EVs do not disconnect. As α → 0 this sys-
tem becomes stochastically equivalent to ours which can be
regarded as having two M/M/∞ queues where on their ar-
rivals EVs are independently split and routed w.p. 1 − p
to a normal queue (class C) and w.p. p to a queue with
Markov modulated service interruptions by U(t) (class D).
Let us denote the RVs representing the number of class
C and D customers in the system by NC and ND respec-
tively. Thus Ns converges in distribution to NC + ND where
NC ∼Poisson((1 − p)ρ) and from [4], ND is distributed as

N̂1 + N2 where N̂1 ∼Poisson(pρ) and N2, which is inde-
pendent of N̂1, has the PMF given by (1). If we define
N1 := NC + N̂1, since NC and N̂1 are independent, we have
that N1 ∼Poisson(ρ). �

The decomposition turns out to be the simpler for the
case where U(t) varies infinitely fast: every EV sees an ‘av-
erage’ service rate modulated by U(t), as if every customer
is served at a rate that is uniformly reduced by a factor of
1 − γp where γ � α(α + β)−1 is the duty cycle of U(t). Thus
N f ∼Poisson(ρ(1 − γp)−1).

Corollary 1: The mean values for Ns and N f are given by,
up to the first order of α,

E[Ns] = ρ +

(
α

μ
+
α

α + β

)
pλ
β
, E[N f ] =

ρ

1 − γp
(2)

Proof: We obtain E[Ns] by directly taking the expectations
of Ns ∼ N1 + N2, or see (3.8) of Corollary 1 from [4]. Also
since N f ∼ Poisson( ρ

1−γp ), we get the above E[N f ]. �

Later we simulate the population of EVs versus p under dif-
ferent timescales to assess the quality of the estimates (2).

2.2 Trade-Off between Cost and Delay

We investigate how to achieve various degrees of trade-off
between cost and delay. In this section we assume that the
system is in the regime of slowly varying U(t). Since U(t) is
simply an indicator signal and can be controlled by ESCo,
ESCo may set U(t) to 1 during only a fraction of the actual
on-peak period as follows. If ESCo detects the beginning
of an on-peak period, U(t) is asserted to 1. However ESCo
may set U(t) to 0 prior to the termination of the on-peak
period in order to reduce delay.

We construct U(t) and on-peak periods to capture such
a scheme as follows. Consider sequences of RVs Xi, Yi and
Zi for i ∈ Z+ which are generated i.i.d. from X ∼ Exp(β),
Y ∼ Exp(α) and Z ∼ Exp(η − α) respectively where
η � (τ − β−1)−1 for some τ ∈ [β−1, α−1 + β−1]. We asso-
ciate the duration of the i-th on-peak period, off-peak pe-
riod, U(t) = 1 and U(t) = 0 with Xi +Wi, Yi −Wi, Xi and Yi

respectively where Wi � min(Yi,Zi). It is easy to verify that
such a construction renders U(t) a Markov process. From
the definition, the mean duration of on-peak periods is given
by E[X+W] = E[X]+E[min {Y,Z}] = β−1+η−1 = τ. A time
diagram illustrating the mean values of on/off-peak periods
and U(t) is shown in Fig. 1. We assume α−1+β−1 is normal-
ized to 1, i.e., on-peak periods recur on a regular basis. We
assume that τ is a fixed and β is chosen by ESCo.

Class C EVs, as defined in the proof of Proposition 2.1,
will be charging for the whole duration of τ regardless of
U(t). Class D EVs will stay disconnected for β−1 on av-
erage, however will be charging for the remaining on-peak
period of duration τ − β−1 on average: see Fig. 1. Thus the
average total time spent by actively charging EVs during on-
peak periods, denoted by Eon, is approximated as follows:

Eon ≈ μ−1{E[NC] · τ + E[ND|U(t) = 0] · (τ − β−1)} (3)
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Fig. 1 A time diagram for actual on-peak/off-peak periods and U(t).

where NC and ND are defined in the proof of Proposition 2.1.
Since the dynamics of Class C EVs are independent of U(t),
we have that E[NC] = (1 − p)ρ. The expression in the
bracket of (3) approximates the average total number of ac-
tively charging EVs during on-peak period. Similarly the
total time spent by EVs during off-peak periods is approxi-
mated as follows:

Eoff ≈ μ−1{E[NC](1 − τ) + E[ND|U(t) = 0](1 − τ)} (4)

Denote the rate of cost of electricity usage during on-peak
and off-peak periods by con and coff respectively where con ≥
coff. The mean cost K is defined by K = conEon + coffEoff.

Proposition 2.2: In steady state the mean number of class
D EVs conditional on U(t) = 0 and U(t) = 1 is respectively

E [ND|U(t) = 0] = pρ

(
1 +
α

β

)
, (5)

E [ND|U(t) = 1] = p

(
1 +
α

β

) (
ρ +

λ

α + β

)
. (6)

Proof: Let us define

p0(n) = P(ND = n,U(t) = 0)

p1(n) = P(ND = n,U(t) = 1).

Also define

G0(z) =
∞∑

k=0

p0(k)zk, G1(z) =
∞∑

k=0

p1(k)zk.

Note the dynamics of class D EVs is that of M/M/∞ queue
with Markov modulated interruptions. Thus we leverage the
result from [4, Eq. (4.2)] such that

G1(z) =
α

pλ − pλz + β
G0(z). (7)

By differentiating both sides of (7) by z we have that

G′1(z) =
α

pλ − pλz + β
G′0(z) +

pαλ
(pλ − pλz + β)2

G0(z)

Thus

G′1(1) =
α

β
G′0(1) +

pαλ
β(α + β)

(8)

where we have used G0(1) =
∑∞

k=0 p0(k) = P(U(t) = 0) =

β(α + β)−1. By using E[Ns] = E[ND] + E[NC] = E[ND] +
(1 − p)ρ and from the definition E[ND] = G′0(1) +G′1(1),

G′0(1) +G′1(1) = E[ND] = E[Ns] − (1 − p)ρ

= pρ +

(
α

μ
+
α

α + β

)
pλ
β

(9)

where we have used (2) for E[Ns]. From (8) and (9) we
can solve for G′0(1) and G′1(1). Finally from G′0(1) =
E[ND|U(t) = 0]P(U(t) = 0) and G′1(1) = E[ND|U(t) =
1]P(U(t) = 1), we get the results. �

From (3), (4) and (5), K is given by:

K =μ−1(1 − p)ρ {conτ + coff(1 − τ)}
+ μ−1 pρ

(
1 +
α

β

)
{con{τ − β−1) + coff(1 − τ)}. (10)

By Little’s result, the mean delay denoted by T is given by

T = λ−1
E[Ns] =

ρ

λ
+

(
α

μ
+
α

α + β

)
p
β
. (11)

With other parameters fixed, by substituting α with (1 −
β−1)−1 in (10) and (11) we will treat T and K as functions
of β. By numerical methods we characterize (T,K) pairs
which are achievable by varying β for different values of p
in Sect. 3.

2.3 Disconnecting Based on Residual Battery Capacity

We consider the case where the probability of disconnect-
ing by an EV depends on the residual amount of electricity
to fully charge the battery. We assume that the full battery
capacity is 1 and that S is uniformly distributed on [0, 1].
Let f : [0, 1] → [0, 1] map S to the probability of discon-
necting. We would like to reduce ‘peak demands’ defined
by P(Na > b) for some large b where Na is an RV represent-
ing the number of actively charging EVs in steady state. We
consider several types of f (·) and evaluate its impact on the
peak demands using simulation in Sect. 3.

3. Numerical and Simulation Results

We present numerical results on the accuracy of the derived
estimates (1). We consider three cases ‘slow’, ‘fast’ and
‘moderate’ which represent the relative timescales of U(t)
to those of arrival/departure processes. Figure 2 shows the
mean population of EVs against the probability of discon-
necting where E[N] denotes the simulated average number
of EVs in the system. The parameters for each timescale
are denoted by 4-tuple (λ, μ, α, β) and they are (1,0.2,0.5,1),
(1,0.2,10,10) and (1,0.3,1,1) for ‘slow’, ‘fast’ and ‘moder-
ate’ regimes respectively in Fig. 2. In ‘slow’ regime off-
peak periods are only 2 times longer than interarrival times
and the same as service times on average. Nonetheless in
Fig. 2 we observe that, in ‘slow’ regime, the estimate E[Ns]
is close to E[N]. Also in ‘fast’ regime we see that E[N f ]
well approximates E[N]. In ‘moderate’ regime where all
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Fig. 2 Estimates of E[N] under different timescales.

Fig. 3 Trade-off curves for delay and electricity cost with varying p. The
curves grouped by τ = 0.25 and 0.75 are normalized by the maximum delay
and cost values among the simulated range of values in that group.

the parameters are similar, our estimates remain good.
Figure 3 is a plot of the pairs (T,K) obtained by varying

β with different values of p. The parameters are: con = 2,
coff = 1, μ = μ0 and λ = λ0 where μ−1

0 := 150 min. and
λ−1

0 := 1.5 min. There are two sets of curves for τ =0.25
and 0.75. The curves exhibit trade-off relations between de-
lay and cost. When τ = 0.75, suppose there exists some
constraint on T , say 0.4, then the lowest cost can be achieved
when p = 0.3 with K ≈ 0.855. This shows that for lower p,
one may get a lower cost subject to a delay constraint. This
is because, for larger p with a constraint on T , ESCo has to
keep the mean duration of U(t) = 1 small in order to meet
delay constraint, however this causes more class D EVs to
charge during on-peak period, which will increase K. How-
ever for small p, there is a limitation in cost saving, e.g.,
when p = 0.3 in Fig. 3, K cannot be lowered below 0.855.
By contrast if p is large and constraints on T are loose, one
can achieve a larger set of (T,K), e.g., p = 0.9 case in Fig. 3.
A similar relation holds for the case where τ = 0.25.

Finally we examine what elasticity function is effective
in reducing peak demands. As candidate elasticity functions

Fig. 4 CDF of the number of actively charging EVs.

we consider f (x) = 0.5, f (x) = x and f (x) = 1 − x. The pa-
rameters of simulations are μ = μ0, λ = λ0, α = 0.5 and
β = 0.5. Figure 4 shows the cumulative distribution func-
tion (CDF) of the number of actively charging customers.
From the tail of the distribution, we see that f (x) = 1 − x
incurs the lowest peak demands. Decreasing f (·) implies
that the customers with larger demands are less likely to
disconnect, which seems reasonable since a newly plugged
EV with a nearly depleted battery would not want to post-
pone the charging process. Such a natural behavior by users
based on QoS is indeed beneficial to the overall system per-
formance as well. The intuition is that, decreasing f (·) at-
tempts to balance the variability in the sojourn times of EVs
in the system caused by varying workloads offered to the
system – this results in lighter tail in the CDF as in Fig. 4.

4. Conclusion

We proposed a queuing model with random interruptions for
EV charging systems for smart grids. We derived simple es-
timates of the number of EVs using time-scale decomposi-
tion. From the estimates we characterized achievable trade-
offs between delay and electricity cost. We studied scenar-
ios where EVs disconnect based on the residual amount of
electricity to be charged. It is shown that the decreasing
elasticity function is effective in reducing peak demands.
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