
1712
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

LETTER

Lightweight Consistent Recovery Algorithm for Sender-Based
Message Logging in Distributed Systems

Jinho AHN†a), Member

SUMMARY Sender-based message logging (SBML) with checkpoint-
ing has its well-known beneficial feature, lowering highly failure-free over-
head of synchronous logging with volatile logging at sender’s memory.
This feature encourages it to be applied into many distributed systems as
a low-cost transparent rollback recovery technique. However, the original
SBML recovery algorithm may no longer be progressing in some transient
communication error cases. This paper proposes a consistent recovery al-
gorithm to solve this problem by piggybacking small log information for
unstable messages received on each acknowledgement message for return-
ing the receive sequence number assigned to a message by its receiver. Our
algorithm also enables all messages scheduled to be sent, but delayed be-
cause of some preceding unstable messages to be actually transmitted out
much earlier than the existing ones.
key words: distributed systems, fault-tolerance, message logging, check-
pointing, scalability, consistent recovery

1. Introduction

Sender-based message logging (SBML) with checkpointing
is being used as a low-cost transparent rollback-recovery
technique in many fields such as mobile computing, cluster
and grid computing, sensor network and so on [1], [2], [4]–
[7]. This popularity comes from its requiring no special-
ized hardware and considerably alleviating the normal op-
eration overhead of synchronous logging on stable storage
by volatile logging at sender’s memory. However, we have
identified two problems of the original SBML when some
transient transmission errors occur, which can normally
be assumed in this literature [3]. First, when these errors
make some received messages partially logged, but their
subsequently received messages fully logged, the original
SBML’s recovery procedure may not progress any longer in
case of their receiver’s failure. Second, if temporary com-
munication failures force some messages not to be currently
fully logged, all the message send operations generated af-
ter having received them should be delayed until their re-
ceiver can know that they become fully logged on their
senders’ volatile memories. All of these features may enor-
mously reduce performance of the entire system. In this pa-
per, we present a lightweight SBML algorithm to solve the
two problems. This algorithm enables a receiver to piggy-
back small log information for messages received, but not
yet fully logged, on each return message for giving the re-
ceive sequence number (rsn) assigned to a message to its

Manuscript received February 10, 2011.
Manuscript revised April 9, 2011.
†The author is with the Department of Computer Science,

Kyonggi University, Suwon-si Gyeonggi-do, Korea.
a) E-mail: jhahn@kyonggi.ac.kr

DOI: 10.1587/transinf.E94.D.1712

sender. Our algorithm also enables all messages scheduled
to be sent, but delayed by some preceding unstable messages
to be actually transmitted out much earlier than the existing
ones.

2. System Model

A distributed computation consists of a set P of n (n > 0) se-
quential processes executed on hosts in the system and there
is a distributed stable storage that every process can always
access that persists beyond processor failures, thereby sup-
porting recovery from failure of an arbitrary number of pro-
cessors [3]. Processes have no global memory and global
clock. The system is asynchronous: each process is exe-
cuted at its own speed and communicates with each other
only through messages at finite but arbitrary transmission
delays. Exchanging messages may temporarily be lost but,
eventually delivered in FIFO order. We assume that the
communication network is immune to partitioning and hosts
fail according to the fail stop model where every crashed
process on them halts its computation with losing all con-
tents of its volatile memory [3]. The execution of each pro-
cess is piecewise deterministic [3]: at any point during the
execution, a state interval of the process is determined by
a non-deterministic event, which is delivering a received
message to the appropriate application. The k-th state in-
terval of process p, denoted by sikp(k > 0), is started by
the delivery event of the k-th message m of p, denoted by
devk

p(m). Therefore, given p’s initial state, si0p, and the non-
deterministic events, [dev1

p, dev2
p, . . ., devi

p], its correspond-
ing state si

p is uniquely determined. Let p’s state, si
p = [si0p,

si1p, . . ., siip], represent the sequence of all state intervals up

to siip. si
p and s j

q (p � q) are mutually consistent if all mes-
sages from q that p has delivered to the application in si

p

were sent to p by q in s j
q, and vice versa [3]. A set of states,

which consists of only one state for every process in the sys-
tem, is a globally consistent state if any pair of the states is
mutually consistent.

3. The Proposed SBML Algorithm

3.1 Problems of the Original SBML

For better understanding, let us explain when the two prob-
lems mentioned above may be incurred using Figs. 1 and 2

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



LETTER
1713

Fig. 1 An example of no progression of the original SBML algorithm in
case of transient communication errors.

respectively. In Fig. 1, four processes p1, p2, p3 and p4 are
communicating with each other while executing their cor-
responding tasks. Process p2 takes its latest checkpoint,
Chki

2, and then receives message m1 from p1, which cur-
rently records the partial log information of m1, pl (m1),
on its volatile memory. Thus, p2 increments its rsn vari-
able, RSN2, by one, assigns it to m1 and then returns the rsn
value of m1 to p1. Afterwards, p2 receives m2 and m3 from
p3 and p4 in order and informs p3 and p4 of their corre-
sponding rsn values respectively in the same manner. How-
ever, the two return messages including the rsn values of m1
and m2 cannot still be delivered to their senders, p1 and p3,
like in this figure because of transient communication errors
that may normally occur in the distributed system models
assumed in this literature [3]. In contrast, p4 receives the rsn
value of m3, fully logs m3 on its volatile memory (fl (m3))
and then, sends an acknowledgement about the receipt of
m3’s rsn to p2. At this point, suppose p2 fails and attempts
to recover its pre-failure state. The recovery algorithm of
the original SBML has p2 restore its state using its latest
checkpoint and then obtain all the fully logged messages
from their senders. However, p2 can only get the rsn value
of m3 from p4 and so not know which messages have been
sent to p2 before m3 after checkpoint Chki

2. The original
SBML couldn’t consider this situation and so progress its
execution any longer. In order to perform consistent recov-
ery in this example, m3’s rsn must be invalidated and all the
three messages, handled as partially logged messages.

Second, suppose the original SBML executes accord-
ing to the scenario of Fig. 2. In this case, due to several
transient communication errors from p2 to p1 and p3 like in
Fig. 1, p2 may first be informed of p4’s receipt of m3’s rsn
value without knowing whether m1 and m2 are fully logged
on their senders properly. Therefore, all message send oper-
ations delayed after having received m1 should not be sent
even in case of this situation to ensure system consistency.
These deferred send operations can begin executing only af-

Fig. 2 An example of delayed message send operations incurred in the
original SBML algorithm.

Fig. 3 An example of execution of our SBML algorithm.

ter p2 have received all the acknowledgements about the re-
ceipt of both m1’s and m2’s rsns in Fig. 2. This feature can
considerably degrade failure-free performance of the entire
system.

3.2 Basic Concepts

When the return message including the rsn of an application
message m received by process p may be lost, there occur
two cases our algorithm handles like the original SBML.
First, if m’s sender q cannot receive the return message
within some period of time after having transmitted m, the
message m partially logged on q’s volatile memory should
be retransmitted. Second, if the return message isn’t deliv-
ered to q after having sent it, p cannot receive any acknowl-
edgement of its receipt from q, retransmitting it to q. When
q receives the return message and then sends the acknowl-
edgement to p, the acknowledgement may be lost. In this
case, p re-sends the return message to q, which can give p
the acknowledgement without causing any unintended ef-
fects like in Module RSN-Rcvr() in Fig. 4.

However, as mentioned in Sect. 3.1, our proposed
SBML algorithm solves the two problems of the previous
SBML by ensuring consistent recovery while handling de-
layed messages scheduled to be sent much earlier with very
low extra overhead even if temporary transmission errors
occur. In our algorithm, when p returns the rsn value of
the message m to q, it piggybacks on the return message



1714
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

Fig. 4 Message logging procedures.

log information for all unstable messages received before
m after its latest checkpoint like in Module Msg-Recv() in
Fig. 4. In here, unstable message means the message whose
receiver cannot currently know whether the rsn of the mes-
sage is saved on its sender’s volatile log properly. On the
contrary, a message is called stable that has the opposite
property of unstable message. Also, the log information of
each unstable message piggybacked consists of four fields,
sender’s identifier (SID), receiver’s identifier (RID), send se-
quence number (SSN) and receive sequence number (RSN)
of the message. When receiving the return message, q has
to maintain the log information for the unstable messages
included in the return message on its volatile memory in ad-
dition to updating the rsn value of m into its corresponding
log element like in Module RSN-Rcvr() in Fig. 4. As soon
as p has received the acknowledgement for m’s rsn receipt
from q, all the send message operations delayed due to the
unstable messages received before m can be performed like
in Module RSN-Ack() in Fig. 4. For example, as soon as
p2 is notified of fully logging m3 on p4’s volatile memory
in Fig. 3, our algorithm enables all delayed messages sched-
uled to be sent to be transmitted out because p2 could obtain
all the rsn values of the three messages from p4 during re-

Fig. 5 Recovery procedures.

covery in Fig. 1 unlike the original SBML. If p attempts to
take a local checkpoint, it can also allow all the send mes-
sage operations delayed before this checkpoint to begin ex-
ecuting. The detailed formal description of our algorithm is
shown in Figs. 4 and 5.
Lemma 1. After a process p having received a message m
from another process q receives an acknowledgement about
the receipt of m’s rsn from q in our algorithm, there exists
no orphan message in case of p’s failure even if p has be-
gun executing all the message send operations delayed to be
sent due to any unstable message received before m after p’s
latest checkpoint.
Proof. Suppose the set of all the unstable messages p re-
ceived before m after p’s latest checkpoint is denoted by
US MS GS p(m). In order to make no orphan message in case
of p’s failure, all the message send operations depending on
any unstable message ∈ US MS GS p(m) must be able to be
regenerated during recovery after they have been executed
during failure-free operation. Therefore, to prove lemma 1,
after a process p has received an acknowledgement about
the receipt of m’s rsn from q, our algorithm must be able to
give p the rsn of any message l ∈ US MS GS p(m) during
p’s recovery procedure. The proof proceeds by induction on
the number of all the unstable messages in US MS GS p(m),
denoted by NUM OF(US MS GS p(m)).
[Base case]
In this case, there is one unstable message l and there are
two cases we should consider.
Case 1: l’s sender r has received l’s rsn and fully logged l
on its volatile memory before p’s failure.



LETTER
1715

In this case, p can trivially obtain l’s rsn from r.
Case 2: l’s sender r hasn’t received l’s rsn before p’s failure.
In this case, as l’s rsn was piggybacked on the return mes-
sage including m’s rsn to m’s sender q and has been recorded
on q’s volatile memory before sending an acknowledgement
about the return message to p, p can get l’s rsn from q.
Therefore, p can obtain the rsn of any message l ∈
US MS GS p(m) during p’s recovery procedure in all the
above cases.
[Induction hypothesis]
We assume that the theorem is true for p in case that
NUM OF(US MS GS p(m)) = k.
[Induction step]
If the rsn of (k+1)-th unstable message can be given to p dur-
ing p’s recovery because p can acquire all rsns of the other
k unstable messages by induction hypothesis, the lemma
is true for p in case that NUM OF(US MS GS p(m)) =
k+1. We assume that the (k+1)-th unstable message is l.
The following case is similar to the base case mentioned
above. Therefore, p can obtain the rsn of any message
l ∈ US MS GS p(m) during p’s recovery procedure.
By the induction, there exists no orphan message in case of
p’s failure even if p has begun executing all the message
send operations delayed to be sent due to any unstable mes-
sage ∈ US MS GS p(m). �
Theorem 1. Our algorithm can perform consistent recov-
ery in case of sequential process failures.
Proof. We prove this theorem by contradiction. Assume
that consistent recovery may be impossible in case of a sin-
gle failure of a process p at a time in our algorithm. This
assumption means there are one or more message send op-
erations, denoted by ORPHANOPS p, that a process p has
performed before its failure, but cannot regenerate like in
its failure-free execution even after the recovery procedure
of this algorithm executed. Suppose among all the message
send operations, operation o is generated as the last in order
and l is the most recent message that p has received right
before generating the operation o. There are two cases to be
considered.
Case 1: l is an unstable message received before p’s failure.
In this case, as operation o has been executed during failure-
free operation, there was at least one stable message m re-
ceived by p after l according to our algorithm mentioned in
Sect. 3.2. By lemma 1, there exists no orphan message in
case of p’s failure even if p has begun executing all the mes-
sage send operations delayed to be sent due to any unstable
message ∈ US MS GS p(m). Thus, as m’s sender has kept the
rsn of every unstable message ∈ US MS GS p(m) including
l on its volatile memory even in case of p’s failure, all the
operations in ORPHANOPS p can still be regenerated.

Case 2: l is a stable message received before p’s failure.
In this case, as l’s sender has received a return message
including l’s rsn with the rsn of every unstable message
∈ US MS GS p(l) from p and recorded all the rsns on its
volatile memory, all the operations in ORPHANOPS p can
still be regenerated.
Therefore, consistent recovery is possible in all the cases.
This contradicts the hypothesis. �

4. Conclusion

This paper identifies the two drawbacks of the original
SBML incurred by transient communication errors, i.e., its
recovery procedure may not progress any longer in case of
sequential process failures, and all the message send oper-
ations generated after having received some unstable mes-
sages should be delayed until they are known to be stable.
In order to solve them, we presented a lightweight SBML al-
gorithm to have the following desirable feature. When a pro-
cess receiving a message m sends each return message for
notifying m’s sender of its rsn in this algorithm, the rsns of
all the unstable messages received before m are included in
the return message. This feature can make its consistent re-
covery procedure ongoing in case of failures. Additionally,
the algorithm enables all messages scheduled to be sent, but
delayed because of some preceding unstable messages for
satisfying the consistency condition to be actually transmit-
ted out much earlier compared with the existing ones.

References

[1] J. Ahn, “Scalable message logging algorithm for geographically dis-
tributed broker-based sensor networks,” Proc. Int’l Conf. on Comput-
ers And Their Applications In Industry and Engineering, pp.279–284,
2010.

[2] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and
F. Magniette, “MPICH-V2: A fault tolerant MPI for volatile nodes
based on pessimistic sender based message logging,” Proc. Int’l Conf.
on High Performance Networking and Computing, 2003.

[3] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A survey
of rollback-recovery protocols in message-passing systems,” ACM
Computing Surveys, vol.34, no.3, pp.375–408, 2002.

[4] D. Johnson and W. Zwaenpoel, “Sender-based message logging,” Int’l
Symp. on Fault-Tolerant Computing, pp.14–19, 1987.

[5] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok, “VolpexMPI: An
MPI library for execution of parallel applications on volatile nodes,”
Lect. Notes Comput. Sci., vol.5759, pp.124–133, 2009.

[6] J. Xu, R.B. Netzer, and M. Mackey, “Sender-based message logging
for reducing rollback propagation,” Proc. 7th International Sympo-
sium on Parallel and Distributed Processing, pp.602–609, 1995.

[7] B. Yao, K. Ssu, and W. Fuchs, “Message logging in mobile comput-
ing,” Proc. 29th International Symposium on Fault-Tolerant Comput-
ing, pp.14–19, 1999.


