
1742
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

PAPER

Software-Based Parallel Cryptographic Solution with
Massive-Parallel Memory-Embedded SIMD Matrix Architecture
for Data-Storage Systems

Takeshi KUMAKI†a), Tetsushi KOIDE††, Hans Jürgen MATTAUSCH††, Members, Masaharu TAGAMI††,
and Masakatsu ISHIZAKI††, Nonmembers

SUMMARY This paper presents a software-based parallel crypto-
graphic solution with a massive-parallel memory-embedded SIMD matrix
(MTX) for data-storage systems. MTX can have up to 2,048 2-bit pro-
cessing elements, which are connected by a flexible switching network,
and supports 2-bit 2,048-way bit-serial and word-parallel operations with
a single command. Furthermore, a next-generation SIMD matrix called
MX-2 has been developed by expanding processing-element capability of
MTX from 2-bit to 4-bit processing. These SIMD matrix architectures
are verified to be a better alternative for processing repeated-arithmetic
and logical-operations in multimedia applications with low power con-
sumption. Moreover, we have proposed combining Content Addressable
Memory (CAM) technology with the massive-parallel memory-embedded
SIMD matrix architecture to enable fast pipelined table-lookup coding.
Since both arithmetic logical operation and table-lookup coding execute
extremely fast on these architectures, efficient execution of encryption and
decryption algorithms can be realized. Evaluation results of the CAM-
less and CAM-enhanced massive-parallel SIMD matrix processor for the
example of the Advanced Encryption Standard (AES), which is a widely-
used cryptographic algorithm, show that a throughput of up to 2.19 Gbps
becomes possible. This means that several standard data-storage transfer
specifications, such as SD, CF (Compact Flash), USB (Universal Serial
Bus) and SATA (Serial Advanced Technology Attachment) can be cov-
ered. Consequently, the massive-parallel SIMD matrix architecture is very
suitable for private information protection in several data-storage media. A
further advantage of the software based solution is the flexible update pos-
sibility of the implemented-cryptographic algorithm to a safer future algo-
rithm. The massive-parallel memory-embedded SIMD matrix architecture
(MTX and MX-2) is therefore a promising solution for integrated realiza-
tion of real-time cryptographic algorithms with low power dissipation and
small Si-area consumption.
key words: matrix-processing architecture, SIMD, bit-serial and word-
parallel, CAM, table-lookup coding, cryptographic algorithm, AES

1. Introduction

The rapid development of semiconductor-integration and
VLSI-implementation technology is leading to a continu-
ous improvement in our mobile computing environment.
There has been a spread across society of mobile applica-
tions like notebook or netbook PC, digital still camera, mo-
bile phone and many forms of flash-memory storage, such

Manuscript received July 13, 2010.
Manuscript revised March 6, 2011.
†The author is with the Department of VLSI System Design,

Ritsumeikan University, Kusatsu-shi, 525–8577 Japan.
††The authors are with Research Institute for Nanodevice and

Bio Systems, Hiroshima University, Higashi-hiroshima-shi, 739–
8527 Japan.

a) E-mail: kumaki@fc.ritsumei.ac.jp
DOI: 10.1587/transinf.E94.D.1742

as USB flash memory, SD card and so on. Almost every
person is now carrying huge volumes of personal data, such
as pictures, mail addresses or business documents. On the
other hand, since publication of the OECD’s eight princi-
ples document in 1980 [1], which contains guidelines for the
protection of privacy and transborder flows of personal data,
the end-user is increasingly interested in the protection of
personal data. The Japanese government also enforces the
private information protection law in April 2005. Thus, mo-
bile appliances need to apply private information security
technology, especially cipher algorithm processing, for pro-
tection against the leakage of personal information. Addi-
tionally, low power dissipation and small hardware area are
also required-capability for mobile equipment.

Presently, several USB flash memories are supported
in their security-function capability [2], [3], which can pre-
vent accidental leaking of the private information. Thus,
hardware encryption ASICs have been implemented directly
on the main board of USB flash memories and can allow
fast transfer of the encrypted or decrypted data, when the
end-user deals with his personal data. Several hard disk
drives [4], [5] also adopt hardware-based full disk encryp-
tion. Above security solutions have begun to adopt the 256-
bit AES (Advanced Encryption Standard) algorithm for ro-
bust encrypted data. On the other hand, previous standard
cryptographic algorithms, such as DES (Data Encryption
Standard), RSA (Rivest Shamir Adleman), SHA (Secure
Hash Algorithm) etc, are no longer considered to provide the
data security that is needed to protect personal information.
This fact is obviously caused by the cipher-related year-
2010 problems [6]–[9]. Similarly, the 256-bit AES algo-
rithm is undeniably also exposed to a hazard against private
information in the feature. Thus, an ASIC-based cryptogra-
phy method is not completely safe against leaking of private
information, because the implemented algorithm may be-
come corruptible in future. Consequently, the encryption al-
gorithm, which is implemented in a cryptography chip, may
have to be changed to a safer algorithm at some point in
time. However, an ASIC-based implementation of the cryp-
tographic algorithm cannot be updated or modified. As a
result, above cipher-related problems make heavy demands
on the end-user’s cost burden for keeping a high safety level.
On the other hand, software-based general-purpose CPU
or media processor solutions tend to increase power con-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

KUMAKI et al.: SOFTWARE-BASED PARALLEL CRYPTOGRAPHIC SOLUTION
1743

sumption and hardware cost, and are also unsuitable for the
bit-oriented data operations of the cryptographic process-
ing [10].

For overcoming these security-related problems, this
paper presents a software-based parallel cryptographic pro-
cessing solution with a massive-parallel memory-embedded
SIMD matrix for a flexible and robust data-security sys-
tem. The massive-parallel memory-embedded SIMD matrix
has been proposed as a novel SIMD multimedia processor,
which provides a better way for processing several types of
multimedia applications [11]–[16]. It achieves highly paral-
lel processing with low power consumption, and can thus
target the mobile product applications. Moreover, since
the massive-parallel memory-embedded SIMD matrix uses
a software-based architecture for several algorithm imple-
mentations, it is programmable for all processing functions
required by multimedia VLSI chips.

For increasing the degree of parallel processing and
flexibility, the massive-parallel SIMD matrix applies bit-
serial and word-parallel mode of operation and a close
connection between many small processing elements and
SRAM arrays. Then, the matrix architecture can enable
effective processing of multimedia contents with a large
data amount and decrease data-transfer power consumption.
Furthermore, for improving the processing efficiency of
multimedia data, a Content Addressable Memory (CAM)-
enhanced massive-parallel SIMD matrix has also been pro-
posed, which can realize simultaneously fast repeated arith-
metic operations and pipelined table-lookup coding and
achieves optimized performance of multimedia applica-
tions [15], [17]. For optimizing the security-related process-
ing capability in mobile data storage devices, such as USB
flash memory, SDD and so on, we propose an effective
parallel-implementation method of the cryptographic algo-
rithm on massive-parallel SIMD matrix processors. As an
example, from the many cryptographic algorithms known to
the public, the Advanced Encryption Standard (AES) algo-
rithm is selected and implemented. The number of encryp-
tion clock cycles for the AES algorithm is then determined
with the CAM-less and CAM-enhanced massive-parallel
SIMD matrix architectures. Furthermore, several standard
data-storage-transfer specifications are compared with refer-
ence to the throughput of the massive-parallel SIMD matrix
processors.

This paper is organized as follows. Section 2 describes
the massive-parallel memory-embedded SIMD matrix pro-
cessor architecture in detail. Section 3 explains the AES
algorithm and its flow-chart. Section 4 proposes a de-
tailed processing method for the AES algorithm using the
massive-parallel memory-embedded SIMD matrix architec-
ture. Section 5 describes the developing environment for
the massive-parallel memory-embedded SIMD matrix and
compares the performance of the AES implementation with
the requirements of recent data-transfer standards. Finally,
Sect. 6 concludes this paper.

2. Massive-Parallel Memory-Embedded SIMD Matrix
Architecture

In this section, the developed multimedia SIMD processor
architecture and the CAM-enhancement of this architecture
are described to facilitate the understanding of the later sec-
tions. These two architectures have also been verified to
allow effective processing of both repeated arithmetic oper-
ations and table-lookup coding operations in several multi-
media applications.

For processing multimedia applications efficiently,
various SIMD architectures have been reported previ-
ously [18], [19]. However, the number of Processing Ele-
ments (PEs), which can be implemented, is mostly quite
small.

We have developed a massive parallel processor based
on a SRAM-embedded matrix architecture [11]–[15], [20],
[21], which overcomes the limitations in parallelism of pre-
vious architectures. This massive-parallel SIMD matrix ar-
chitecture achieves for example 40 GOPS performance for
16-bit additions at 200 MHz clock frequency and 250 mW
power dissipation in a 90 nm CMOS technology [11]. It is
furthermore programmable for all processing functions re-
quired for multimedia VLSI chips. The block diagram of the
SIMD matrix architecture is shown in Fig. 1. 1 M-bit SRAM
is provided for data registers and 2,048 2-bit processing el-
ements (PEs), connected by a flexible switching network,
are integrated e.g. on 3.1 mm2 in a 90 nm low power CMOS
technology. A Vertical channel (V-ch) connects the PEs,
while a Horizontal channel (H-ch) connects SRAM-register
space and PEs. Through V-ch a communication path be-
tween a PE and another PE, being a distance of a power of
2 rows away, is generated and operated in one cycle. As
for H-ch, 3 register accesses (2 read, 1 write) in the form of
a read-modify-write operation are achieved in one cycle by

Fig. 1 Block diagram of the massive-parallel memory-embedded SIMD
matrix architecture.

1744
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

Fig. 2 Physical implementation image of the CAM-enhanced massive-
parallel SIMD matrix architecture.

the SRAM division into 2 simultaneously accessible parts.
Since the massive-parallel SIMD matrix consists of a sim-
ple SRAM-based architecture, the processed-data width and
the magnitude of parallelism can be changed and optimized
flexibly according to application needs.

Generally, most conventional processors execute with
bit-parallel and word-serial operation. In the example
of a DSP, multimedia data is processed sequentially in a
pipelined form. Thus, these conventional DSP architec-
tures can be regarded as realizing parallel processing in
the time domain. On the contrary, our developed massive-
parallel SIMD matrix supports 2,048-way bit-serial and
word-parallel operations. Moreover, the 2,048 PEs can syn-
chronize with a single command and process all stored data,
thus realizing a highly parallel SIMD architecture. There-
fore, the massive-parallel SIMD matrix can be regarded as
realizing a space domain architecture for parallel process-
ing.

Besides an effective parallel processing for repeated
arithmetic operations, we utilized our previous works [22],
[23] on effective and fast processing of the table-lookup cod-
ing operation when executed by a CAM-exploiting architec-
ture, for developing a still more versatile multimedia pro-
cessor. This resulted in a CAM-enhanced massive-parallel
SIMD matrix, which has a physical implementation image
is shown in Fig. 2. The considered architecture implemen-
tation has 32 matrix banks, a controller circuit, and an in-
terface module enhanced with a CAM-based table-lookup
function. Each bank consists of two SRAM-cell-based data
registers with 64 × 256 bit and 64 2-bit PEs, which directly
connect with the data registers. Again, a V-ch connects the
PEs, while a H-ch connects memory cells and PEs. The
block diagram of the table-lookup-enhanced interface mod-
ule, which can take over the role of table-lookup coding op-
erations during data input to or output from for the SIMD
matrix, is shown in Fig. 3. It is composed of two CAM
banks, two orthogonal SRAMs, a controller, a bus interface,

Fig. 3 Block diagram of the interface module enhanced with the CAM-
based table-lookup function.

and nine selectors.
For efficiently realizing above integration architecture

to allow effective multimedia data processing, sufficient
consideration of the differences in data handling between
SIMD architecture and CAM is needed. While the massive-
parallel SIMD matrix is optimized for bit-serial and word-
parallel operation, the CAM has to execute bit-parallel
and word-serial operations for achieving best performance.
Therefore, the two CAM components have their optimum
location in the interface module, which performs an orthog-
onal transformation of the data direction, for enabling the
bit-serial processing of the SIMD matrix. As a result, the
CAM processes the role of processing the table-lookup cod-
ing operations at the word-parallel end within the interface
module. In this way, the CAM-enhanced massive-parallel
SIMD matrix architecture can efficiently exploit the fast
search operation provided by the CAM function for faster
execution of all multimedia algorithms which require the
CAM capabilities.

For the JPEG application, studied as an example,
the clock cycle number required by the proposed CAM-
enhanced processor is up to 86% smaller than with a
conventional mobile DSP. Furthermore, its efficiency in
Mpixel/mm2 is up to 3.3 times and 4.4 times higher than that
of a CAM-less massive-parallel SIMD matrix and a conven-
tional mobile DSP, respectively [15].

3. Advanced Encryption Standard (AES) Algorithm

The Advanced Encryption Standard (AES) algorithm is a
well-known cryptographic algorithm which has been an-
nounced as replacement to the Data Encryption Standard
(DES) by the National Institute of Standards and Technol-
ogy (NIST) [24] in 2000 and 2001. It is therefore a FIPS
(Federal Information Processing Standards) approved cryp-
tographic applications and is described in detail in [24]. The
ASE algorithm uses a cryptographic key called “Round key”
and its flow chart is shown in Fig. 4. The AES is catego-
rized as a block-cipher algorithm, which processes typically
blocks of 128 bits from the original message by using Round
Keys with a data length of 128, 192, or 256 bits. The encryp-

KUMAKI et al.: SOFTWARE-BASED PARALLEL CRYPTOGRAPHIC SOLUTION
1745

Fig. 4 Processing flow diagram of the Advanced Encryption Standard
(AES) algorithm: (a) Encryption flow, (b) Decryption flow.

tion flow (Fig. 4-(a)) uses four elementary transformations
called SubBytes, ShiftRows, MixColumns, and AddRound-
Key, while the decoding flow (Fig. 4-(b)) uses the inverse of
these four elementary transformations called InvSubBytes,
InvShiftRows, InvMixColumns, and InvAddRoundKey.

The main loops of the encoding/decoding flow are re-
peated 10, 12, or 14 times depending on the number of
Round Key bit-length (128, 196 and 256 bit). For the basic
processing of the AES algorithm, blocks of 128 bits from the
original message are arranged into arrays of 4 columns by 4
rows containing 8-bit elements called bytes. The SubBytes
and the InvSubBytes transformations are nonlinear byte sub-
stitutions that operate independently on each byte of the 4×4
array by using a substitution table called S-Box or S−1-Box
(inverse S-Box). The ShiftRows or the InvShiftRows trans-
formations are circular shifting operations on the rows of the
4×4 arrays by different numbers of bytes. The MixColumns
or the InvMixColumns transformations replace elements of
each column by carrying out a matrix-multiplication with a
defined matrix. The AddRoundKey or the InvAddRound-
Key transformations calculate XOR operations between the
data block and the Round Key.

4. Efficient AES Processing with SIMD Matrix Proces-
sor

The massive-parallel memory-embedded SIMD matrix can
accelerate efficiently the block-cipher processing by using
its high parallelism, flexible data-width, flexible data chan-
nel and fast table-lookup architecture. Generally, as shown

Fig. 5 Storage scheme of plain texts in the massive-parallel memory-
embedded SIMD matrix (example of 128-bit plain texts and a 128-bit round
key).

in Fig. 5, the plain text of the block-cipher algorithm is
normally represented in two-dimensional array format [24],
because conventional processors are limited to a single-
access data width, such as 16 or 32 bit. On the other hand,
the proposed SIMD matrix processing module has a flexi-
ble data width architecture up to 256 or 512 bits [11], [16].
The massive-parallel memory-embedded SIMD matrix can
therefore adopt one-dimensional line format to take advan-
tage of its highly parallelism.

4.1 AddRoundKey and InvAddRoundKey Transforma-
tions

In the AddRoundKey and the InvAddRoundKey processing,
which is applied several times in the flows of Fig. 4, paral-
lel bit-serial XOR operations are calculated between the en-
coded data and the 128 bits of the round key. As an Fig. 6
shows the procedure for implementing the AddRoundKey
transformation for parallel-encoding of 2,048 blocks with
128 bit each. The InvAddRoundKey can also be executed
according to Fig. 6 procedures without modification.

Four steps AR-1 to AR-4 of AddRoundKey transformation
processing on the massive-parallel SIMD matrix processor
can be represented in the following four items:

AR-1 The controller downloads the 128-bit AddRoundKey
data from SRAM through the system bus into its reg-
isters and broadcasts the 128-bit AddRoundKey to the
left-side SRAM registers in the SIMD matrix proces-
sor.

AR-2 2,048 PEs in the SIMD matrix processor can execute
XOR operation in parallel.

AR-3 The bit-serial XOR operation is continuously exe-
cuted in the right-side SRAM registers.

AR-4 Encoded data in the 2,048 blocks are stored in right-
side SRAM registers.

As a result, the massive-parallel memory-embedded
SIMD matrix architecture can use 2,048 PEs for the Ad-

1746
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

Fig. 6 Detailed implementation procedures of the AddRoundKey trans-
formation on the massive-parallel memory-embedded SIMD matrix: (Step
AR-1) Copy AddRoundKey to all rows of the SIMD-processor, (Step AR-
2) Execute the XOR operation for bit 1 - 8, (Step AR-3) XOR operation for
bit 9 - 16, (Step AR-4) XOR operation for all 128 bits.

dRoundKey and the InvAddRoundKey transformation as ef-
ficiently as possible.

4.2 SubBytes and InvSubBytes Transformations

The SubBytes and InvSubBytes transformations always fol-
low after finishing an AddRoundKey and InvShiftRows
transformations, respectively. They need to perform table-
lookup operations according to the S-Box or the S−1-Box
code-word tables, which can be done with a one-by-one sub-
stitution of 8-bit data parts from the 128 bit data blocks.
Although, the table-lookup coding operation is known as
less suitable for a SIMD processing architecture [15], it can
be implemented on the massive-parallel memory-embedded
SIMD matrix, as described in the following.

For explanation of the substitution process according
to the S-Box table, Fig. 7 shows the example of transform-
ing the 8-bit data {FF}16 and {FE}16 into {16}16 and {BB}16,
respectively. The transformation procedure starts with ad-
dition operations of 1 to all 8-bit data parts, e.g. {FF}16 be-
comes {00}16 due to an overflow, and uses the ALU, the valid
flag and the carry flag in each processing element (PE).

Five processing steps SB-1 to SB-5, as explained below,
are sufficient for implementing the SubBytes transformation
and can be represented in the following five items:

SB-1 The SIMD processing module stores up to 2,048 post-
AddRoundKey data blocks and sets an incremental
value for the addition operation in parallel.

SB-2 The substitution value {16}16, which is determined by
the intersection of the row with index {F}16 and the col-
umn with index {F}16 in S-Box table [24] is loaded to
a register in the controller. Then, the substitution value
is broadcasted to the area of S-Box table value.

SB-3 For the valid past-substitution values in S-Box table
area, the post-AddRoundKey data are incremented in
parallel. Consequently, all rows, which have the value
of {FF}16, generate overflow bits. Overflow bits are
copied into carry flag registers.

SB-4 Overflow bits in carry flag registers are inverted and
copied into the valid flag register. Thereby, rows with
an overflow, for which the S-Box transformation is fin-
ished, are deactivated for the subsequent processing.

SB-5 The value {BB}16, which substitutes the input data
{FE}16 according to the S-Box code-word table, over-
writes the “S-Box table value field” in the rows remain-
ing valid. The S-Box transformation continues with
steps SB-3 to SB-5 until all S-Box table values have
been processed.

In the described algorithm, the massive-parallel
memory-embedded SIMD matrix has to execute steps SB-3
to SB-5 for all possible input values from {FF}16 to {00}16,
regardless of the actual distribution the input value. Thus,
the performance tends to be low due to the large number of
necessary clock cycles.

On the other hand, the CAM-enhanced massive-
parallel memory-embedded SIMD matrix [15], which is ver-
ified to allow effective processing of both repeated arith-
metic or logic operations and table-lookup coding opera-
tions in several multimedia applications, is more efficiently
applied to generating substitution values in the SubBytes or
the InvSubBytes transformation. Here, the CAM, which is
included in table-lookup interface module (see Fig. 3), can
realize a fast SubBytes transformation. Moreover, a CAM-
based table-lookup coding architecture simplifies the im-
plementation of the InvSubBytes transformation. Figure 8
shows the concept of a CAM-based transformation process-
ing. The SubBytes transformation utilizes the CAM func-
tion for substitution coding, as shown in Fig. 8-(a), by stor-
ing the possible input data in such a way that the correspond-
ing substitution data is represented by the matching address.
The InvSubBytes transformation can then be simply realized
by RAM function using the input data as the address under
which the substitution data is stored, as shown in Fig. 8-(b).

For pipeline processing of the S-box or the S−1-
box transformation in the interface module of the CAM-
enhanced massive-parallel memory-embedded SIMD ma-
trix, both CAM bank0 and CAM bank1 are used to store the
possible post-AddRoundKey data, as shown in Fig. 9. Both

KUMAKI et al.: SOFTWARE-BASED PARALLEL CRYPTOGRAPHIC SOLUTION
1747

Fig. 7 Processing flow diagram of table-lookup procedure, required for the SubBytes transformation
of the advanced encryption standard (AES) algorithm, on the massive-parallel SIMD matrix proces-
sor: (Step SB-1) Default setting, (Step SB-2) Broadcast operation of first table value (corresponding to
substitution for FF), (Step SB-3) Addition operation, (Step SB-4) Invert valid-flag operation for rows
with overflow(carry flag became 1), (Step SB-5) Broadcasting of 2nd table value (corresponding to
substitution for FE) to valid rows.

Fig. 8 Concept of the CAM-based SubBytes or InvSubBytes table-
lookup transformation processing.

CAMs have this data two times under in each address. The
detailed pipelined-coding procedure is described by the four
processing steps SBC-1 to SBC-4 as explained below. The
mapping of four steps onto the pipeline stages of the hard-
ware is also indicated in Fig. 9. Steps SBC-1 to SBC-4 are
represented by 1© to 4©, respectively.

SubBytes transformation processing steps on the CAM-
enhanced massive-parallel SIMD matrix processor can be
represented in the following four items:

SBC-1 The SIMD processing module outputs 8 bit data

Fig. 9 Fast CAM-based SubBytes transformation flow within the table-
lookup interface module: (Step SBC-1 (1©)) Store post-AddRoundKey
data, (Step SBC-2 (2©)) Send stored data to two CAM banks, (Step SBC-
3 (3©)) Generate matching addresses for SubBytes transformation, (Step
SBC-4 (4©)) Output result data.

(e.g. {FE}16 and {FF}16), after finishing the Ad-
dRoundKey transformation, sequentially bit column
after bit column of the data words. The orthogonal
SRAM0 stores these post-AddRoundKey data in ver-
tical direction. −→ 1© in Fig. 9.

SBC-2 The orthogonal SRAM0 then outputs the post-
AddRoundKey data in horizontal direction i.e. word by
word in descending order of the storing address. CAM

1748
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

bank0 and CAM bank1 receive outputted data and set
left-half and right-half mask bits, respectively. −→ 2©
in Fig. 9.

SBC-3 The CAM bank0 and CAM bank1 compare in-
put data, such as {FF}16 and {FE}16 with all possible
input symbols of the post-AddRoundKey in parallel.
Two matching addresses from the CAM bank0 and the
CAM bank1, which are corresponding two substitution
values (e.g. {16}16 and {BB}16), are then combined and
sent to the orthogonal SRAM1. −→ 3© in Fig. 9.

SBC-4 After steps SBC-2 - SBC-3 have been carried out for
all post-AddRoundKey data in SRAM0, the orthogonal
SRAM1 then seamlessly outputs its substitution data in
vertical direction bit column by bit column to the SIMD
processing modules. −→ 4© in Fig. 9.

Above CAM-exploiting processing steps can realize
fast pipelined SubBytes operations. Furthermore, fast In-
vSubBytes operations are realized by using the input data as
an address and by exploiting the RAM function of the CAM.

4.3 ShiftRows and InvShiftRows Transformation

The processing of the ShiftRows and the InvShiftRows op-
erations can be realized without executing actual changes to
the data obtained from the after previous processing steps.
Since the one-dimensional line format (Fig. 5) is adopted
for storing intermediate data, the massive-parallel memory-
embedded SIMD matrix can write and read up to 2,048 ob-
tained data at all entries indicated by a pointer at the same
time. Therefore, the ShiftRows and the InvShiftRows oper-
ations can be achieved by only changing the pointer of each
entry during read-out of the results from the previous AES-
algorithm steps of the in processing flow shown in Fig. 4
and can be combined with the SubBytes and the InvMix-
Columns processing, respectively.

4.4 MixColumns and InvMixColumns Transformation

The MixColumns and the InvMixColumns transformation is
treated by a four-term polynomial as described in [24]. The
required operations can be written in XOR form with the
following matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: MixColumns

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: InvMixColumns

These are 7 different matrix elements, namely {01}16,
{02}16, {03}16, {09}16, {0b}16, {0d}16 and {0e}16, which can
be calculated from the two elements {01}16 and {02}16. For
example, {03}16 and {09}16 can be represented in the follow-
ing equations:

{03}16 = {02}16 + {01}16

{09}16 = {02}16 + {02}16 + {02}16 + {01}16

The massive-parallel memory-embedded SIMD ma-
trix enables flexible bit-oriented shift operations in parallel.
Therefore, above sample equations can be executed by the
SIMD processing module in the following way:

{03}16 = {1bit shi f t} + {addition o f {01}16}
{09}16 = {3bit shi f t} + {addition o f {01}16}
As a result, the MixColumns and InvMixColumns op-

erations, which need some complex product-sum calcula-
tion, are realized by simple shift operations and an addition
on the SIMD processing module.

Figure 10 describes the eight processing steps MC-1 to MC-
8, which are represented in the following eight items:

MC-1 The SIMD processing module stores up to 2,048
blocks of 128 bit data, each represented by following
16 elements:
a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1, a3,1, a0,2, a1,2, a2,2,
a3,2, a0,3, a1,3, a2,3, a3,3.
These 16 elements are obtained after finishing the
ShiftRows transformation in case of AES encoding.

MC-2 All PEs output {02}16 · a0,0, {02}16 · a1,0, {02}16 ·
a2,0, {02}16 · a3,0, · · · , {02}16 · a3,3 by 1 bit-left-shifting
of the values a0,0, a1,0, a2,0, a3,0, · · · , a3,3.

MC-3 If processed data overflows in step MC-2 as a re-
sult of the shift-operation, a rounding operation is
needed. For searching the overflowing cases, all PEs
copy the Most Significant Bit (MSB) of the elements
a0,0, a1,0, a2,0, a3,0, · · · , a3,3 to their carry flag registers.

MC-4 The MSB data in the carry flag registers are copied
to the valid flag registers. With these valid flags, the
cases which need a rounding operation are identified.

MC-5 The results of the rounding operation for the valid
rows are obtained by XOR operations between the
shifted-data and {1b}16.

MC-6 Repeating steps MC-3 to MC-5, the massive-parallel
memory-embedded SIMD matrix architecture can cal-
culate rounding data in parallel.

MC-7 All PEs execute XOR operations between a0,0, a1,0,
a2,0, a3,0, · · · , a3,3 and the results of step MC-6, respec-
tively.

MC-8 By repeating step MC-7, the massive-parallel
memory-embedded SIMD matrix architecture can ob-
tain easily {03}16 times plain text data in parallel.

As a result, the massive-parallel memory-embedded
SIMD matrix architecture can represent all elements in Mix-
Columns and InvMixColumns matrices by using only shift
operation and addition. Due to the storage of seven differ-
ent matrix elements in the same row, the actual matrix mul-
tiplication can then be carried out by applying the normal
addition and multiplication operations of the SIMD proces-
sor, without data communication clock cycles by using the
vertical channel (V-ch).

KUMAKI et al.: SOFTWARE-BASED PARALLEL CRYPTOGRAPHIC SOLUTION
1749

•

•

• • • •

•

•

•

•••

•••

• • • •

Fig. 10 Detailed procedures of the shift and rounding operations in the MixColumns transformation
when expected by the massive-parallel memory-embedded SIMD matrix: (Step MC-1) Default setting,
(Step MC-2) 1 bit shift operation for a0,0 to a3,0 (matrix multiplication 02), (Step MC-3) Copy MSB
to carry flag register for all rows, (Step MC-4) Copy carry-flag bit to valid-flag bit for all rows (valid
rows become 1), (Step MC-5) Execute XOR operation between {02}16 · a0,0 and {1b}16 for rounding
operation in valid rows (rounding operation), (Step MC-6) Repeat three steps MC-3, MC-4 and MC-5,
(Step MC-7) Execute XOR operation between step MC-6 result and a0,0 (rounding operation), (Step
MC-8) Repeat step MC-7.

1750
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

5. Experimental Results for AES Encryption Process-
ing

In this section, several experimental results for the security
application of implementing the cryptographic AES algo-
rithm with the massive-parallel SIMD matrix architecture
are reported. For obtaining the number of processing clock
cycles, on the SIMD matrix processor, the AES encrypting
algorithm has been implemented with a C language-based
embedded program and tested by SIMD-matrix-processor
hardware on an evaluation board. Figure 11-(a) and (b)
shows a photograph and the system block diagram of the
evaluation board. Main components are the massive-parallel
SIMD matrix processor, a host CPU, a DMA (Direct Mem-
ory Access controller) and two SDRAMs. Maximum clock
frequencies of the SIMD matrix processor, host CPU and
SDRAM are 162 MHz, 81 MHz, and 81 MHz, respectively.
The specifications of the massive-parallel SIMD matrix pro-
cessor are: 1,024-parallelism, 512-bit word-length, 2-bit-
serial processing and 150 mW power dissipation. The host
CPU dispatches several tasks to the massive-parallel SIMD
matrix and the DMA, and executes serial operations. The
DMA transfers plain text data between SDRAMs and the
massive-parallel SIMD matrix through the system bus.

In principle, the execution of the SubBytes operation
method using the host CPU is a technically possible al-
ternative. However, this possibility has several drawbacks
which lead to a long effective processing time for the Sub-
Bytes operation. In case of executing the SubBytes trans-
formation with the host CPU, the host CPU needs to move
post-AddRoundKey data from the massive-parallel SIMD
matrix to the SDRAMs through the system bus before the
SubBytes transformation can be performed. The reason is
that the host CPU cannot use cache memory to process the
post-AddRoundKey data between the CPU register and the
orthogonal SRAM in the interface module, directly. More-
over, the shared system bus may be occupied by other pro-
cesses at the time of the data transfer and may therefore
not be fully available. Consequently, a large number of
additional unproductive data-transfer clock cycles will be
needed for a CPU-based SubBytes transformation. On the
other hand, the CAM-based table-lookup operation can be
executed on the fly in a pipelined highly parallel manner
within the interface module and does not need the system

Fig. 11 Photograph and system architecture diagram of the evaluation
board.

bus. Thus, the CAM-based SubBytes operation becomes
possible with the number of clock cycles (or even less clock
cycles) which would otherwise be needed for only transfer-
ring the data between the SDRAMs and the SIMD matrix.

Figure 12 shows the determined number of clock cy-
cles for the AES encrypting algorithm for encoding of
1,024 128-bit data blocks. The two discussed architec-
tures, namely the massive-parallel SIMD matrix (CAM-less
MTX) and the CAM-enhanced massive-parallel SIMD ma-
trix (CAM-enhanced MTX) are indicated on the vertical
axis and the accumulated number of clock cycles is given
on the horizontal axis. Since the AddRoundkey transforma-
tion, the MixColumns transformation, the ShiftRows trans-
formation and data input/output are very suitable for paral-
lel processing, both architectures are able to decrease the
number of clock cycles in comparison to a conventional
DSP. Especially, the ShiftRows transformation needs no
additional clock cycles, because this transformation can be
executed only by a suitable pointer operation during read-
out of the data (The detailed explanation has been given in
Sect. 4.3). On the other hand, since the SubBytes transfor-
mation involves essentially sequential operations, the CAM-
less massive-parallel SIMD matrix processor needs a large
number of clock cycles for this part of the AES encoding.
To overcome this problem, we have proposed the CAM-
enhanced massive-parallel SIMD matrix architecture [15],
which is highly effective for both, repeated logical opera-
tions and the table-lookup coding, needed for the SubBytes
operation, as described in Sect. 2. Thus, the CAM-enhanced
massive-parallel SIMD matrix processor, which adds a the
table-lookup interface module to the massive-parallel SIMD
matrix (Fig. 2), is verified in Fig. 12 to realize a significant
further reduction of the number of SubBytes-transformation
clock cycles. The number of clock cycles is about 97%
smaller than that of the CAM-less massive-parallel SIMD
matrix processor.

For comparison to the processing speed requirements

Fig. 12 AES algorithm implementation results for the CAM-less
massive-parallel SIMD matrix and the CAM-enhanced massive-parallel
SIMD matrix.

KUMAKI et al.: SOFTWARE-BASED PARALLEL CRYPTOGRAPHIC SOLUTION
1751

Fig. 13 Comparison of AES algorithm processing capability: (a) Pro-
cessing throughput of the massive-parallel SIMD matrix architectures, (b)
Bit transfer rate for the massive-parallel SIMD matrix architectures and
data storage standards.

of several data storage transfer specifications, the neces-
sary values of encryption throughput for the AES algorithm
are calculated by eight implementation conditions of the
SIMD matrix (MTX) architectures, namely: (A) an eval-
uation board-implemented MTX (81 MHz), (B) an MTX
operated at normal frequency [11] (200 MHz), (C) a nor-
mal frequency mode MX-2 [16] (300 MHz), which expands
the PE capability to 4-bits per clock, (D) a double fre-
quency mode MX-2 [16] (560 MHz), (E) a CAM-enhanced
MTX [15] (81 MHz), (F) a CAM-enhanced normal fre-
quency MTX [15] (200 MHz), (G) a normal frequency mode
CAM-enhanced MX-2 (300 MHz) and (H) a double fre-
quency mode CAM-enhanced MX-2 (560 MHz). The table
of Fig. 13-(a) shows the encryption throughput efficiency ex-
pressed in Mega bit per second (Mbps) for 1,024 and 2,048
parallelism of above eight architectures. As expected, the
2,048 PEs double the performance in comparison to 1,024
PEs ((A) - (D)). Figure 13-(b) shows the performance data
of the massive-parallel SIMD matrix architectures, in com-
parison to selected-specifications of four recent data-transfer
standards indicated by horizontal lines. Selected stan-
dards are: SD class 10 (SD association [25]–[27]), CF 600x
(Compact Flash Association [28]–[30]), SATA 1.0 (SATA-
IO [31]) and USB 2.0 (USB-IF [32]). The CAM-less SIMD

Fig. 14 Result for implementation area of the CAM-enhanced massive-
parallel SIMD matrix as soft/hard macro in 90 nm CMOS technology.

matrix-processors are just able to cover the SD class 10 stan-
dard ((A) - (D)), while the CAM-enhanced SIMD matrix
processors ((E) - (H)) can satisfy AES-encoding/decoding
for data-transfer standards up to the level of SATA 1.0, as
illustrated in Fig. 13-(b). Since many peripheral equipments
and storage devices, such as HDD (Hard Disk Drive) or
SSD (Solid State Drive), adopt above standards for their in-
put/output interface, hardware encryption for private data
is increasingly important commercially. Recently, next-
generation standards, such as SATA2.0, SATA 3.0 and
USB 3.0 are being discussed. As the CAM-less/enhanced
massive-parallel SIMD matrix architecture has a freely scal-
able parallel processing structure, its parallelism can be eas-
ily extended by increasing the number of PEs and the SRAM
storage area. Thus, the massive-parallel SIMD matrix ar-
chitecture can also be adopted to future higher encrypting
or decrypting speeds. On the other hand, the extended-
parallelism of the massive-parallel SIMD matrix leads to
more latency of the encryption and therefore requires larger
buffer memories. This higher-parallelism-related drawback
may be solved by interleaved processing with two or more
SIMD matrix processors. This allows some SIMD matrix
processors to receive new data for encoding from the sys-
tem bus while other massive-parallel SIMD matrix proces-
sors are executing the AES algorithm for previous data.

Figure 14 shows the example of the total area con-
sumption of a CAM-enhanced MTX design in 90 nm CMOS
technology. The area amount of the SIMD processing mod-
ule is about 3.1 mm2 as described in Sect. 2. On the other
hand, the total area consumption of the CAM-exploiting in-
terface module in this semicustom design study becomes
about 0.39 mm2. The storage capacities for orthogonal
SRAM bank and CAM bank are only 32 words with 32 bits
word-length and 256 words with 32 bits word-length, re-
spectively. These memory blocks are implemented by hard-
macro VLSI designs. The area amount of the controller
with peripheral circuits is estimated by soft-macro imple-
mentation. In comparison to the interface circuit without
the CAM enhancement, the CAM-exploiting interface mod-
ule is only increased by 0.16 mm2. The total area of the
CAM-enhanced MTX would become 3.49 mm2, meaning
only about 5% increased area overhead in comparison to the
CAM-less MTX in this semicustom design study.

The power dissipation of the CAM-exploiting interface
module is estimated at about 32 mW which is about 20%
(or more less) of the total SIMD module without CAM en-

1752
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

Fig. 15 Basic concept of interleaved CBC mode processing with the
massive-parallel SIMD matrix (The number of interleaved positions N =
1,024).

hancement(150 mW or more). This shows that the power
dissipation of the additional CAM part is much smaller
than that of the SIMD module without CAM enhance-
ment. Furthermore, the SIMD matrix processing and the
CAM-interface processing never occur in parallel, so that
the actual power-dissipation increase is reduced even more.
Therefore, the power consumption of the CAM-enhanced
massive parallel SIMD matrix is expected to increase only
by a small amount in comparison to the CAM-less massive
parallel SIMD matrix.

Consequently, the additional costs with respect to both
silicon area and power dissipation are relatively small for a
CAM-enhanced version of the SIMD matrix processor.

Up to now, we have reported in detail description about
the AES-ECB (Electronic CodeBook) operation mode of the
AES standard. Generally, the AES algorithm has the possi-
bility of five block cipher modes, such as ECB mode, CBC
(Cipher Block Chaining) mode, CFB (Cipher-FeedBack)
mode, OFB (Output-FeedBack) mode and CTR (CounTeR)
mode, which can improve the security of the encryption.
Since the massive-parallel SIMD matrix architecture has
flexible programming ability for various multimedia algo-
rithms, each of the AES modes can be easily implemented
in the massive-parallel SIMD matrix processor without ad-
ditional hardware resources. We verified this for the CBC
mode and the CTR mode by using a C language-based MTX
simulator. While the CTR mode is directly suitable for par-
allel processing, the CBC mode consists of essentially a se-
quential chain of operations and is more difficult to adapt
for parallel processing. For improving the processing speed
of the CBC mode, an interleaved CBC mode [33], [34] has
been developed which adopts ANSI X3.106 and ISO 10116.
The interleaved CBC mode can execute parallel encryption
processing and can be implemented in the massive-parallel
SIMD matrix, as shown in Fig. 15. All SRAM entries of
the massive-parallel SIMD matrix store N blocks of plain
text, which are located at N positions with N different initial
vectors. These N blocks are encrypted independently by the
ECB encryption algorithm. The encryption of the next N
blocks can start as soon as the previous blocks from N posi-

tions have been encrypted. With these refinements the same
processing performance as in ECB mode can be achieved.
Consequently, the massive-parallel SIMD matrix is clearly
effective for fast parallel execution of the practically impor-
tant CBC and CTR modes of the AES encryption process-
ing.

The operating power consumption of the MTX and the
MX-2 architecture have been reported to be 250 mW [11]
and 450 mW [16], respectively. In comparison, the USB
2.0 standard, for example, has requirements for maximum
power consumptions from 500 to 4,500 mW, and is used for
many storage devices. Therefore, the MTX or the MX-2
architectures can be smoothly applied in many data storage
devices.

As a result from above evaluations, the massive-
parallel SIMD matrix architecture can realize a high-
throughput encryption/decryption solution for protecting bi-
nary data in private storage devices. In particular, the CAM-
enhanced massive-parallel SIMD matrix architecture is very
suitable as an efficient cryptographic processor.

6. Conclusion

In this paper, a software-based parallel cryptographic so-
lution with a CAM-less and a CAM-enhanced massive-
parallel memory-embedded SIMD matrix processor is pro-
posed, which can realize efficient encrypting and decrypting
cryptographic algorithms. For the AES algorithm, which is
studied as an example, an encryption throughput of up to
2.19 Gbps can be achieved. This performance enables the
architecture to cover several standard data-storage-transfer
specifications. Consequently, the massive-parallel SIMD
matrix architecture is very effective for private information
protection in several data-storage media, and is a promis-
ing solution for low power dissipation and small Si-area
consumption of integrated real-time realizations for crypto-
graphic algorithms.

Acknowledgements

The reported results are obtained as part research collabora-
tion with Renesas Electronics Co. We are deeply thankful
to T. Gyohten, H.Noda, Y. Okuno and K. Arimoto of Re-
nesas Technology Co. for their support. Part of this work
has been supported by the program “Interdisciplinary Re-
search on Integration of Semiconductor and Biotechnology”
for “Creation of Innovation Centers for Advanced Interdis-
ciplinary Research Areas”, a Grant-in-Aid for Young Sci-
entists (B) (No.16700184), Ministry of Education, Culture,
Sports, Science and Technology, Japanese government and
a Grant-in-Aid for JSPS Fellows, 175303, 2005.

References

[1] http://www.oecd.org/document/18/
0,3343,en 2649 34255 1815186 1 1 1 1,00.html

[2] http://www.kingston.com/flash/DataTravelers enterprise.asp
[3] http://www.iodata.jp/product/usbmemory/easydisk/ (in Japanese).

KUMAKI et al.: SOFTWARE-BASED PARALLEL CRYPTOGRAPHIC SOLUTION
1753

[4] http://sdd.toshiba.com/main.aspx?Path=StorageSolutions/
PCNotebookHardDrives/MJA2xxxCHSeries

[5] http://www.seagate.com/ww/v/index.jsp?locale=en-US&
name=dn sec intro fde&vgnextoid=1831bb5f5ed93110Vgn
VCM100000f5ee0a0aRCRD

[6] “Announcing approval of the withdrawal of Federal Information
Processing Standard (FIPS) 46-3, Data Encryption Standard (DES);
fips 74, guidelines for implementing and using the NBS data en-
cription standard; and FIPS 81, DES modes of operation,” National
Intstitute of Standards and Technology (NIST), Commerce, vol.70,
no.90, pp.28907–28908, May 2005.

[7] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommen-
dation for key management — part 1: General (revised),” National
Intstitute of Standards and Technology (NIST), Special Publication,
no.SP 800-57, March 2007.

[8] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommen-
dation for key management — part 2: Best practices for key manage-
ment organization,” National Intstitute of Standards and Technology
(NIST), Special Publication, no.SP 800-57, March 2007.

[9] E. Barker, W. Burr, A. Jones, T. Polk, S. Rose, M. Smid,
and Q. Dang, “Recommendation for key management — part 3:
Application-specific key management guidance,” National Intstitute
of Standards and Technology (NIST), Special Publication, no.SP
800-57, March 2007.

[10] Y. Hirose, M. Saito, and W.E. Xouzijn, “Embedded micro pro-
cessor with reconfigurable functional unit,” IEICE Trans. Electron.
(Japanese Edition), vol.J76-C, no.8, pp.808–816, Aug. 2003.

[11] M. Nakajima, H. Noda, K. Dosaka, K. Nakata, M. Higashida, O.
Yamamoto, K. Mizumoto, H. Kondo, Y. Shimazu, K. Arimoto, K.
Saitoh, and T. Shimizu, “A 40 GOPS 250 mW massively parallel
processor based on matrix architecture,” ISSCC Dig. Tech. Papers,
pp.410–412, Feb. 2006.

[12] T. Tanizaki, T. Gyohten, H. Noda, M. Nakajima, K. Mizumoto, and
K. Dosaka, “A super parallel SIMD processor with time/space con-
version bus bridge on the matrix architecture,” IEICE Technical Re-
port, ICD2006-79, Aug. 2006 (in Japanese).

[13] H. Noda, T. Tanizaki, T. Gyohten, K. Dosaka, M. Nakajima, K.
Mizumoto, K. Yoshida, T. Iwao, T. Nishijima, Y. Okuno, and K.
Arimoto, “The circuits and robust design methodology of the mas-
sively parallel processor based on the matrix architecture,” Symp.
VLSI Circuits Dig. Tech. Papers, pp.260–261, June 2006.

[14] T. Kumaki, M. Ishizaki, T. Koide, H.J. Mattausch, Y. Kuroda, H.
Noda, K. Dosaka, K. Arimoto, and K. Saito, “Acceleration of DCT
processing with massive-parallel memory-embedded SIMD matrix
processor,” IEICE Trans. Inf. & Syst., vol.E90-D, no.8, pp.1312–
1315, Aug. 2007.

[15] T. Kumaki, T. Koide, H.J. Mattausch, Y. Kuroda, T. Gyohten, H.
Noda, K. Dosaka, K. Arimoto, and K. Saito, “Integration architec-
ture of content addressable memory and massive-parallel memory-
embedded SIMD matrix for versatile multimedia processor,” IEICE
Trans. Electron., vol.E91-C, no.9, pp.1409–1418, Sept. 2008.

[16] T. Kurafuji, M. Haraguchi, M. Nakajima, T. Gyoten, T. Nishijima,
H. Yamasaki, Y. Imai, M. Ishizaki, T. Kumaki, Y. Okuno, T. Koide,
H.J. Mattausch, and K. Arimoto, “A scalable massive parallel pro-
cessor for real-time image processing,” ISSCC Dig. Tech. Papers,
pp.15–17, Feb. 2010.

[17] M. Tagami, M. Ishizaki, T. Kumaki, Y. Kono, T. Koide, H.J.
Mattausch, T. Gyohten, H. Noda, K. Dosaka, K. Arimoto, and K.
Saito, “Acceleration of advanced excryption standard (AES) pro-
cessing on a CAM enhanced super parallel SIMD processor,” Proc.
14th Workshop on Synthesis And System Integration of Mixed In-
formation technologies (SASIMI2007), pp.74–80, Oct. 2007.

[18] I. Kuroda and S. Kyo, “Media processing LSI architectures for auto-
motives —Challenges and future trends—,” IEICE Trans. Electron.,
vol.E90-C, no.10, pp.1850–1857, Oct. 2007.

[19] H. Amano, “A survey on dynamically reconfigurable processors,”
IEICE Trans. Commun., vol.E89-B, no.12, pp.3179–3187, Dec.

2006.
[20] Y. Kono, T. Kumaki, M. Ishizaki, M. Tagami, T. Koide, H.J.

Mattausch, T. Gyohten, H. Noda, Y. Kuroda, K. Dosaka, K.
Arimoto, and K. Saito, “Super parallel SIMD processor with CAM
based high-speed pattern matching capability,” IEICE Technical Re-
port, ICD2006-116, Oct. 2006 (in Japanese).

[21] T. Kumaki, Y. Kono, M. Ishizaki, M. Tagami, T. Koide, H.J.
Mattausch, T. Gyohten, H. Noda, Y. Kuroda, K. Dosaka, K.
Arimoto, and K. Saito, “CAM enhanced super parallel SIMD pro-
cessor with high-speed pattern matching capability,” Proc. IEEE In-
ternational Midwest Symposium on Circuits And Systems (MWS-
CAS’07), pp.803–806, Aug. 2007.

[22] T. Kumaki, Y. Kuroda, M. Ishizaki, T. Koide, H.J. Mattausch, H.
Noda, K. Dosaka, K. Arimoto, and K. Saito, “Real-Time Huffman
encoder with pipelined CAM-based data path and code-word-table
optimizer,” IEICE Trans. Inf. & Syst., vol.E90-D, no.1, pp.334–345,
Jan. 2007.

[23] T. Kumaki, Y. Kono, M. Ishizaki, T. Koide, and H.J. Mattausch,
“Scalable FPGA/ASIC implementation architecture for parallel
table-lookup-coding using multi-ported content addressable mem-
ory,” IEICE Trans. Inf. & Syst., vol.E90-D, no.1, pp.346–354, Jan.
2007.

[24] “Announcing the advanced encryption standard (AES),” Federal In-
formation Processing Standards Publications 197 (FIPS 197), Na-
tional Intstitute of Standards and Technology (NIST), Nov. 2001.

[25] http://www.sdcard.org/developers/tech/speed class/
[26] http://shop.panasonic.co.uk/invt/rpsdw32ge1k
[27] http://www.sandisk.com/products/imaging/

sandisk-extreme-sdhc-cards-
[28] http://www.compactflash.org/
[29] https://w1.broadserver.jp/˜gaaum000/products/products 0.html
[30] http://www.transcendusa.com/Products/ModDetail.asp?

ModNo=252&LangNo=0&Func1No=&Func2No=
[31] http://www.serialata.org/index.asp
[32] http://www.usb.org/home
[33] B. Schneier, Applied cryptography, 2nd edition, John Wiley & Sons,

pp.210–211, 1996.
[34] J. Viega and M. Messier, “Secure programming cookbook for C and

C++,” O’Reilly Media, pp.208–211, July 2003.

Takeshi Kumaki received a B.S. degree
from the Department of mathematics, Faculty of
Science and completed the first half of the M.E.
program in Information Mathematics from Na-
tional Defence Academy, Kanagawa, Japan in
1998 and 2003, respectively, and Ph.D., degree
in electric engineering from Hiroshima Univer-
sity, Hiroshima, Japan in 2006. From 2003 to
2004, he was affiliated with the Japan Air Self-
Defence Force Electric Experimentation Group.
From 2005 to 2009, he joined the Research Cen-

ter for Nanodevices and Systems (RCNS) and the Research Institute for
Nanodevice and Bio Systems (RNBS), Hiroshima University, Japan, where
he has engaged in the system design and architecture research. Since 2010,
he has been an Assistant Professor in the department of VLSI system de-
sign, Ritsumeikan University. He is interested in content addressable mem-
ory, SIMD processing architecture and these applications. Dr. Kumaki is a
member of the Institute of Electrical and Electronics Engineers (IEEE).

1754
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

Tetsushi Koide received the B.E. degree in
Physical Electronics, the M.E. and the Ph.D. de-
grees in Systems Engineering from Hiroshima
University in 1990, 1992, and 1998, respec-
tively. He was a Research Associate and an
Associate Professor in the Faculty of Engineer-
ing at Hiroshima University in 1992 - 1999 and
1999, respectively. From 1999 to 2001 he was
with the VLSI Design and Education Center
(VDEC), The University of Tokyo as an Asso-
ciate Professor. From 2001 to 2008 he was an

Associate Professor in the Research Center for Nanodevices and Systems,
Hiroshima University. Since 2008 he has been an Associate Professor in
the Research Institute for Nanodevice and Bio Systems (RNBS) and Grad-
uate School of Advanced Sciences of Matter, Hiroshima University. His re-
search interests include system design and architecture issues for memory-
based systems, real-time image processing, VLSI CAD/DA, genetic algo-
rithms, and combinatorial optimization. Dr. Koide is a member of the Insti-
tute of Electrical and Electronics Engineers, the Association for Computing
Machinery, and the Information Processing Society of Japan.

Hans Jürgen Mattausch is a Professor
at the Research Institute for Nanodevice and
Bio Systems and the Graduate School for Ad-
vanced Sciences of Matter, Hiroshima Univer-
sity, Higashi-hiroshima, Japan. He received
the Dr. rer. nat. degree from the University of
Stuttgart, Germany in 1981. From 1982 to
1995 he was with the Research Laboratories of
Siemens AG in Munich, Germany, where he was
involved in the development of CMOS technol-
ogy, memory and telecommunication circuits,

power semiconductor devices and compact modeling. From 1995 to 1996
he was with the Siemens Semiconductor Group as Department Head for
Product Analysis and Improvement in the Chip-Card IC Division. Since
1996 he is with Hiroshima University. Dr. Mattausch is a senior member
of IEEE (Institute of Electrical and Electronics Engineers).

Masaharu Tagami was born in Miyazaki,
Japan in 1985. He received his M.S. degree in
Advanced Sciences of Matter from Hiroshima
University, Japan in 2009. He joined Renesas
Technology Corp., Japan, in 2009 and trans-
ferred to Renesas Electronics Corp., Japan, in
2010.

Masakatsu Ishizaki received the B.E. and
M.E. degrees in Electronic Engineering from
Hiroshima University, Japan in 2006 and 2008
respectively. In 2008, he joined the System
Core Development Division, Renesas Technol-
ogy Corp., Hyogo, Japan. In 2010, he trans-
ferred to Renesas Electronics Corp. He is en-
gaged in the development of CPU.

