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SUMMARY Many malicious programs we encounter these days are
armed with their own custom encoding methods (i.e., they are packed) to
deter static binary analysis. Thus, the initial step to deal with unknown
(possibly malicious) binary samples obtained from malware collecting sys-
tems ordinarily involves the unpacking step. In this paper, we focus on
empirical experimental evaluations on a generic unpacking method built
on a dynamic binary instrumentation (DBI) framework to figure out the ap-
plicability of the DBI-based approach. First, we present yet another method
of generic binary unpacking extending a conventional unpacking heuristic.
Our architecture includes managing shadow states to measure code expo-
sure according to a simple byte state model. Among available platforms,
we built an unpacking implementation on PIN DBI framework. Second,
we describe evaluation experiments, conducted on wild malware collec-
tions, to discuss workability as well as limitations of our tool. Without the
prior knowledge of 6029 samples in the collections, we have identified at
around 64% of those were analyzable with our DBI-based generic unpack-
ing tool which is configured to operate in fully automatic batch processing.
Purging corrupted and unworkable samples in native systems, it was 72%.
key words: software security, dynamic binary instrumentation, unpacking,
malware, binary analysis

1. Introduction

One of the most pressing security concerns in recent years is
to cope with malicious software (malware). Unfortunately,
a large portion of malware specimens are resistant to binary
analysis: namely, many of the specimens are packed [1] with
transformation methods such as compression, encryption,
and/or obfuscation. Apparently, it becomes getting more
difficult to analyze packed malware. Even worse, already
known malware can be morphed into other forms by packing
thereby hindering the detectability of anti-virus (AV) soft-
ware [2].

An analyst may perform manual unpacking for a single
sample or couple of highly intricate samples controlling un-
packing sessions minutely. Meanwhile, if there are numer-
ous samples to be processed primarily, some heuristic meth-
ods, devised to be applied to packed binaries without any
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prior knowledge of specific packers, might be implemented
as generic unpacking tools to realize automatic batch pro-
cessing. Either method can be static or dynamic: i.e., un-
packing procedure can be processed based on static infor-
mation of sample files or on dynamic contexts obtainable by
directly executing them.

Several types of virtualization platforms have emerged
as deployable dynamic binary analysis framework over re-
cent years. Such platforms are extensively used for isola-
tion in building security solutions. At the same time, some
platforms enable us to perform instrumentation and/or in-
trospection of given guest units for dynamic analysis. Dif-
ferent virtualization techniques suggest different viewpoints
for security engineers. Among them, virtual machine moni-
tors (VMM) (e.g., VMware [3], Xen [4], and KVM [5]) and
whole system emulators (e.g., Bochs [6] and QEMU [7])
provide system-wide view inspection. Meanwhile, some
dynamic binary instrumentation (DBI) frameworks (e.g.,
PIN [8], Valgrind [9], DynamoRIO [10], StarDBT [11], and
DynInst [12]) support ways to instrument with process-wide
view.

Using these platforms, ensuing research efforts have
been made to build dynamic analysis tool, including un-
packing, reckoning on the realizable instrumentation abili-
ties of each platform. With the system-wide virtualization
platforms, unpacking modules or tools have been imple-
mented with VMMs [13], [14] and system emulators [15]–
[17]. On the other hand, unpacking tools based on DBI
frameworks [18]–[20] also have been developed in paral-
lel. Although, VM platforms have been actively considered
likewise, it is not easy to find some referential data regard-
ing usability. In other words, many research works have
suggested comments or discussions about platform usability
and/or limitation, there were few attentions on sole frame-
work evaluation to look into overall workability testing with
a substantial size of malware samples. Among deployable
VM frameworks, this paper explores the applicability of un-
packing implementation based on process-wide DBI frame-
work as an empirical case study to assist deployment deci-
sions of analysis platforms.

To implement a target unpacking tool, to be used in
our case studies, first we present a design of an unpacking
method. Our approach, an extension of common unpacking
heuristic, is to measure code revelation as well as conceal-
ment behavior during executions of packed binaries: i.e.,
if new code bytes are discovered (or known to be removed),
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code measure is increased (or decreased) accordingly. These
activities are detected by maintaining shadow memory and
each unit of shadow states is accorded with byte state model
which is devised to reflect code revelation/concealment. The
measure is determined by quantifying states which repre-
sent revealed (thus, unpacked) bytes. The graph resulting
from the code measurement is helpful to understand un-
packing behavior. The tool is implemented on PIN DBI
framework [8] which is widely used among research works,
not just for unpacking but also for other analysis purposes.
Therefore, we believe that our work would be helpful for
whom consider to deploy PIN DBI for their works.

For the applicability exploration, this paper includes
empirical evaluation results of our tool. Our first evaluation
is to perform unpacking jobs for tool efficacy test against
several packers. Packed variations generated from 20 pack-
ers were prepared and then unpacking sessions were per-
formed. Code section similarities were calculated among
the unpacked binaries to check unpacking results. The sec-
ond evaluation experiments were performed on wild mal-
ware collections of two spanned periods. To investigate
magnified as well as grouped aspects, the experiments were
divided into one-day and spanned periods. Measuring un-
packed code can be achieved with calculating specific bi-
grams which reflect program control flows. Without the
specific prior knowledge of 6029 samples collected within
two periods, we have identified that 64% (overall) or 72%
(purging corrupted and unworkable samples in native analy-
sis system) workability with the DBI-based generic unpack-
ing approach by configuring our tool to be worked in an
automatic batch system realized with VMware.

Paper Organization. Section 2 briefly presents DBI con-
cept and explores related work on unpacking research ef-
forts. In Sect. 3, we describe our design and implementation
of an unpacking tool based on a DBI framework. To figure
out efficacy and applicability, Sect. 4 reports experimental
evaluation results. We discuss our work in Sect. 5. Section 6
concludes this paper.

2. Background

2.1 Dynamic Binary Instrumentation

Binary instrumentation is a program transformation method
that can enable to inspect or modify program execution con-
texts of a running program. Usually, transformation for
instrumentation is embedding some code snippets to call
analysis functions in where one can perform code context
manipulation (e.g., inspection and/or modification) (Fig. 1).
Basically, there are two instrumentation approaches: static
binary instrumentation (SBI) and dynamic binary instru-
mentation (DBI) [21]. Before a target program execution,
we might be able to statically patch the program binary so
as to let the program calls our analysis functions at our in-
tended moments (e.g., every time before ret instruction in-
vocations). Such approach is in line with SBI. The patched,

Fig. 1 Instrumented code block example: The inserted analysis func-
tions provide manipulation (inspection and/or modification) moments of
a running program.

thus instrumented, program might be executed in native
mode with overhead incurred by the patched routine only.
However, it is hard to instrument for unresolved execution
flows (e.g., code area reachable by indirect jump or self
modifying behavior) as those might be not decided before
execution. Meanwhile, with DBI approach, it is possible to
dynamically arrange to direct to call analysis functions at
runtime. Therefore, if appropriately handled at runtime, the
statically unresolved code area can be covered for instru-
mentation†. However, setting aside analysis routine over-
head, DBI often requires runtime arrangement which brings
additional non-negligible performance overhead. As one of
dynamic program analysis approaches, DBI is well accepted
in fine-grained (instruction or basic block level) program
analysis such as unpacking or dynamic taint analysis.

DBI can be realized with software virtualization tech-
niques such as dynamic interpretation or just-in-time compi-
lation (JIT). For example, Bochs [6] performs whole system
emulation by interpreting one instruction at a time. There-
fore, one can easily inject analysis functions for every in-
struction executions. Bochs actually supports a plug-in in-
terface for dynamic instrumentation. Many other frame-
works or emulators perform block based code translation
to enhance performance compared to interpretation. Val-
grind [9] and QEMU [7] perform basic block based transla-
tion: at a time, a basic block is translated into the corre-
sponding intermediate block and then compile it with host
instruction set. Meanwhile, PIN [8] and DynamoRIO [10]
directly translate blocks without involving intermediate rep-
resentations. In either methods, one can inject analysis func-
tions by intervening block translations. Note that while PIN,
Valgrind, and DynamoRIO work with single process bound-
ary, Bochs and QEMU perform whole system emulation;
thus, one should choose appropriate framework considering
analysis scenario.

It is also known that fine-grained DBI is possible with
hardware-assisted virtualization approaches such as with
KVM [5] and Xen [4]. For example, Ether [13] over Xen

†Note that not all paths are covered. Only executed paths can
be explored.
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realized fine-grained instruction and memory write track-
ing exploiting debug exception and page fault mechanisms.
However, whenever trap occurs, handler (analysis function)
invocation involves VM context changes which incur severe
performance overhead.

Overall, DBI with above frameworks/virtualizers have
advantages in terms of execution context transparency, com-
pared to debugging technique. Conventional debuggers in-
volve debug trap instruction (e.g., int 3) or set some debug
specific contexts such as debug flags or designated debug
registers. On the other hand, DBI does not aggressively in-
volve such target-viewable context modifications. However,
process-wide DBI frameworks do not fully guarantee mem-
ory transparency as some components may be co-resided
with processes under instrumentation.

2.2 Related Work

In recent 5 years, there have been considerable efforts for
developing unpacking strategies as well as tools on various
platforms.

Sun et al. [22] developed a plug-in for IDA Pro disas-
sembler to approximately spot original entry points (OEP).
Their method is to record frequency of executed instructions
and sort resulted histogram by the last time an instruction is
executed. Then OEP may be found at around flat area after
some spikes in sorted histogram as OEP is usually executed
only once and unpacked area is usually not previously exe-
cuted.

Eureka [23] static analysis framework includes a dy-
namic unpacking unit implemented as a Windows de-
vice driver which hooks system call referring SSDT (Sys-
tem Service Dispatch Table). Concerning incrementally
packed binaries, their heuristic is to make dump files at
NtTerminateProcess and NtCreateProcess. Eureka
also involves a statistical method that recognizes the fre-
quencies of prevalent x86 code patterns which may vary as
an unpacking session progresses.

OllyBonE [24], OmniUnpack [25], Saffron-PHF [18],
and Justin [26] have similar core architectures in that these
works exploit page protection mechanisms in Windows OS
and CPU support in some cases: i.e., enforcing strategies
similar with DEP (Data Execution Protection) with the help
of NX (NoExecute) bit by hardware support or custom im-
plemented PaX-like kernel layer driver modules. OllyBonE
is incorporated with OllyDbg debugger and Justin is con-
nected with anti-virus software.

The approach of PolyUnpack [16] is based on the as-
sumption that the instance of revealed code from packed
malware can be identified with the static model of it. During
a malware sample execution, PolyUnpack performs simul-
taneous comparisons between the runtime instruction se-
quences and those of in the static model extracted from the
sample file: namely, self-identification. On a failure of com-
parison, the differentiated portion is considered as possible
packed code. Josse’s work [27] also performs, like PolyUn-
pack, self-identification to expose hidden code: the modi-

fied QEMU emulator performs binary differentiation com-
paring runtime (translated) block resided in virtual memory
and corresponding values in the file system.

Renovo [15], a plug-in of BitBlaze [28] binary analysis
platform, monitors memory write and execution activities
with shadow memory, which is similar with our architecture.
With the memory shadowing, Renovo checks written mem-
ory as dirty. When program counter points to some dirty
area, the area is considered to contain hidden code. Saffron-
DI [18], Pandora’s Bochs [17], and the unpacking tool in-
cluded in Ether [13] also take very similar approaches with
Renovo using hash table-like data structure to keep track
of written memory area and detect attempted executions on
there by monitoring branch targets.

Christodorescu et al. [29] proposed formal algorithms
for transforming malware, including unpacking transforma-
tion, into obfuscation-free (unpacked) binaries. The trans-
formation is based on the program exposure oracle which
provides materialized control flow information by executing
packed binaries. Detecting such control flows involves mon-
itoring memory area where was previously written and then
execution is attempted.

TraceSufer [19] provides abilities to profile behav-
ioral properties of self-modifying programs, representa-
tively packed binaries. Their method is to maintain dynamic
types – individual type state is consist of (r, w, x) – for each
memory addresses and give answers whether given packed
binaries involve decryption, integrity check, and/or scram-
bling based on their criteria on memory access behavior.

SD-Dyninst [30] was proposed manifesting a phased
analysis strategies for realizing hybrid (static and dynamic)
analysis of analysis-resistant, including packed, binaries.
The phases include initial binary parsing to obtain statically
analyzable control flows. Dynamic analysis phases then fol-
lows to capture previously non-reachable control flows as
well as code overwriting behavior.

Bania developed MmmBop [20] DBI framework spe-
cially considering anti-debugging and anti-reverse engineer-
ing tricks. MmmBop is equipped with several artifacts
for unpacking dealing with cautionary issues such as call
instruction instrumentation, and handling self-modifying
code. For OEP finding, MmmBop monitors control trans-
fers and assumes that if a control target lands to the border
of first section of a packed file, it is generally considered as
an OEP candidate.

We could find one work that draws our interest is the
evaluation result conducted by Reynaud [31]. Instead of un-
packing test, he used his PIN DBI-based tool to know how
many malware, in his repository, applies anti-virtualization
techniques.

Platform deployment. PolyUnpack, Renovo, the works
of Josse and Christodorescu et al. are built on or involve
QEMU system emulator [7]. Pandora’s Bochs is built on
Bochs emulator [6]. Ether-unpack depends on Xen [4].
Meanwhile, there are works based on DBI approaches:
Saffron-DI and TraceSufer are developed with PIN DBI [8]
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and SD-Dyninst works with DynInst [12]. MmmBop is
based on its own custom DBI implementation.

Common unpacking heuristic. Broadly speaking, most
of the above works follow the well-known packer principle,
i.e., a packed binary should be unpacked itself when it is
executed. Therefore, the behavior necessarily involves con-
trol branching to newly revealed memory area in where un-
packed code may be resided. In accordance with this princi-
ple, many works deploy common unpacking heuristic [26],
and that is enforcing the detection of memory locations pre-
viously written†.

Basically our unpacking method, for the case study tool
implementation, extends the common unpacking heuristic.
In terms of system architecture, our approach is similar
with Renovo [15], Pandora’s Bochs [17], Saffron-DI [18],
and Ether-unpack [13] as these implementations also in-
volve memory shadowing facilities to detect hidden code
layers. However, our tool also measures code revela-
tion/concealment typing memory states. The primary ob-
jective of this work is to present evaluation data testing with
a rather large set of wild malware samples with a DBI-based
analysis tool to figure out framework applicability. Saffron-
DI also implemented with PIN DBI; however, they pre-
sented results based on a small set of samples. The other
works are implemented on different platforms other than
process-wide DBI framework.

3. An Unpacking Tool Based on DBI Framework

In this section, we describe our design approach to realize
generic binary unpacking. In addition, an implementation
of the design is presented.

3.1 Design Description

Our design approach for building unpacking tool is to be
generic in conformity with the packer principle: our as-
sumption is that no prior knowledge of specific packers, in-
cluding possibly obtainable results by performing pre-stage
static analysis, is required.

In many cases, a packed binary includes a small code
(stub code). The first address of this code is designated as
program entry point (PEP) in PE†† header so that the stub
code can be executed at the very first of program execu-
tion. The stub code then starts to unpack packed (e.g., com-
pressed, encrypted, and/or obfuscated) data, into another
portion of memory. On the completion of the unpacking,
the stub hands over program control to the newly unfolded
code thereby starting original program execution. The first
branch target in the new area usually coincides with OEP:
i.e., the possible original PEP of the not-yet-packed binary
or the first address from where main program behavior is
regularized after the end of unpacking.

The method is straightforward with the above men-
tioned behavior: our approach is to observe the pattern of

Fig. 2 Byte state model: We denote the state transition which write a
value to a certain memory byte as W, and every instruction executions is
considered as E.

new code exposure resulted from unpacking behavior of
stub code. With this information, it is possible to understand
the unpacking behavior of the target process executed from
a packed file as well as to decide when make dump files.
To reflect such behavior, we perform code measurement by
quantifying how much code is newly exposed.

To realize such measurement, we introduce a simple fi-
nite state model (Fig. 2) which is associated with every bytes
of target process memory. Let r be the code measure. The
measure will be increased if there is a newly discovered code
byte. In accordance with the common unpacking heuris-
tic [26], if a byte is previously written and then executed on
the same byte, it amounts to exposing that (new) code byte.
To achieve this quantification, each state of all the bytes rep-
resents concerning memory access activities: other than ini-
tial state [I], [W] (written), and [W → E] (written byte is ex-
ecuted). The write (W) transitions can be occurred with x86
instructions which write values to some memory bytes (e.g.,
mov [edi], eax). Every instruction executions are con-
sidered as E transitions. Managing memory states with byte
state model for all the bytes of target process, we assume
that the count of [W → E] states represents the amount of
exposed code. The counting is performed with taking in-
and out-going transitions to and from the states.

Meanwhile, it is not only that the code measure r ever-
increasing but also that the measure can be decreased if stub
code write values to the address range associated with [W →
E] states. Possible scenario is repacking or code elimination
to deter static analysis against dumped files.

For at a given byte, it might be possible that a write
instruction is executed as well as it writes a value to the
same byte simultaneously. It would be rare case, but not
impossible in self-modifying code (SMC). In this situation,
we adjust that the two transitions occur in the sequence of
E followed by W assuming that the written is the result of
the write instruction execution. After all, only enforcing W
transition in such case is enough in byte state model.

To enforce byte state model for all the bytes of tar-
get process, we involve shadow memory architecture [33] to
maintain state information during execution (Fig. 3): each
byte in native memory has its own individual cell to be as-
sociated with a specific state at a certain time.

†It is also in line with enforcing the WˆX policy as
OpenBSD [32].
††An executable file in Windows OS is accorded with Portable

Executable (PE) binary layout.
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Fig. 3 Quantifying code exposure with shadow states.

Some malware specimen tries to elude being dumped
in a way that unrolling code in dynamically allocated mem-
ory area. This usually deviates from the speculation of
debuggers. To deal with this problem, our tool also en-
forces another heuristic to obtain exposed code: code execu-
tions occurred outside of main PE executable and associated
DLLs are logged and dumped.

3.2 Implementation

We have implemented a target unpacking tool based on PIN
DBI framework [8]. Among other available DBI frame-
works, PIN works well in Windows OS and it supports a
rich set of APIs for manipulating instrumentation as well as
getting dynamic contexts information during program exe-
cution.

Our tool works with instruction level granularity: we
added analysis functions to instrument memory access ac-
tivities of every instruction thereby enabling transitions con-
forming to byte state model.

The shadow memory is attached to the tool (Fig. 3) to
populate byte states of every native bytes of monitored pro-
cess. It is implemented based on a page-table-like structure
allowing us to scale memory requirements with the actual
process address space in use. To be accorded with byte state
model, we adopt 1-byte precision: each byte of native mem-
ory is mapped to 2-bit unit in shadow memory, thus, it is
enough for our usage (3 states).

To obtain dump of unpacked image (sections corre-
sponding to PE mapped area), our tool involves a module
to recognize and handle PE layout. In addition, logging ex-
ception and stack unwinding events is also implemented to
help OEP finding guesswork which is described in the fol-
lowing subsection.

3.3 Example Runs

Here we describe example runs of our tool to demonstrate
how to interpret code exposure measurement with the Win-
dows calculator (CALC.EXE, 112 KB). We packed this pro-
gram with some widely deployed packers: UPX, PECom-
pact, and Yoda Crypter. Figure 4 shows the results of exam-
ple runs. As shown in Fig. 4 (a), there was no variation de-
tected in the execution of original (non-packed) program as

it does not accompany any code exposure behavior. Mean-
while, the other runs exposed hidden code. Observing these
graph results (Figs. 4 (b)∼4 (d)], each executions exhibited
staircase-like behaviors in regards to memory accesses. The
flat parts may involve myriads of read and write accesses
and the bump increases indicate executions of newly ex-
posed (executed) bytes. Note that the flat parts may also
involve executions of already counted (i.e., recurrent exe-
cutions of same code) or of non-variant/non-SMC code in
terms of code exposure (e.g., executions of code already
loaded before runtime unpacking).

In many cases, including the cases of UPX and
PECompact, measure r is non-decreasing† as packed code
should be rolled out and then executed (packer principle).

However, we could also observe decreased measure
(i.e., code concealment) in Yoda Crypter case (Fig. 4 (d)).
To verify this code concealing behavior, we manually per-
formed debugging. As a result, we could find out the fol-
lowing behavior in order:

(i) A memory range [0x101f0c6∼0x101f994] is filled with
some values.

(ii) The above range is executed as code (i.e., the code ex-
posed).

(iii) The above range is filled with zero values (i.e., the code
concealed).

(iv) The program control is at OEP.

Observing the executed code in the step (ii), this actu-
ally unpacked main code, thus, it is deemed to be a runtime
packer (main code loader). This explains that some code
acted as a runtime unpacker is generated dynamically and
removed later before the control is transfered to OEP.

On the OEP Guesswork. Usually deciding the end of
unpacking is proved to be undecidable [16]. Nevertheless,
with given code measurement results, it will be helpful to
perform guesswork to spot candidate OEPs. Our conjec-
ture, in accordance with packer principle, is that original
main code usually starts (at OEP) triggering myriads of state
transitions (from [W] to [W → E]) resulting in abrupt in-
crease of code measure r. Therefore, to collect candidate
OEPs, generally it is enough to concentrate area near the
bottoms of each abrupt slope in given code measurement re-
sults (Figs. 4 (b)∼4 (d)).

The best practice dealing with code measurement
graph may include other conventional heuristics such as
finding points where stack unwinding or exception event oc-
curs. As our tool supports logging such events, we could su-
perimposed the logged events to the resulted graphs. UPX
case (Fig. 4 (b)) is straightforward as we could observe stack
unwinding events near its OEP. The binary packed with
PECompact (Fig. 4 (c)) triggers stack unwinding and excep-
tion events at the very early stage, although, the real OEP
was near the other stack unwinding triggered later. In Yoda

†If we observe code measure in the long run, we conjecture
that it would be converged in some point, unless if given program
dynamically exposes code infinitely.
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(a) Original CALC.EXE (b) UPX

(c) PECompact (d) Yoda Crypter

Fig. 4 Code measuring results in conformity with byte state model: The x-axis is instruction ticks
and the y-axis represents code measure r.

Crypter case (Fig. 4 (d)), stack unwinding did not occur, in-
stead, an exception had been triggered before control was
reached at its OEP. Overall, these events near each OEPs
were well accorded with the points near the bottom of abrupt
slopes. In this way, our method will be helped to do OEP
guesswork together with other heuristics thereby possibly
narrowing the engineering efforts.

4. Evaluation of the Unpacking Tool

In order to examine efficacy and applicability of our DBI-
based unpacking implementation, here we present our em-
pirical evaluation results. First, we show an unpacking eval-
uation based on synthetically packed (thus known) binaries.
Then, we look into unpacking results, performed by auto-
matic batch processing, against wild malware samples to
figure out workability. Overall, this section interleaves eval-
uation methods and its results.

4.1 Experiment I: Evaluation on Synthetically Packed Bi-
naries

To check the efficacy with various packers, we took an ap-
proach of differentiating between known non-packed bina-
ries and unpacked binaries. For the evaluation purpose, we
apply edit distance to calculate code section similarity score
of given two binaries as the method is well suited for byte

data comparisons. In the following, we define a similarity
score calculation formula using edit distance.

Similarity score calculation. Let f csx and f csy be the
respective code sections extracted from given two binaries
where we assume that initially both to be not NULL. The
edit distance† between two code sections, ed( f csx, f csy), is
the minimum number of byte insertion and deletion opera-
tions to convert f csx into f csy. Then, the similarity between
x and y, sim(x, y) is defined as follow:

sim(x, y) = 1 − ed( f csx, f csy)
| f csx| + | f csy| (1)

The | f csx| and | f csy| are lengths of f csx and f csy re-
spectively. Note that 1 − sim(x, y) is the dissimilarity be-
tween x and y.

For known non-packed binaries being considered as
original codes, we prepared one “hello world” application
(OC1) and two real malware (OC2

†† and OC3
†††) (Table 1).

We manually checked that all the three are not packed in
terms of code exposure. We have collected 20 packers (Ta-
ble 2) from the Internet and performed packing jobs on the
three binaries. During the packings, we tried to generate

†We deploy Levenshtein distance [34].
††MD5: 0e134d81e2187a3e7022b8930c889085.
†††MD5: 259bd4099f06ab6f153b5b7699034eaf.
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Table 1 Original code samples.

Original code Description File size (byte)

OC1 Synthetic “hello world” program 53,248
OC2 W32.Rbot 232,488
OC3 W32.Spybot.Gen 258,080

Table 2 Variation number assignment for tested packers.

Packer Variation
No Name Version Number

1 ASPack 2.2 1 ∼ 4
2 ASProtect 1.5 demo 5 ∼ 13
3 EXECryptor 2.3.9 14 ∼ 21
4 FSG 2.0 22
5 MEW11 SE v1.2 23 ∼ 28
6 NeoLite 2.0 trial 29 ∼ 36
7 NsPack 2.3 37 ∼ 46
8 PackMan 1 47 ∼ 55
9 PECompact 3.00.2 trial 56 ∼ 67
10 PEDiminisher 0.1 68 ∼ 71
11 PEPack 1.0 72 ∼ 73
12 PESpin 1.32 74 ∼ 84
13 petite 2.3 85 ∼ 87
14 telock 0.98 88 ∼ 93
15 Themida 2.0.4.0 demo 94 ∼ 108
16 UPX 3.03w 109 ∼ 115
17 WinUpack 0.39 final 116 ∼ 123
18 WWPack 1.20.3.236 demo 124 ∼ 130
19 Yoda’s Protector 1.03.3 131 ∼ 142
20 Yoda’s Crypter 1.3 143 ∼ 149

variations for each packer by applying available packer op-
tions† and the resulted packed binary variations are shown in
Table 2. We verified the variations ascertaining that all they
have different MD5 signatures. Note that not all 149 pack-
ings were successful; 137, 140 and 133 packed variations
were obtained for each OCi.

After unpacking the variations with our tool, we ex-
tracted code sections from the unpacked (dump) files (using
Algorithm 1; see Appendix A for more details). Then, we
applied the formula (1) to obtain similarity scores between
unpacked codes and the corresponding original codes (OCi).
In case of failure for obtaining dump files, it is naturally re-
garded that the scores are deemed to be zero. Figure 5 ex-
hibits the resulted similarity calculations. In many cases,
we could confirm that the scores is almost 1 meaning that
an unpacked code from a variation is identical with its orig-
inal code. Meanwhile, we also observed that some cases
(e.g., PESpin, telock, Themida, EXECryptor, and ASPro-
tect) show low similarity scores. Among them, ASProtect is
unpacking-resistant when its checksum protection option is
enabled. Binaries packed with PESpin and telock seem that
these are not compatible with underlying DBI framework
as we even could not execute them with basic instruction
counting PIN tool.

We also performed a clustering test to observe whether
the unpacked binaries, if obtainable, form clusters based on
their original codes. For this purpose, we first calculated dis-
similarity scores among all the extracted codes of variations,
and then grouped clusters with the dissimilarity threshold

Fig. 5 Similarities between unpacked variations and their corresponding
original codes: The x-axis is number assigned for each packed variations
and the y-axis is similarity score.

Table 3 Clustering result among the unpacked binaries for each OCi

with Td = 0.1.

Cluster no. OC1 OC2 OC3

1 89 (98.8%) 0 (0%) 0 (0%)
2 0 (0%) 94 (98.9%) 0 (0%)
3 0 (0%) 0 (0%) 85 (98.8%)
4 1 (0.01%) 1 (0.01%) 1 (0.01%)

Sum 90 95 86

Td = 0.1. Table 3 shows the result of clustering: unpacked
variations are grouped into 4 clusters. The clusters 1 to 3 are
well accorded with the original codes OC1 to OC3 thereby
confirming the validity of dump file clustering. There is
an exceptional cluster, no. 4, in where all codes were from
unpacked binaries originally packed with ASProtect under
checksum option. Note that unobtainable dump files are not
reflected in the clustering result.

For the reference, we provide an example clustering ex-
periment to figure out how unpacking is effective for mal-
ware clustering in Appendix B.

4.2 Experiment II: Bigram Calculations on Malware Sam-
ples

In contrast to the last subsection, here we present experi-
mental results with a rather large number of wild malware
specimens without the specific prior knowledge of the sam-
ples. To evaluate under such assumption, it is plausible to
deploy bigram calculation method: i.e., counting frequen-
cies of prevalent x86 code patterns. In accordance with an
prevalency analysis of Sharif et al. [23], we deployed 4 bi-
grams: FF 15 (call), FF 75 (push), E8 00 (call),
and E8 FF (call). Notice that the last two bigrams
are spaced meaning that any 3 bytes can be placed between
both extreme bytes.

To confirm how this method is effective, we first packed
known binaries varying sizes (7 KB, 64 KB, and 112 KB)
with 3 packers, and then performed unpacking manually

†Packers usually provide options such as compression quali-
ties, transformation methods, anti-debugging facilities, and so on.
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(a) 7 KB

(b) 67 KB

(c) 112 KB

Fig. 6 Bigram frequencies for packed and unpacked binaries of origi-
nally 7 KB, 67 KB, and 112 KB. (P) and (U) mean packed and unpacked
respectively. The frequencies of original binaries are at the leftmost.

verifying the unpacked binaries. We calculated bigrams on
both the packed and the unpacked binaries. The result is
shown in Fig. 6: it is evident that the packed binaries show
very low frequencies while the unpacked binaries have rel-
atively high frequencies. As many malware binaries are at
around 10 KB–150 KB in its sizes†, this method would work
for usual malware sizes as well as binaries with more larger
sizes. Depending the peculiarity of each binaries, resulted
patterns were different, however, it was very effective to ob-
serve unpacked binaries rooted from packers which exhibit
code exposing behavior.

The following two case studies describe test results
with real wild malware. As malware emergence may be
highly period sensitive, and also we consider to investigate
magnified as well as grouped aspects, we separated exper-
iments randomly choosing a one-day and certain periods
collections from our malware repository. To deal with a

large number of samples, we realized a batch unpacking
processing taking advantage of the snapshot/revert functions
of VMware Workstation. Our unpacking tool was installed
in the guest OS (Windows XP SP2). For the termination
condition, we set our tool to stop unpacking with the con-
ditions: 1) process termination, 2) 1 minute timeout, and
3) two hundred million instruction execution excess.

Case study (i): one-day collection. We inserted 38 speci-
mens – collected in March 25, 2010 – into the batch system.
Among them, we could obtain 32 results (including valid
image dump and log files). We tried again those 6 failed
samples with a simple instruction counting tool, but PIN
could not execute them properly. Among the failed samples,
2 were even not activated appropriately in the guest OS.

Figures from 7 (a) to 7 (d) depict the bigram frequen-
cies for the 32 samples which produced valid dump files.
The frequency of an original malware sample and that of
unpacked are grouped to be compared with each other. In
the results, most samples well expose their hidden code.
On the other hand, original and unpacked frequencies of
some samples (5, 10, 11, 18, 25, and 29) have no differ-
ence. With manual investigations, we concluded that those
original samples do not expose hidden code during their ex-
ecutions.

Additionally, by observing 4 bigram patterns associa-
tively, we discovered that same malware were appeared in
the same day within the collection. For example, the mal-
ware 8, 19, and 24 in Fig. 7 show very similar frequency
patterns for all 4 bigrams. With applying an AV scanner,
it turned out that the samples were actually same malware.
We could bind others resulting in some more groups; Ta-
ble 4 shows the result. We think that the grouping is pos-
sible because the deployed bigrams (mostly call instruc-
tions) highly reflect program control structures††.

Case study (ii): collections of spanned periods. We have
performed unpacking batch processing for two spanned col-
lections: 2750 and 3279 samples were collected within
April 1 to 4, 2009 and January 1 to 15, 2010, respectively.
Among the all (6029) samples, 12 samples were not valid PE
files. Our batch system has produced 1707 and 2147 valid
PE dump files for each collections. It took approximately 1
week to process whole samples.

As it is somewhat difficult to present all the individ-
ual tendencies for such large set of samples, we used scaled
delta (Δ) to reflect relative code frequency difference be-
tween original and unpacked binaries: denoting that Osum

and Usum are the respective sum of 4 bigram frequencies of
original and unpacked binaries, the scaled delta is defined as
Δ = (Usum−Osum)/Usum. As a binary dynamically generates
more new code, its scaled Δ will approach towards 1.

Figures 8 (a) and 8 (b) show the results for each collec-

†According to Fortinet collection [35], the sizes of 50% of mal-
ware binaries are between 10 KB–100 KB.
††Even though static signatures are different, it is usual that sim-

ilar malware binaries share similar control flow structure.
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(a) FF15

(b) FF75

(c) E8 00

(d) E8 FF

Fig. 7 Bigram frequencies obtained from 32 malware specimens.

tions. Among each unpacked group originated from each
collection, we can observe that, respectively, at around 94
and 53 percents exhibited code exposure behaviors. The
difference between the two distributions confirmed us that

Table 4 AV (Symantec) scan result of 32 samples appeared in Fig. 7.

Sample no. Scan result

1, 2, 3, 4, 6, 7, 9, 12, 13, 15, 16, w32.rahack.w
17, 20, 21, 22, 23, 26, 27, 30

5, 25, 29 w32.ircbot, backdoor.irc.bot
8, 19, 24 w32.rahack.h

10, 11 backdoor.irc.bot, trojan horese
18 w32.ircbot

28, 32 trojan horse
31 trojan horse
14 NULL

(a) Apr. 1 – 4, 2009

(b) Jan. 1 – 15, 2010

Fig. 8 The distributions of bigram frequency delta for two spanned
collections. The delta values are sorted for the sake of distinctness.

the spanned malware collections are period sensitive: many
similar malware can be grouped within each collection and
the malware emergence tendencies would be different be-
tween the collections.

To inquire into approximate workability in native sys-
tems (i.e., without any virtualization layers and monitoring
facilities), the two collections were also inserted into our
other analysis system comprised of native machines. From
this test, we confirmed that 660 samples were not activated
appropriately.
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5. Discussion

In this section, we discuss the applicability of DBI based
unpacking tool in the light of the empirical experiences de-
scribed in the previous section.

With building a fully automatic batch system, without any
manual interventions, we could obtain at around 64% of
valid PE dump files from the two spanned collections (6029
samples). Excluding corrupted PEs and not well activated
samples in native systems, it was approximately 72%. Al-
though we could not delve into all the individuals, the as-
pects about the unobtainable specimens may involve follow-
ing considerations.

Workability with DBI. Some malware could not be exe-
cuted under PIN. In the packer test, our unpacking tool as
well as basic instruction counting tool cannot be executed
appropriately for 5 out of 20 packers. Compared to 64%
(overall) or 72% (purging unworkable samples) workabil-
ity of case study (ii), Reynaud reported another result [31]
deploying a PIN tool for malware analysis (though not for
unpacking): 48404 out of 62498 Nepenthes [36] samples
were able to analyze (77%). Note that the workability would
highly depend on the ability of involved malware collecting
systems as well as collection periods.

Configuration of batch processing. To deal with a large
number of samples, it is inevitable to build an automatic
batch system. The deployed configuration as well as un-
derlying base systems would influence on the efficacy. As
mentioned in Sect. 4.2, we applied some terminal conditions
to finalize recurrent unpacking sessions. For example, time-
out condition might be eluded by or not accorded with some
malware which are deliberately inactive within a couple of
minutes.

Our reference batch system is built on VMware for en-
vironmental restoration and isolation. Even though VMware
Workstation can mitigate some VM detection issues by ap-
propriately configuring some options [37], new detection
methods, e.g. [38], has been emerging as arms races. In
addition, currently network emulation unit is not attached to
our system. This also may be a factor in drawing more code
exposing activities from malware.

Collection peculiarities. Because malware emergence
patterns are hard to expect and some malware may be promi-
nent in a specific period span, it is evident that workability
results would be floating among collections of different pe-
riod spans.

Among the analyzable samples, as described in
Sect. 4.2, the unpacking observation in terms of code expo-
sure is different. Some samples, which does not expose hid-
den code, may be actually packed in the other way: e.g., pro-
tected by virtualization component [39] embedded within
binaries. Such behavior cannot be detected by unpacker

tools depending and enforcing common unpacking heuris-
tic which mostly expect to detect dynamic new code gener-
ation.

Overall, considering the above conjectures, we think that
there are rooms for fidelity enhancement as well as config-
uration improvement. Active manual involvement, for deal-
ing not general but specific targets, may also increase work-
ability. In the past, we also have some experiences with the
other platforms and the following is the note about it.

Empirical framework experiences. As we explored in
related work, there are other available frameworks to be
deployed. Each have pros and cons over each other. Be-
cause our required function is to instrument processes in
fine-grained manner, first we have tested some samples in
two plausible platforms, PIN DBI and Ether/Xen. Ether
provides very fast and transparent malware analysis environ-
ment as the underlying Xen is based on hardware supported
virtualization. However, it seems rather slow and yet un-
stable when fine-grained tracing is enabled [40]. The slow-
ness of the fine-grained mode, as noted in Sect. 2.1, seems
to be incurred by trap mechanism which involve VM con-
text changes for every tracked instructions. We also had
built some analysis modules on Bochs [41] and QEMU [42].
Bochs is better support in building plug-ins as well as work-
ing with fine-grained manipulation; meanwhile, QEMU was
substantially faster than Bochs. As Bochs, QEMU, and Xen
are based on whole system virtualization, they can provide
inherent environmental isolation while performing instru-
mentation, and contrarily PIN requires additional encapsu-
lation for malware analysis. However, PIN supports a rich
set of well-defined APIs for fine-grained instrumentation;
thus, tool development for fine-grained analysis is more fa-
cilitated. In the other platform cases, the understanding of
underlying virtualization architecture – sometimes involv-
ing core engine source codes – is required: usually, it is not
easy to get into from the first time.

During the research involvement, we witnessed that
framework enhancements can lead to the improvement of
analysis ability. For example, when we first built our proto-
type in PIN [43], Yoda Crypter did not work well with PIN
while with the recent version enables it to be executed. Sim-
ilarly, the recent version of QEMU seems to work with te-
lock packer while older versions did not.

6. Conclusion

This paper explored the applicability of a DBI-based un-
packing tool based on our empirical experimental experi-
ences. First, we presented a target unpacking method imple-
mented on PIN DBI framework. The core design of our tool
is to measure code exposure in accordance with byte state
model. Then, we described experimental results of batched
unpacking processing performed on real wild malware spec-
imens (one-day and spanned collections). As for case stud-
ies of a DBI-based tool implementation for dynamic analy-
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sis, we believe that our experimental data presented in this
work will be helpful in deployment decisions of malware
analysis systems.

Currently, we are working on building automatable
malware analysis system for primary binary analysis on
QEMU whole system emulator. In parallel, we plan to de-
velop a method to mitigate memory checksum problem as
well as other measures to enhance analysis quality of DBI-
based tools. Our interests also include dealing with binaries
protected with virtualization techniques.
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Appendix A: Extracting Code Section

It might be possible to take whole dumped binaries to be
treated as targets for similarity score calculations. As our
tool depends on code exposure, we aimed to only deal with
code sections: dumped binaries by unpacking may involve
other parts which might be considered as noise incurred by
dynamic situations per runs. Therefore, for experiments
I and III in Sect. 4, we try to extract code sections from
dumped files exploiting that a code section contains preva-
lent x86 instruction byte patterns such as push and call
according with bigram method described in Sect. 4.2. The
algorithm 1 is devised for the purpose: it scans a given bi-
nary, with sliding window approach, and extracts candidate
code sections if encountering byte range oc contains code
patterns beyond defined code appearance rate Ti. Through
the evaluation experiments, we use w = 2048 (window size),
Tlen = 512, and Ti = 0.01. To choose these parameters,
we investigated benign 350 executables (originally resided
in Windows XP) with applying several combinations. As
shown in Fig. A· 1, we could identify that we may be able to
discriminate code sections from others with the selection.

Algorithm 1 code ext
function code ext(oc, w, Ti, Tlen) {

if (|oc| < Tlen) return NULL;
for (s = 0; s < |oc| − w; s++ ) {

if (machine code(oc[s, s + w − 1]) > Ti) {
for (start = s; mc(oc[start, start]) == 0; start++) ;
break;

}
}
if (s == |oc| − w) return NULL;
for (e = |oc| − 1; e >= 0; e++ ) {

if (machine code(oc[e − w + 1, e]) > Ti) {
for (end = e; mc(oc[end, end]) == 0; end++) ;
break;

}
}
if (end − start + 1 > Tlen) return oc[start, end];
else return NULL;

}

Appendix B: A Malware Clustering Example

This section presents an example clustering test performed
on 236 real malware samples. The malware samples we
used were collected, between June and July of 2008, us-
ing a well-known low interaction honeypot system Ne-
penthes [36].

We conducted a clustering experiment with the same
way as in Sect. 4.1: Table A· 1 shows the results obtained
by varying the dissimilarity threshold values Td from 0 to
0.5. The malware were grouped into 20∼56 clusters de-
pending on the thresholds. For the reference, we detailed
the clustering result of Ti = 0.1 affixing malware names ob-
tained by applying two commercial antivirus software prod-
ucts (Kaspersky [44] and McAfee [45]), and that was shown
in Table A· 2. From the clutering result, we could confirm a
certain degree of consentaneity among the grouped samples.

Fig. A· 1 Parameter selection for Algorithm 1. With the window size
w = 2048, code sections are well reacted over Ti = 0.01 while data sections
are not.

Table A· 1 Number of resulted clusters.

Threshold Number of clusters

Td = 0 56
Td = 0.01 46
Td = 0.05 31
Td = 0.10 26
Td = 0.50 20



1790
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.9 SEPTEMBER 2011

Table A· 2 Clustering result of 236 malware samples with Td = 0.1.
Cluster Kaspersky Count McAfee Count

1 Backdoor.Win32.Agent 1 W32/Virut 7
Backdoor.Win32.Rbot 1 W32/Sdbot.worm 2
Backdoor.Win32.VanBot 2 Generic 1
Virus.Win32.Virut 8 Generic BackDoor 1

W32/Bobax.worm 1

2 Net-Worm.Win32.Bobic 1 W32/Bobax.worm 1

3 Virus.Win32.Virut 10 W32/Virut.gen 11
Backdoor.Win32.VanBot 3 Generic BackDoor 3
Net-Worm.Win32.Kolabc 2 W32/Bobax.worm 1

4 Backdoor.Win32.VanBot 6 W32/Virut 5
Virus.Win32.Virut 3 W32/Bobax.worm 3
Net-Worm.Win32.Kolabc 2 Generic 2
Net-Worm.Win32.Bobic 1 Generic BackDoor 1

W32/Sdbot.worm 1

5 Backdoor.Win32.VanBot 1 Generic BackDoor 1

6 Virus.Win32.Virut 8 W32/Bobax.worm 8
Net-Worm.Win32.Bobic 3 W32/Virut 3
Backdoor.Win32.IRCBot 1 W32/Sdbot 1

7 Virus.Win32.Virut 1 W32/Virut 1

8 Trojan-Dropper.Win32.Sramler 13 W32/Virut 9
Generic 2
W32/Bobax.worm 2

9 Backdoor.Win32.Agent 1 W32/Sdbot.worm 1

10 Virus.Win32.Virut 6 W32/Virut 6

11 Virus.Win32.Virut 2 W32/Virut 2

12 Trojan-GameThief.Win32.OnLineGames 1 Generic BackDoor 1

13 Trojan-Dropper.Win32.Sramler 1 W32/Virut 1

14 Backdoor.Win32.VanBot 1 W32/Sdbot.worm 1

15 Virus.Win32.Virut 1 W32/Virut 1

16 Backdoor.Win32.Nepoe 19 W32/Virut 34
Net-Worm.Win32.Kolabc 18 W32/Bobax.worm 13
Backdoor.Win32.VanBot 11 Generic BackDoor 7
Virus.Win32.Virut 8 Generic 3
Net-Worm.Win32.Bobic 3 Generic Malware 1
Backdoor.Win32.IRCBot 1 New Malware 1
Trojan-Dropper.Win32.Sramler 1 W32/Nirbot 1

W32/Sdbot 1

17 Net-Worm.Win32.Kolabc 19 W32/Virut 13
Virus.Win32.Virut 1 W32/Bobax.worm 5

Generic BackDoor 2

18 Net-Worm.Win32.Bobic 1 W32/Bobax.worm 1

19 Virus.Win32.Virut 2 W32/Virut.gen 2

20 Virus.Win32.Virut 1 W32/Bobax.worm 1

21 Trojan-Dropper.Win32.Sramler 1 W32/Virut 1

22 Virus.Win32.Virut 4 W32/Bobax.worm 3
Backdoor.Win32.Rbot 1 W32/Poebot 1

W32/Virut 1

23 Virus.Win32.Virut 1 W32/Virut 1

24 Backdoor.Win32.Rbot 6 W32/Sdbot.worm 6

25 Backdoor.Win32.EggDrop 1 Generic 1

26 Backdoor.Win32.Rbot 1 Unknown 1

27 Backdoor.Win32.Rbot 1 W32/Sdbot.worm 1

28 Net-Worm.Win32.Padobot 1 W32/Korgo.worm 1

29 Backdoor.Win32.VanBot 1 Generic BackDoor 1

30 Trojan.Win32.Pakes 1 W32/Sdbot.worm 1

31 Virus.Win32.Virut 1 W32/Virut 1

32 Virus.Win32.Virut 8 W32/Virut 7
Generic 1

33 Virus.Win32.Virut 1 W32/Bobax.worm 2
Net-Worm.Win32.Bobic 1

34 Net-Worm.Win32.Bobic 1 W32/Bobax.worm 1

35 Trojan.Win32.Qhost 1 Generic BackDoor 1
Net-Worm.Win32.Bobic 1 W32/Bobax.worm 1

36 Virus.Win32.Virut 1 W32/Virut 1

37 Backdoor.Win32.Rbot 10 W32/Sdbot.worm 11
Net-Worm.Win32.Kolabc 1

38 Virus.Win32.Virut 4 W32/Virut 4
Net-Worm.Win32.Bobic 3 W32/Bobax.worm 4
Backdoor.Win32.VanBot 2 Generic BackDoor 1

39 Virus.Win32.Virut 1 W32/Virut 1

40 Net-Worm.Win32.Bobic 1 W32/Bobax.worm 1

41 Virus.Win32.Virut 4 W32/Bobax.worm 2
Generic BackDoor 1
W32/Virut 1

42 Trojan.Win32.Pakes 1 W32/Sdbot.worm 1
Backdoor.Win32.Rbot 1 Exploit-DcomRpc 1

43 Net-Worm.Win32.Bobic 1 W32/Bobax.worm 1

44 Backdoor.Win32.Nepoe 1 W32/Sdbot.worm 1

45 Backdoor.Win32.IRCBot 1 W32/Sdbot.worm 1

46 Backdoor.Win32.VanBot 3 W32/Bobax.worm 3
Trojan-Dropper.Win32.Agent 2 W32/Virut 2
Net-Worm.Win32.Bobic 1 W32/Sality 1
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