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PAPER

Practical Orientation Field Estimation for Embedded Fingerprint
Recognition Systems

Yukun LIU†a), Nonmember, Dongju LI†, Tsuyoshi ISSHIKI†, Members, and Hiroaki KUNIEDA†, Fellow

SUMMARY As a global feature of fingerprint patterns, the Orienta-
tion Field (OF) plays an important role in fingerprint recognition systems.
This paper proposes a fast binary pattern based orientation estimation with
nearest-neighbor search, which can reduce the computational complexity
greatly. We also propose a classified post processing with adaptive aver-
aging strategy to increase the accuracy of the estimated OF. Experimental
results confirm that the proposed method can satisfy the strict requirements
of the embedded applications over the conventional approaches.
key words: fingerprint recognition, orientation field, binary pattern, em-
bedded system

1. Introduction

A fingerprint is an orientated texture pattern constructed by
ridges and valleys on the tip of an individual’s finger. Its
unique feature can be represented by the global pattern of
ridges and valleys in forms of block-wise orientation (Ori-
entation Field OF). In fingerprint recognition systems, OF
estimation has a critical impact on almost all subsequent
processes [1], [2].

Many remarkable OF estimation algorithms have been
studied. The filter bank-based approach [3] can improve
the OF at a local region. Ji et al. [4] proposed a binary
based approach to estimate the block orientation by calcu-
lating a projective variance of a major ridge in a block (“pri-
mary ridge”) against four discrete orientations as reference.
However, their algorithms cannot derive a perfect OF be-
cause limited discrete orientations (8 in [3] and 4 in [4])
are not sufficient to represent a smooth ridge flow, and their
computation time increases monotonically in proportional
to the predefined orientation number. The model-based ap-
proach [5] considers the global constraint and regularity of
the OF. However, it needs to find a tradeoff between the
miss-estimation in good quality areas and prediction in low
quality areas. The gradient-based approach [6] is the most
broadly used method because it can provide continuous val-
ues by estimating the orientation of an image block via aver-
aging the squared gradients to avoid directional ambiguity.
However, it brings high computational costs and workspace
memory requirements.

Furthermore, to compensate incorrect estimation of
OF which is caused by noise, a post smoothing process
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is indispensable. Ji et al. [4] smooth the OF by estimat-
ing the orientations of both ridges and valleys in a image
block and find the blocks with different estimated orien-
tations, but this method cannot eliminate the noise effects
and is only executable in [4] because the gradients of both
ridges and valleys correspond to the same local orientations.
Wang et al. [7] choose the best orientation estimated from
four overlapping neighborhoods of every image block. Jain
et al. [8] utilize a hierarchial scheme to adjust the estimation
resolution of local OF via iterative steps. Both [7] and [8]
take the coherence measure [9] as the only reliability mea-
surement for deciding the correct orientation. They are fun-
damentally equivalent to averaging filters, whose drawbacks
are: 1. they do not distinguish the high curvature areas and
noise areas, both of which have the low coherence; 2. if the
noise distribution is not symmetric with zero mean, the esti-
mated OF obtained from averaging over the same area still
suffers from strong noise effects [7]. Such high curvature
areas are the neighborhood of the Singular Points (SPs) la-
beled with the white squares, as shown in Fig. 2 (a). The
SPs can be detected from the OF using the Poincare Index
Analysis [2].

This paper proposes a practical OF estimation algo-
rithm for the embedded systems. The proposed approach
contains 3 steps: 1. The preprocessing on the original finger-
print images in Sect. 2; 2. The block level OF estimation on
binary images with a cost-effective nearest-neighbor search
in Sect. 3, which has low cost computation without float-
ing calculation and low workspace memory requirement for
online processing under a desirable directional resolution;
3. The post processing on estimated OF with an averaging
strategy which is adaptive to the ridge curvature and thus im-
proves the accuracy of OF estimation in Sect. 4. In Sect. 5,
we give a theoretical analysis in the computational aspects
between the methods mentioned in the literature and the
proposed method. Section 6 conducts several experiments
to evaluate the accuracy, robustness and the computational
complexity of the conventional methods and the proposed
method.

2. Preprocessing

The original fingerprint image should be preprocessed be-
fore the OF estimation. Our preprocessing consists of image
enhancement, segmentation and binarization. The image en-
hancement includes a high pass filter to sharpen the ridge
profile and a low pass filter to remove the high frequency

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



LIU et al.: PRACTICAL ORIENTATION FIELD ESTIMATION FOR EMBEDDED FINGERPRINT RECOGNITION SYSTEMS
1793

noise. The segmentation [10] extracts the foreground region
from the filtered image to avoid unnecessary calculation on
the background. The binarization converts the segmented
gray image into a binary one with:

Bini, j(x, y) =

{
1 if Bi, j(x, y) ≥ BinT H(i, j)
0 else

(1)

where [x, y] denotes a pixel of block B(i, j), output
Bini, j(x, y) = 1 indicates the pixel value exceeds the dy-
namic binary threshold BinTh(i, j), otherwise the output
value is 0. The dynamic binary threshold BinTh(i, j) means
the sum of mean pixel intensity of the current block, which
is obtained via:

BinT H(i, j) =
1

N2

N−1∑
x=0

N−1∑
y=0

Bi, j(x, y) (2)

where N denotes the block size for binarization.

3. Fast Orientation Estimation

The proposed orientation estimation in the block level is
well calculated by employing a fast gradient estimation in
the pixel level on a binary image and averaging the derived
OF in the block. The result is represented by the averaged
slope value of the ridge in the block. Searching for the slope
values of the designated directions, which are nearest to the
result of the proposed orientation estimation, the orientation
result with any directional resolution is given with signifi-
cant low computational expense.

3.1 Pixel Level Binary Gradient Estimation

According to the definition of the gradient in gray scale [1],
if we regard the binary image as a special case of the gray
one, in which the maximum range of pixel-intensity change
is from 0 to 1, instead of 0 to 255, the binary pattern based
gradient vector g(xi, y j) at point [xi, y j] is a two dimensional
vector [gx(xi, y j), gy(xi, y j)], where gx and gy components are
the derivatives of the local block (i, j) with respect to the x
and y directions, respectively. In the following of this paper,
we name this vector as a binary gradient vector.

If 0 represents the ridge and 1 represents the valley, a
2× 2 neighborhood binary image has 24 = 16 binary pattern
configurations. These configurations can be categorized into
9 types, corresponding to the phase angles 0 ◦, 45 ◦, 90 ◦,
135 ◦, 180 ◦, 225 ◦, 270 ◦, 315 ◦ and Don′t care, as shown in
column 1, 2, 3 of Table 1. Since type 9 may be regarded as
ridges of 45 ◦, 135 ◦ or noise, this type is discarded. When
taking the upper left pixel in a 2 × 2 window as the pixel of
interest, the binary gradient vector of each configuration can
be represented by a 4-bit binary data. By matching the bi-
nary data against the 16 binary patterns’, the binary gradient
vector of the given pixel with unit length can be achieved as
shown in 4th column of Table 1. By overlapping the 2 × 2
window, all the pixels in the binary image can be labeled
with one identical value from 1 to 9 indicating an identical
binary gradient vector or Don′t care.

Table 1 Properties of binary pattern configurations.

Type Binary pattern Phase Binary gradient
configurations angles vectors

1 0 ◦ [ 1, 0]

2 45 ◦ [ 1, 1]

3 90 ◦ [ 0, 1]

4 135 ◦ [-1, 1]

5 180 ◦ [-1, 0]

6 225 ◦ [-1,-1]

7 270 ◦ [ 0,-1]

8 315 ◦ [ 1,-1]

9 Don′t care [ 0, 0]

3.2 Block Level Orientation Estimation

An averaging process is necessary to obtain the block level
orientations. Three problems need to be noticed before this
process: 1. due to the non-linearity and discontinuity around
90 ◦, computing θ as arctan( gy

gx
) + 90 ◦ generates problems;

2. simply averaging the pixel binary gradients is not possible
due to the circularity of angles, such as the average orienta-
tion of 5 ◦ and 175 ◦ is not 90 ◦ but 0 ◦; 3. since a ridge line
has two edges, the binary gradient vectors on both sides of
the ridge are opposite to each other and are likely to can-
cel each other during the averaging process. [9] proposed
an elegant solution to these problems by doubling the phase
angles before averaging.

The squared binary gradient vectors [gs,x, gs,y]T can be
derived by:

[
gs,x

gs,y

]
=

[
g cos 2θ
g sin 2θ

]

=

[
g2(cos2 θ − sin2 θ)
g22 sin θ cos θ

]
=

[
g2

x − g2
y

2gxgy

]
(3)

where g denote the pixel binary gradient vectors and 2θ is
used instead of θ to discount the effect of the mentioned
problems. The average squared binary gradient vectors
[gs,x, gs,y]T in a window size of W can be derived by av-
eraging the two components of the squared binary gradient
vectors, respectively:

[
gs,x
gs,y

]
=

[ ∑
W gs,x∑
W gs,y

]

=

[ ∑
W g2

x − g2
y∑

W 2gxgy

]
=

[
gxx − gyy

2gxy

]
(4)

Commonly, the block level gradients are estimated at
discrete positions to reduce the computational efforts. By
dividing the binary image into equal-sized blocks of n × n
pixels, the average squared binary gradient vectors can be
calculated over each block independently.

To measure the reliability of the block level binary gra-
dients, a metric called coherence is introduced [9], which
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calculates the strength of the average squared binary gradi-
ents in the distribution of local binary gradient vectors. The
coherence of a window w can be calculated as:

Coh =
|∑w gs,xgs,y|∑

w |gs,xgs,y| (5)

3.3 Nearest-Neighbor Search for Orientation Quantization

With the estimated block level binary gradients, the local
orientation with rather high directional resolutions in con-
tinuous values can be achieved by the inverse trigonometric
function:

θ =

[
1
2

arctan

(
Gy

Gx

)
+ 90 ◦

]
mod 180 ◦ (6)

Gx =

n∑
i=1

n∑
j=1

g2
s,x(i, j) − g2

s,y(i, j)

Gy =

n∑
i=1

n∑
j=1

2gs,x(i, j)gs,y(i, j)

The higher directional resolution we employ, the
smoother OF we can obtain. However, high directional res-
olutions require high computational expenses. Furthermore,
the floating point calculation involved in formula (6) can-
not be applied to the embedded systems directly. To derive
a high directional resolution with a low computational cost,
instead of implementing formula (6) with the Look Up Table
(LUT) technique, which is not so flexible and requires ad-
ditional workspace memory, we propose a nearest-neighbor
search for orientation quantization, which can quantize the
block level orientations to any number of discrete orienta-
tions with a low computational effort.

Suppose that we quantize a vector [u, v], which is ori-
entating the continuous angle ϕ within [0 ◦, 180 ◦), to K dis-
crete orientations, which are represented by a reference vec-
tor [x(k), y(k)] at the same lengths, where k = 0, . . . ,K − 1.
The inner product of the vector [u, v] and the reference vec-
tor [x(k), y(k)] corresponds to the angle differences between
ϕ and the reference angles as:

V(k) = cos

(
ϕ− k

K
×180 ◦

)
×
√

u2+v2×
√

x2(k)+y2(k)

= u × x(k) + v × y(k) (7)

The desired orientation corresponds to max(V(0), . . . ,V(K−
1)). The quantized result can be achieved by:

θ′ =
(
kmax +

K
2

)
mod K (8)

where kmax corresponds to the maximum V(k), θ′ corre-
sponds to one discrete orientation of 0, 1, . . . ,K − 1.

Comparing with the LUT of formula (6), in which all
possible values of Gx and Gy should be listed and results in
a table of maximum size of (2 × n2)2 = 4 × n4, our method
only requires a table with the size of 2 × K, which lists the
K predefined reference vectors.

4. Classified Post Processing

A three-step post processing scheme is proposed to smooth
the estimated OF by classifying the fingerprint foreground
into high curvature areas and plain areas, and applying the
filters with different window size over these areas. This pro-
cessing can successfully reach a good tradeoff between the
accuracy in high curvature areas and the correctness in noise
areas.

Step 1 Over-averaged OF estimation

The fingerprint image is divided into a series of non-
overlapped blocks size of n × n pixels. When averaging
the squared binary gradient vectors [gs,x, gs,y]T for a image
block, the square blocks are equally enlarged from n × n to
n1 × n1 and formulae (4) (7) (8) are applied for the conse-
quent calculations. A sufficiently large window size n1 is
utilized to average [gs,x, gs,y]T , and obtain an over-averaged
OF. Two major objectives can be achieved in the over-
averaged OF: 1. the accuracy of the high curvature areas is
low, but the SP patterns are reserved; 2. the noise effects are
depressed, and the orientations are smoothed, although they
might not be so accurate yet.

Step 2 Adaptive averaging

The squared binary gradients are averaged again with differ-
ent window sizes for the high curvature areas and the plain
areas. In the high curvature areas, the orientation of a block
of interest is not consistent with its surrounding neighbors.
The orientation of a block here can be taken as a gradient
vector of unit length. Thus, Eq. (5) can be applied to cal-
culate a coherence map for the over-averaged OF using a
window size of 3 × 3 blocks. The value of coherence is
a quantitative representation of the orientation consistency.
We specify the high curvature areas by setting a coherence
threshold T H. Those areas in which the coherence value are
lower than T H are defined as the high curvature areas, other
areas are considered as the plain areas. In our experiments,
T H is set to 0.8.

The averaging window size n2 × n2 is applied to the
high curvature areas and n3×n3 is applied to the plain areas,
where n < n2 < n3. This adaptive averaging process elimi-
nates the zero-mean noise effects and reserves the accuracy
of the high curvature areas.

Step 3 One dimensional low pass filter

The non-zero mean noise effects in the adaptive averaged
OF appear as mutational orientations. It means that the ori-
entation of a certain block is significantly different from its
neighboring blocks. The simple enlargement of the window
size will affect the neighboring blocks, and cannot eliminate
the noise effects completely. Therefore, we introduce a one
dimensional low pass filter to smooth the mutational orienta-
tions without affecting the neighboring blocks by minimiz-
ing the orientation variances from the block of interest to its
neighborhoods, as shown in Fig. 1.
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In the case of horizontal processing, the orientation
variances from the block of interest (i, j) to its previous
block (i − 1, j) and next block (i + 1, j) are denoted as Dp

and Dn, which are calculated with:(
Dp

Dn

)
i j

=

(
Difference(θi j, θ(i−1) j,K)
Difference(θ(i+1) j, θi j,K)

)
(9)

where Dp and Dn are in the range of (−K
2 ,

K
2 ]. The orienta-

tion variance between two quantized angles p and q in the
congruence class modulo K can be derived by:

Difference(p, q,K)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p−q if −K

2 < p − q ≤ K
2 ;

p−q+K if p − q ≤ −K
2 ;

p−q−K else.

(10)

The result local orientation can be achieved with:

θ′′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
θ′ + Dn−Dp

2

)
mod K if Dp < 0,Dn ≥ 0

or Dp ≥ 0,Dn < 0;(
θ′ + Dn+Dp

2

)
mod K else.

(11)

The one dimensional filter is processed twice on the
estimated OF from left to right, up to down, respectively.

Fig. 1 One dimensional low pass filter.

(a) Original image (b) Over-averaged OF

(c) Adaptive-averaged OF (d) One dimensional low
pass filtered OF

Fig. 2 An example of the classified post processing. n = 8, n1 = 72,
n2 = 24, n3 = 56.

An example of the classified post processing is shown
in Fig. 2. In Fig. 2 (a), the manually inspected SP locations
are highlighted with white squares. In Fig. 2 (b) (c) (d), the
black circles are used to represent the SP locations. By
comparing these figures, it can be observed that the over-
averaged OF is smooth, while there is significant position
shift of the SP location, see Fig. 2 (b). By applying the
adaptive averaging process, the position shift becomes mi-
nor in Fig. 2 (c). However, some blocks remain unsmooth.
The one dimensional low pass filter solves the unsmooth
blocks without affecting the SP locations and the neighbor-
ing blocks as shown in Fig. 2 (d).

5. Computational Aspects

This section gives a theoretical analysis of computational
complexity for two literature mentioned methods [4], [7] and
the proposed method that may be suitable for the embedded
systems.

Assume that [4], [7] and the proposed method are us-
ing the same preprocessing technique, the binarization is
a byproduct of highpass filtering, in which the mean pixel
intensity of each block will be calculated. This is benefi-
cial for the two binary image based methods. For a finger-
print with the size of R rows and C columns, the compu-
tational complexity of the proposed algorithm is approxi-
mately O(R × C) in LUT searching for binary gradient es-
timation. The quantization and each step in the post pro-
cessing takes O(R × C × K/n2), which sums up to about
O(R×C× (1+5×K/n2)) for the proposed algorithm, where
K denotes the predefined discrete orientation for quantiza-
tion and n denotes the block size for OF estimation. The
gradient-based method [7] has the similar complexity with
respect to R and C for pixel gradient calculation. However,
it is carried out with summation and subtraction on pixel in-
tensity values, which results in a much higher computational
cost. In the implementation of this paper, the pixel gradient
is calculated with the Sobel mask for the method proposed
in [7], with a computational complexity of O(32 ×R×C) af-
ter parallel optimization and totally O(R×C×(9+2×K/n2)).
For the algorithm proposed in [4], the computational com-
plexity is O(R×C×m1×m2) for primary ridge determination,
where m1 and m2 are the sizes of the two dimensional pulse
coupled neural network, and O(R×C×K2/n2) for ridge pro-
jection. These will sum up to O(2×R×C×(m1×m2+K2/n2))
because it processes twice (ridge and valley) for the purpose
of orientation correction. A comparison of the computa-
tional complexity of each step for the three methods is listed
in Table 2 for fixed parameters of m1 = m2 = n = 8 and

Table 2 The computational complexity comparison of 3 methods. K =
32, m1 = m2 = n = 8.

[4] [7] Proposed
Pixel Level — O(9R ×C) O(R ×C)
Block Level O(64R ×C) O(0.5R ×C) O(0.5R ×C)

Post Processing O(0.5R ×C) O(0.5R ×C) O(2R ×C)
Overall O(129R ×C) O(10R ×C) O(3.5R ×C)
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K = 32. It is obvious that method in [4] requires much more
computational efforts than the other two methods mentioned
above although its processing is carried on binary images.

6. Experimental Results

In this section, the proposed approach is compared with [4],
[7] by three general criterions: the average computation time
and workspace memory requirement, the orientation esti-
mation accuracy and the performance improvement of fin-
gerprint recognition [2], [11]. Three experiments are carried
out. The first experiment applies the proposed algorithm to
several fingerprint images and evaluates the accuracy and ro-
bustness of orientation estimation. The second experiment
evaluates the OF estimation in terms of a fingerprint recog-
nition system. In the third experiment, the computational
expenses of different algorithms are evaluated according to
the requirements of the embedded applications.

6.1 Accuracy and Robustness

The proposed method is applied to fingerprint images of
FVC2002 DB3 [1], which is constructed with 100 fingers, 8
impressions per finger. Three of the estimated OF results in
different stages with normal, low and extremely low quality
images including whorl, arch and loop are shown in column

Fig. 3 Processing results of [4] algorithm and the proposed method on fingerprints with different
quality levels. Each row shows normal, low and extremely low quality images, respectively. Each col-
umn corresponds to original, binary, coarse block level OF, smoothed OF with 16 directional resolution
and [4]’s result with 4 directional resolution, respectively. n = 8, n1 = 72, n2 = 24, n3 = 56, T H = 0.8.

1–4 of Fig. 3. The estimated OF results are quantized to 16
orientations. For the normal quality image 35 5 and low
quality image 99 4, the proposed algorithm can produce ac-
curate OF after the post processing. For the extremely low
quality image 95 8, the coarse OF is with lots of unrecov-
erable noise effects. The proposed post processing cannot
produce accurate OF. The corresponding OF results of [4]
are shown in column 5 of Fig. 3. Since the OF block size
implemented in this experiment is 8 × 8, while Ji et al. use
16 × 16, [4]’s results are worse because the primary ridge
cannot be robustly detected in such a small block. Further-
more, four directional resolution is not sufficient to reserve
the precision of a continuous ridge flow.

Since there is no ground truth exists for fingerprint OF,
the OF estimation algorithms are often evaluated by human
inspection [5]. In this experiment, we regard the human in-
spected orientation as the ground truth orientation. To eval-
uate the orientation estimation accuracy, we derive the ori-
entation difference between the human inspected results θ′′′
and the algorithm-estimated results θ′′ by:

Δθ = |Difference(θ′′′, θ′′,K)| (12)

Figure 4 shows the statistical distribution of Δθ for the
images listed in Fig. 3. It can be observed that the orienta-
tion differences in all images are reduced after the proposed
post processing. The average Δθ of different images are
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(a) 35 5 (b) 99 4 (c) 95 8

Fig. 4 The statistical distributions of the orientation difference before and after the proposed post
processing.

(a) Original image (b) σ = 5/256 (c) σ = 15/256 (d) The statistical distributions of
orientation difference

Fig. 5 The Gaussian noise fingerprint samples and the statistical distributions of orientation difference
against variant Gaussian noises.

2.55 ◦, 4.20 ◦ and 7.02 ◦ before the proposed post processing,
1.82 ◦, 2.74 ◦ and 3.19 ◦ after the proposed post processing,
respectively.

To evaluate estimation robustness against low quality
images, we add Gaussian noise into the original fingerprint
images and test the accuracy of OF estimation. The vari-
ances of the zero-mean Gaussian noise adopted are σ =
5/256 and σ = 15/256. The noise samples are illustrated
in Fig. 5 (b) (c). Figure 5 (d) gives the experimental results
with respect to different Gaussian noise. It can be observed
that Gaussian noise would depress the accuracy of OF es-
timation; however, the influence of noise on the proposed
algorithm is insignificant. The average Δθ for (a) (b) (c) of
Fig. 5 are 2.01 ◦, 2.27 ◦ and 2.71 ◦, respectively.

In order to obtain the statistical performance compar-
ison results on large database, we construct a subset with
the first fingerprint image of each finger in FVC2002 DB3,
which contains 100 images. The average Δθ of different al-
gorithms in [4], [7] and our method are 18.31 ◦, 5.16 ◦ and
2.53 ◦, respectively.

6.2 System Performance

For the system performance of fingerprint recognition, gen-
erally better OF estimation algorithm can cause more recog-
nition performance improvement. To investigate the per-
formance improvement of different algorithms, the algo-
rithms of [4], [7] and the proposed method are implemented

Fig. 6 The flow chart of the fingerprint recognition system.

into a minutiae alignment based fingerprint recognition sys-
tem [12], respectively. As shown in Fig. 6, during the fin-
gerprint recognition, three systems share the same smooth-
ing, segmentation, ridge enhancement, thinning, minutiae
extraction and minutiae matching process. Since only the
OF estimation step is different in these systems, the system
performance comparison can be fairly derived from their
recognition results. The algorithms are applied to fingerprint
images of FVC2002 DB3. Each matching process generates
8×8×100/2 = 3,200 genuine and 800×99×8/2 = 316,800
impostor pairs. Since the image size is 300×300 pixels, and
the OF block size is 8× 8 pixels, there are 37× 37 blocks in
the estimated OF. The estimated OF of the proposed method
is quantized to resolution 8, 16 and 24, respectively. The
system evaluation results are presented in forms of the re-
ceiver operating character (ROC) curves. The ROC curves
are plotted as the false accept rate (FAR) against the false
reject rate (FRR).
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Fig. 7 System performance comparison on FVC2002 DB3.

Since [4]’s method is not so robust in a small block
size and four directional resolution is not sufficient to repre-
sent a smooth ridge flow, the Equal Error Rate (EER) result
of [4] system is up to 8.26%. Therefore, we only list the
ROC curves of [7] system and the proposed one with di-
rectional resolution 8, 16 and 24, respectively. As shown
in Fig. 7, the proposed algorithms with quantization resolu-
tion of more than 16 produce similar results to each other
because the fixed block size limits the actual directional res-
olutions. As the directional resolution decrease from 16 to
8, the recognition result became worse. This is because the
lower directional resolution lost precision of OF represen-
tation. It can be observed that for the same database, the
proposed algorithm with directional resolution 24 causes the
most improvement. On a whole, with a same FAR, the pro-
posed algorithm can help the system to obtain the lowest
FRR among the algorithms. Statistically, compared with the
other systems, the EER improves from 8.26% in [4] and
1.87% in [7] to 1.42% and 1.35% in the proposed method
with directional resolution 16 and 24, respectively.

6.3 Computation Time and Memory Capacity

As we analyzed in Sect. 5, the algorithms of [4], [7] require
much more computational costs than the proposed one. We
give an overall comparison between [4], [7] and our algo-
rithm under a PC platform as listed in Table 3. The results
listed in the table coincide with the theoretical analysis of
computational complexity. Furthermore, it can be observed
that the proposed method with directional resolution 16 is
the most promising one for the embedded implementation,
when the accuracy of orientation estimation is also taken
into consideration.

We set up a fingerprint SoC with bit serial FPGA en-
gine in our previous work [11]. The system chip includes a
64 KB ROM in which the fingerprint recognition algorithm
is embedded. The 32-bit RISC processor works at 200 MHz
frequency with 8 KB data cache, 8 KB instruction cache and
memory protection unit. The calculation of 8 × 8 pixels OF
requires less than 3 k words workspace memory, which al-
lows the proposed algorithm to execute in the data cache

Table 3 Average computation time and workspace memory requirement
in Pentium 4, 2.33 GHz, 2 GB memory PC. Proposed 8, 16, 24 stand for
the proposed algorithm with directional resolutions of 8, 16 and 24, respec-
tively.

Algorithm Time (ms) Memory (words)
Proposed 8 3 3 k
Proposed 16 3 3 k
Proposed 24 4 3 k

[4] 130 10 k
[7] 43 28 k

of the processor. The average computation time of the OF
estimation in the embedded environment is 15 ms.

7. Conclusions

This paper proposes a practical binary pattern based OF esti-
mation approach for embedded fingerprint recognition sys-
tems. Experimental results show that the proposed method
can reduce the average computation time down to less than
7% of the existing methods, and the workspace memory re-
quirement is reduced to less than one third as small as the
other methods. Furthermore, the proposed post processing
can achieve more accuracy and robustness of the OF estima-
tion. These advantages of the proposed algorithm over the
conventional methods make implementation easier for the
embedded applications.
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