
182
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

PAPER Special Section on Foundations of Computer Science — Mathematical Foundations and Applications of Algorithms and Computer Science —

Adaptive Algorithms for Planar Convex Hull Problems∗

Hee-Kap AHN†, Nonmember and Yoshio OKAMOTO††a), Member

SUMMARY We study problems in computational geometry from the
viewpoint of adaptive algorithms. Adaptive algorithms have been exten-
sively studied for the sorting problem, and in this paper we generalize the
framework to geometric problems. To this end, we think of geometric prob-
lems as permutation (or rearrangement) problems of arrays, and define the
“presortedness” as a distance from the input array to the desired output ar-
ray. We call an algorithm adaptive if it runs faster when a given input array
is closer to the desired output, and furthermore it does not make use of any
information of the presortedness. As a case study, we look into the pla-
nar convex hull problem for which we discover two natural formulations
as permutation problems. An interesting phenomenon that we prove is that
for one formulation the problem can be solved adaptively, but for the other
formulation no adaptive algorithm can be better than an optimal output-
sensitive algorithm for the planar convex hull problem. To further pursue
the possibility of adaptive computational geometry, we also consider con-
structing a kd-tree.
key words: adaptive algorithms, convex hulls, computational geometry

1. Introduction

One can think of computational geometry as a generaliza-
tion of numerical problems (namely, 1-dimensional prob-
lems) to higher dimensions. A typical example is the 2-
dimensional convex hull computation, which can be thought
of as a generalization of sorting an array of numbers.

This work is motivated by a thorough treatment for
sorting problems to take “presortedness” into account in the
analysis of the algorithms. In certain cases one expects sort-
ing algorithms to run faster if a given input is almost sorted.
Mehlhorn [1] introduced the term “adaptive sorting algo-
rithms” for those with such a property. A formal framework
for the worst-case analysis of adaptive sorting algorithms
was introduced by Mannila [2], and the framework is well
surveyed by Estivill-Castro and Wood [3].

Manuscript received March 28, 2010.
Manuscript revised June 7, 2010.
†The author is with the Department of Computer Science

and Engineering, Pohang University of Science and Technology
(POSTECH), Korea.
††The author is with the Graduate School of Infomation Science

and Engineering, Tokyo Institute of Technology, Tokyo, 152–8552
Japan.

∗Work by Ahn was supported by the National IT Industry Pro-
motion Agency (NIPA) under the program of Software Engineer-
ing Technologies Development. Work by Okamoto was supported
by Global COE Program “Computationism as a Foundation for the
Sciences” and Grant-in-Aid for Scientific Research from Ministry
of Education, Science and Culture, Japan, and Japan Society for
the Promotion of Science.

a) E-mail: okamoto@is.titech.ac.jp
DOI: 10.1587/transinf.E94.D.182

An adaptive sorting algorithm has several characteris-
tics. First, it runs faster if the presortedness is high. Second,
the algorithm does not use any information of the presorted-
ness. That is a reason why it is called “adaptive.”

In this paper, we study adaptive computational geome-
try. To apply the adaptiveness framework to geometric prob-
lems, we want to think of the problems as permutation prob-
lems. That is, we are given an array of objects (points, seg-
ments, etc.), and we output a permutation (or a rearrange-
ment) of the objects that represents the desired answer. Nat-
urally, the sorting problem is such a permutation problem,
and the planar convex hull problem can be seen as a permu-
tation problem (and actually, a lower bound of the convex
hull algorithm is given by a reduction from the sorting prob-
lem). Indeed, this work is also motivated by recent studies
on in-place geometric algorithms that treat some geometric
problems as permutation problems [4]–[6].

Several “presortedness” measures have been pro-
posed [3]. In this work, we use the oldest and the most fre-
quently used measure: the number of inversions. Given two
linear orders ≤1,≤2 on X, an inversion is an ordered pair
(i, j) ∈ X2 such that i <1 j and j <2 i. We denote the to-
tal number of inversions for ≤1,≤2 by inv(≤1,≤2). Note that
inv(≤1,≤2) = 0 if and only if the order ≤1 conforms to the
order ≤2, and therefore we may regard the number of inver-
sions as an appropriate measure of the presortedness.

As a case study, we consider the planar convex hull
computation: given a set of points in the plane, we want
to compute its convex hull. For this problem, we discover
two natural formulations as permutation problems. In both
formulations, we require the points on the boundary of the
convex hull to be sorted in clockwise order, but they are
different in the treatment of the points in the interior. In
the first formulation the interior points are required to be
sorted (by their x-coordinates) while in the second formu-
lation the interior points are not required so. Interestingly,
this makes a huge difference in terms of complexity. We
show that in the first formulation the problem can be solved
in O(n(1 + log(1 + k))) time when k is the number of inver-
sions in a given array of n points with respect to the desired
output. Since k ≤

(
n
2

)
, the running-time bound can be as bad

as O(n log n). Hence, this is still worst-case optimal with
respect to n. On the other hand, in the second formulation
we give a lower bound of Ω(n log h) for computing the con-
vex hull, where h is the complexity of the convex hull. This
shows that the second formulation does not allow us to de-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

AHN and OKAMOTO: ADAPTIVE ALGORITHMS FOR PLANAR CONVEX HULL PROBLEMS
183

sign any adaptive algorithm. This kind of phenomenon has
not been seen for any other problems for which the adap-
tiveness framework was applied.

A natural question arises here: since the convex hull of
n points in the plane can be computed in linear time once
they are sorted along a line or around a point, why do we
need another adaptive algorithm other than an optimal adap-
tive sorting algorithm? An answer to the question is that any
existing adaptive sorting method does not reflect the presort-
edness of a point set on its convex hull: for example, con-
sider an input array A of n points whose i-th element is a
point with coordinates (i, (−1)i−1

√
i), for 1 ≤ i ≤ n. Clearly

the input points are already sorted along the x-axis, but not
along its convex hull. As a result, A has no inversion on
sorting along the x-axis, but has Ω(n2) inversions on convex
hull. As another example, consider an input array A′ con-
sisting of the same points in A, but given in a different order:
the i-th element is a point with coordinates (2i− 1,

√
2i − 1)

for 1 ≤ i ≤ � n
2 	, and (2(n − i + 1),−√2(n − i + 1)) for

� n
2 	 + 1 ≤ i ≤ n. The points in A′ are already given in se-

quence along their convex hull clockwise, therefore A′ has
no inversion on convex hull at all. There are, however,Ω(n2)
inversions in A′ on sorting.

We also study an adaptive algorithm to construct a kd-
tree for a point set on the plane.

(1) Related work

There are a huge number of articles discussing the adap-
tive sorting problem. We recommend the readers to con-
sult a survey by Estivill-Castro and Wood [3]. Adaptive
sorting algorithms are also discussed in terms of integer
sorting [7] and I/O-efficiency (both cache-aware and cache-
oblivious) [8].

There are several papers which apply the adaptiveness
framework to problems other than sorting. Demaine, López-
Ortiz, and Munro [9] considered some set operations on
sorted sets, and gave adaptive algorithms with respect to a
certain measure of difficulty of the problem. The problem
has been motivated from a database application, and this line
of research was followed by some subsequent papers [10],
[11].

Levcopoulos, Lingas, and Mitchell [12] were the first
to study a computational-geometric problem in the adap-
tive framework. They studied the convex hull computa-
tion of a (possibly self-intersecting) piecewise linear chain.
Their consideration relies on the fact that the convex hull
can be computed in linear time when the chain does not
have a self-intersection. Since the x-monotone non-self-
intersecting chain can be seen as a sorted sequence, their
study is a generalization of the adaptive sorting framework.
However, they did not look at the problem as a permutation
problem. Besides, Baran and Demaine [13] and Barbay and
Chen [14] studied other geometric problems. However, their
adaptiveness framework does not look at the presortedness
and is completely different from the viewpoint of this work.
In this sense, this paper studies the most fundamental coun-
terpart of the adaptive sorting problem in computational ge-

ometry.

(2) Notation

An array A of n elements is indexed by 1, . . . , n. The i-th
element of A is denoted by A[i], i ∈ {1, . . . , n}. The sub-
array of A consisting of A[i], . . . , A[j] is denoted by A[i.. j].
For a subset A′ of A, the difference A \ A′ denotes the ar-
ray consisting of the elements of A \ A′ and ordered as in
A. The concatenation of two arrays A and B (in this order)
is denoted by A ◦ B. For a set (or an array) P of points, we
denote by conv(P) the convex hull of P, and by ∂conv(P)
the boundary of conv(P).

(3) Weak orders

For the investigation of geometric problems, it is convenient
to extend the framework for linear orders to weak orders. In
general, a binary relation � on a set X is a weak order on X
if it is reflexive (x � x for all x ∈ X), transitive (x � y and
y � z imply x � z for all x, y, z ∈ X), and total (x � y or
y � x for all x, y ∈ X). We say x ∼ y if x � y and y � x,
and x < y if x � y and not x ∼ y. Note that a weak order
is a linear order if and only if it is also antisymmetric. In
other words, x ∼ y does not necessarily imply x = y for
a weak order �. Given two weak orders �1,�2 on X, an
inversion is an ordered pair (i, j) ∈ X2 such that i <1 j and
j <2 i. We denote the total number of inversions for �1,�2

by inv(�1,�2).

2. Planar Convex Hulls

Informally speaking, in the planar convex hull problem, we
are given a set P of n points in general position (i.e., no three
points of P are collinear, and no two points have the same x-
coordinate), and want to identify the points on the boundary
of the convex hull of P. To cast the problem into the adaptive
framework, we introduce the following two formulations.

2.1 First Formulation: The Interior Points Need to be
Sorted

We are given P as an array of n points in the plane. The
output is a rearrangement Q of the array P in the following
way. If h is the number of points on ∂conv(P), then Q[1..h]
should be the array of these points sorted clockwise with
Q[1] being the leftmost point in P. Then, Q[h+1..n] should
be the array of points lying in the interior of conv(P), sorted
by their x-coordinates. For the example in Fig. 1, the input
array is

[p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14],

and the output array must be

[p1, p3, p5, p8, p12, p14, p10, p6, p2, p4, p7, p9, p11, p13].

Thus, we obtain two linear orders. The first order ≤P is
defined by the input array P as P[i] ≤P P[j] for all i ≤ j. The
other order ≤Q is defined by the output array Q as Q[i] ≤Q

Q[j] for all i ≤ j. For these we may define the number of
inversions. Notice that h is not a part of the input.

184
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

Fig. 1 A two-dimensional convex hull.

2.2 Second Formulation: The Interior Points Need not to
be Sorted

In the first formulation, it would be unnatural to require
the interior points to be sorted because we are often in-
terested in the points on the boundary of the convex hull
only. Therefore, it is natural to think the following vari-
ation. We are given P as an array of n points in the
plane. The output is a rearrangement Q of the array P
in the following way. If h is the number of points on
∂conv(P), then Q[1..h] should be the array of these points
sorted clockwise with Q[1] being the leftmost point in
P. Then, Q[h+1..n] is any rearrangement of points lying
in the interior of conv(P). So the output array Q is not
uniquely determined from P. For the example in Fig. 1,
[p1, p3, p5, p8, p12, p14, p10, p6, p2, p9, p4, p13, p7, p11] and
[p1, p3, p5, p8, p12, p14, p10, p6, p2, p11, p13, p4, p9, p7] are
possible outputs.

Note that this formulation has already been proposed
in the literature on in-place algorithms [6].

Then, we define the following two weak orders. The
first one ≤P is the same as the first formulation: P[i] ≤P

P[j] for all integers 0 ≤ i ≤ j ≤ n. The other order �Q is
defined from an output array Q as Q[i] �Q Q[j] if and only
if 0 ≤ i ≤ j ≤ n or h+1 ≤ j ≤ i ≤ n. That means the
interior points are indifferent in �Q. Note that the order �Q

does not depend on a particular choice of an output Q. This
is the spot where we need a weak order since the output is
not determined uniquely from the input.

2.3 Results

With these two formulations, we prove the following results.

• For the first formulation, we give an adaptive algo-
rithm running in O(n(1 + log(1 + k))) time where k =
inv(≤P,≤Q). We also give a lower bound Ω(n(1 +
log(1 + k/n))) for the number of comparisons even if
the number h of points on the boundary of the convex
hull is constant.
• For the second formulation, we prove that any (fixed-

degree) algebraic decision tree solving the problem has
height at least Ω(n log h). Therefore, with the second

framework we cannot beat an optimal output-sensitive
algorithm (running in O(n log h) time, e.g. [15]) and
thus any adaptive algorithm is meaningless.

In the subsequent sections, we will give proofs for our re-
sults.

3. An Adaptive Algorithm for the First Formulation

When designing adaptive convex hull algorithms, we may
encounter at least the following two difficulties. First, we
cannot determine whether p <Q q just by looking at two
points p, q. It depends on how the other points are placed
around p, q. Second, related to the first one, if we want to
proceed by divide-and-conquer and obtain a subset P′ of P
that yields the output Q′, then it is not generally the case that
Q′ is a subarray of Q; i.e., subsets do not inherit the linear
order. These two issues do not arise in the sorting problem,
where any two numbers can be compared just by looking at
them, and any smaller subsets inherit the order.

Our algorithm below overcomes these issues and is
shown to be adaptive. The call to ConvexHull(P) identi-
fies the upper chain U(P) of conv(P) in the increasing or-
der of x-coordinates, the lower chain L(P) of conv(P) in
the decreasing order of x-coordinates, and the set I(P) of
points in the interior of conv(P) in the increasing order of x-
coordinates. The desired output is the concatenation U(P) ◦
(L(P) \ {the rightmost point, the leftmost point}) ◦ I(P).

Algorithm: ConvexHull(P)
Step 1: If P is arranged as a desired output, then identify

U(P), L(P), I(P) and halt.
Step 2: Otherwise, compute a vertical bisector s of P. Let

PA be the set of points in P left to s, and PB be the set
of points in P right to s.

Step 3: Compute the upper tangent u and the lower tangent
� both common to conv(PA) and conv(PB). Let au ∈ PA

and bu ∈ PB be the two points spanning u. Similarly,
let a� ∈ PA and b� ∈ PB be the two points spanning �.
Let PL be the set of points in P that lie left to the line
spanned by au, a�, PR be the set of points in P that lie
right to the line spanned by bu, b�, and PM = P \ (PL ∪
PR). Note that PL ⊆ PA and PR ⊆ PB.

Step 4: Call ConvexHull(PL) and ConvexHull(PR) to ob-
tain U(PL), L(PL), I(PL), U(PR), L(PR), I(PR). Identify
U(P) = U(PL) ◦ U(PR) and L(P) = L(PR) ◦ L(PL).

Step 5: Sort the points in PM by their x-coordinates to ob-
tain the sorted sequence S (PM), and apply the merge
sort for I(PL), S (PM), I(PR). Identify the result as I(P).
Halt.

The algorithm is based on the same idea as the divide-
and-conquer algorithm by Kirkpatrick and Seidel [15]. In
their algorithm the upper hull and the lower hull are com-
puted separately, but we cannot do so here since we may lose
the adaptiveness. Rather, we compute the upper and lower
hulls simultaneously. The correctness of the algorithm is
straightforward.

AHN and OKAMOTO: ADAPTIVE ALGORITHMS FOR PLANAR CONVEX HULL PROBLEMS
185

Now we estimate the running time. From now on, de-
note by n the number of input points in P, and by k the num-
ber of inversions between ≤P and ≤Q.

Step 1 can be executed in O(n) time as follows. First
we find the leftmost point p and the rightmost point q of
P in O(n) time. In the desired output, p should come first
(p = P[1]) and q should come somewhere, say at the h′-th
position (q = P[h′]). Then we check whether the subarray
P[1..h′] is a concave chain Cu by looking at turns at all three
consecutive points. This can be done in O(n) time. Next,
we compute the second leftmost point p′ on the lower hull
of P in O(n) time, and determine h ≥ h′ such that p′ =
P[h]. Then, we check whether the subarray P[h′..h] with
p forms a convex chain C� in O(n) time. Now the points
P[h+1..n] must lie in the interior of conv(P), and be sorted
by their x-coordinates. First we check if they are sorted in
O(n) time. Then, for each point r ∈ P[h+1..n] from left to
right, we check if r lies between the concave chain Cu and
the convex chain C�. This can be done in O(n) time since
they are all sorted.† Finally, we identify U(P) = P[1..h′],
L(P) = P[h′..h] ◦ P[1], I(P) = P[h+1..n]. Thus, we can
execute Step 1 in O(n) time.

Step 2 reduces to the median finding problem, which
can be solved in O(n) time [16].

In Step 3, computing the upper and the lower tan-
gents reduces to 2-dimensional linear programming (as in
Kirkpatrick and Seidel [15]), which can be solved in O(n)
time [17]. Also it is straightforward to find PL and PR in
O(n) time. Note that |PL|, |PR| ≤ n/2.

Step 4 involves recursive calls. A crucial observa-
tion is that a point of P on ∂conv(P) lies on ∂conv(PL) or
∂conv(PR), and a point of PL (and PR) on ∂conv(PL) (and
∂conv(PR) respectively) lies on ∂conv(P). Therefore, the
desired output QL for ConvexHull(PL) and the desired out-
put QR for ConvexHull(PR) are subsequences of Q. This
way, we succeed in overcoming the second difficulty de-
scribed before. If we denote by t(n, k) the worst-case run-
ning time of ConvexHull(P) over all P with |P| = n and
inv(≤P,≤Q) = k (when Q is the desired output), Step 4
takes at most t(|PL|, kL) + t(|PR|, kR) time, where kL, kR de-
note the number of inversions for PL, PR and (the restriction
to PL, PR of) Q, respectively. Since PL, PR, PM are disjoint
subsequences of P, we have the following lemma.

Lemma 1. Denote by kL, kR, kM the number of inversions
for PL, PR, PM and (the restriction to PL, PR, PM of) Q, re-
spectively. Then, it holds that kL + kR + kM ≤ k.

In Step 5, we sort the points in PM . If we apply an adap-
tive sorting algorithm, say by Estivill-Castro and Wood [18],
we can sort PM in O(|PM |(1+ log(1+kM))) time. Further, the
merging can be done in O(n) time in a standard way since
I(PL), I(PR), S (PM) are all sorted.

Now we estimate the overall running time summarizing
the discussion above. Consider all linear-time processing
in Steps 1, 2, 3, 5 takes an time for some constant a and
for all sufficiently large n, and the adaptive sorting in Step
5 takes b|PM |(1 + log2(1 + kM)) time for some constant b

and for all sufficiently large n. If we denote the number of
points in PL, PR, PM by nL, nR, nM , respectively (note that
nL+nR+nM = n), then we obtain the following recurrence:

t(n, k) ≤ an + t(nL, kL) + t(nR, kR)

+ bnM(1 + log2(1 + kM))

for sufficiently large n and k ≥ 1. Note that for small n it
holds t(n, k) = O(1) and when k ≤ 0 it holds that t(n, k) =
O(n). We now derive that t(n, k) ≤ cn(1 + log2(1 + k)) for
some constant c and for all sufficiently large n.

By induction, we obtain

t(n, k) ≤ an + cnL(1 + log2(1 + kL))

+ cnR(1 + log2(1 + kR))

+ bnM(1 + log2(1 + kM)).

We choose c so that it satisfies 2b ≤ c. Let nL = αn and
nR = βn. Then we have 0 ≤ α ≤ 1/2, 0 ≤ β ≤ 1/2,
and nM = (1 − α − β)n. Note that α and β are parameters
that cannot be freely chosen but depend on the input. The
recurrence becomes

t(n, k) ≤ an + cαn(1 + log2(1 + kL))

+ cβn(1 + log2(1 + kR))

+
c
2

(1 − α − β)n(1 + log2(1 + kM))

= an + c

(
α + β +

1 − α − β
2

)
n

+ cn log2(1 + kL)α(1 + kR)β(1 + kM)(1−α−β)/2

≤ an + cn

+ cn log2(1 + kL)α(1 + kR)β(1 + kM)(1−α−β)/2.

Here, we want to know when the argument of the last
logarithm (1 + kL)α(1 + kR)β(1 + kM)(1−α−β)/2 is maximized.
Taking the logarithm further, we reduce this maximization
to the following linear program with two variables α, β:

maximize α log2(1 + kL) + β log2(1 + kR)

+
1 − α − β

2
log2(1 + kM)

subject to 0 ≤ α, β ≤ 1/2.

This problem can be directly solved. We have four cases.
Let A = log2(1 + kL) − 1

2 log2(1 + kM) (that is the coefficient
of α), and B = log2(1 + kR) − 1

2 log2(1 + kM) (that is the
coefficient of β).

Case 1: when A ≥ 0 and B ≥ 0. Then, the optimum is
attained at α = β = 1/2, and the optimal value is
(log2(1 + kL) + log2(1 + kR))/2.

Case 2: when A ≥ 0 and B < 0. Then, the optimum is
attained at α = 1/2, β = 0, and the optimal value is
(2 log2(1 + kL) + log2(1 + kM))/4.
†This is why we require the points in the interior to be sorted

by their x-coordinates. If they are not, for each point in P[h+1..n]
we would need to search back and forth around Cu and C� so that
we cannot achieve the linear running time.

186
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

Case 3: A < 0 and B ≥ 0. Then, the optimum is attained
at α = 0, β = 1/2, and the optimal value is (2 log2(1 +
kR) + log2(1 + kM))/4.

Case 4: A < 0 and B < 0. Then, the optimum is attained at
α = β = 0, and the optimal value is (log2(1 + kM))/2.

For each of these four cases, we proceed with the esti-
mation of t(n, k). When Case 1 occurs, we obtain

t(n, k) ≤ (a + c)n + cn log2(1 + kL)1/2(1 + kR)1/2

≤ (a + c)n + cn log2
(1 + kL) + (1 + kR)

2

≤ (a + c)n + cn log2
2 + k

2

≤ (a + c)n + cn log2

(
3
4

(1 + k)

)

= (a + c)n +

(
log2

3
4

)
cn + cn log2(1 + k),

where we use a relation of arithmetic means and geometric
means in the second inequality, Lemma 1 in the third in-
equality, and 2+k

2 ≤ 3
4 (1 + k) for k ≥ 1 in the second to last

inequality. Thus, if we choose c so that it satisfies a + (1 +
log2

3
4)c ≤ c, then we obtain t(n, k) ≤ cn(1 + log2(1 + k)) as

desired. Note that log2
3
4 ≈ −0.415037.

When Case 2 occurs, we obtain

t(n, k) ≤ (a + c)n + cn log2(1 + kL)1/2(1 + kM)1/4

≤ (a + c)n + cn log2(1 + kL)1/2(1 + kM)1/2,

and we then go along the same line as Case 1. Case 3 is also
similar. When Case 4 occurs, we obtain

t(n, k) ≤ an + cn + cn log2(1 + kM)1/2

≤ an + cn + cn log2(1 + kM/2)

and we proceed with the same argument. This way, we con-
clude t(n, k) ≤ cn(1 + log2(1 + k)) for all of the four cases.
We summarize the discussion in the following theorem.

Theorem 2. The algorithm ConvexHull above computes
the convex hull of a given (non-degenerate) point set in the
plane in O(n(1 + log(1 + k))) time, where n is the number of
input points and k is the number of inversions as defined in
the first formulation, namely k = inv(≤P,≤Q).

As for the lower bound it is easy to observe the follow-
ing.

Theorem 3. Any algorithm to solve the planar convex hull
problem in the first formulation needs at leastΩ(n(1+log(1+
k/n))) operations in the worst case even if the number of
points on the boundary of the convex hull is constant (three).
Here, n is the number of input points and k is the number of
inversions as defined in the first formulation.

Proof. We reduce the adaptive sorting problem to our prob-
lem. In the sorting problem we are given n numbers in an
array, and need to sort them in increasing order. Guibas,

McCreight, Plass, and Roberts [19] showed that any sorting
algorithm needs at least Ω(n(1+ log(1+ k/n))) comparisons
in the worst case, where n is the size of an input array and
k is the number of inversions between the positions (or in-
dices) in the input array and the increasing order of numbers
themselves.

Let A be an input array of size n for the sorting prob-
lem. Then, we construct an array P of n + 3 planar points
as follows. For each number A[i] in the input array, we
set P[i+3] = (A[i], εi) for sufficiently small ε. This deter-
mines P[4..n+3]. The other three points are determined as
follows. Let � be the smallest number in A, and u be the
largest number in A. Then, we set P[1] = (� − 1, 1), P[2] =
(u+2, 1), P[3] = (u+1,−1). This completes the construction
of the point set P, and we consider the planar convex hull
problem when the input array is P. Let Q be the output array.
Then we can see that P[1], P[2] and P[3] are the points on
the boundary of the convex hull, and k = inv(≤P,≤Q). Fur-
thermore, from Q we can extract the sorted sequence in the
increasing order as the x-coordinates of Q[4..n+3]. Since
� and u can be found in linear time, this finishes the whole
reduction. �

4. Lower Bound for the Second Formulation

To obtain a lower bound for the second formulation, we con-
sider the following No Inversion Problem: Given an array
P of (non-degenerate) point set in the plane, we want to de-
termine whether inv(≤P,�Q) = 0. The following theorems
show that this problem is as hard as the planar convex hull
problem itself.

Theorem 4. Any (fixed-degree) algebraic decision tree
solving the No Inversion Problem has height at least
Ω((n−h) log h), where n is the number of input points and h
is the number of points on the boundary of the convex hull.

Proof. We construct a linear-time reduction to No Inver-
sion Problem from the following CHIR Problem:† Given
a regular convex h-gon R with its smallest circumscribing
disk D, and n−h points in D, determine whether all of these
n−h points lies in R. See Fig. 2 for an illustration. Kapoor
and Ramanan [20] proved that any (fixed-degree) algebraic
decision tree solving the CHIR Problem has height at least
Ω((n−h) log h).††

For the reduction, we are given a regular convex h-gon
R with its smallest circumscribing disk D, and a set X of n−h
points in D. Then, we construct an array P of points that is
supposed to be an instance of the No Inversion Problem as
follows. At P[1..h] we place the vertices of R in the clock-
wise order in such a way that P[1] will be the leftmost one.
Then, at P[h+1..n] we place the points of X arbitrarily. We

†This is the abbreviation of “Convex hull inclusion with re-
striction” [20].
††Actually the CHIR problem by Kapoor and Ramanan [20] is

a bit different from ours, but the lower bound proof of them can be
easily adapted to our variation.

AHN and OKAMOTO: ADAPTIVE ALGORITHMS FOR PLANAR CONVEX HULL PROBLEMS
187

Fig. 2 The CHIR problem.

can see that P can be constructed in linear time. We can also
see that inv(≤P,�Q) = 0 if and only if all points of X lie in
R. Thus, the reduction is completed. �

Theorem 5. Any (fixed-degree) algebraic decision tree solv-
ing the No Inversion Problem has height at least Ω(n log n),
where n is the number of input points.

Proof. Follow the proof of Theorem 4, but this time we set
h = n/2 in the CHIR Problem. Then, the same argument
gives a desired lower bound. �

The following corollary is straightforward from the
theorems above.

Corollary 6. Any (fixed-degree) algebraic decision tree
solving the No Inversion Problem has height at least
Ω(n log h), where n is the number of input points and h is
the number of points on the boundary of the convex hull.

Proof. When h < n/2, we have an Ω(n log h) lower bound
from Theorem 4. When h ≥ n/2, we have an Ω(n log h)
lower bound from Theorem 5. �

As shown in the following theorem, the lower bound
for the No Inversion Problem can be translated to the lower
bound for the planar convex hull problem in the second for-
mulation.

Theorem 7. For the (fixed-degree) algebraic-computation-
tree model, any algorithm to solve the planar convex
hull problem in the second formulation requires at least
Ω(n log h) time, where n is the number of input points and h
is the number of points on the boundary of the convex hull.

Proof. Let A be an algorithm to solve the planar convex hull
problem in the second formulation, and let Q be an out-
put array from A when we input P into A. From Q, we
can determine h in O(n) time as Step 1 of the algorithm
ConvexHull in the previous section. Therefore, by look-
ing through P[1..h] and Q[1..h], we can determine whether
inv(≤P,�Q) = 0 in O(h) time. In this way, we can solve No
Inversion Problem, and so A needs at least Ω(n log h) time
by Corollary 6. �

5. Constructing a kd-Tree Adaptively

To further pursue the possibility of adaptive computational

Fig. 3 A kd-tree.

geometry, we consider constructing a kd-tree. A kd-tree [21]
can be thought of as a permutation of the points [5]. Namely,
the root comes first and then the left subtree comes re-
cursively, and finally the right subtree comes also recur-
sively. We assume canonical orders in which the left side
and the top side come as left subtrees, the right side and
the bottom side come as right subtrees, and left subtrees al-
ways contain no more points than right subtrees. Figure 3
shows an example, in which the desired output is the ar-
ray [p7, p1, p5, p6, p3, p2, p4, p11, p9, p12, p10, p8, p13]. Note
that a kd-tree is always balanced.

Given an array of n (non-degenerate) points in the
plane, we can determine whether it represents the kd-tree
in O(n) time in the following bottom-up fashion. First from
the input array P of n points we construct a binary tree T
recursively as follows. If P contains only one point, then T
consists of a single node. Otherwise, P[1] is the root of T ,
the binary tree for P[2..� n−1

2 	 + 1] comes as the left subtree,
and the binary tree for P[� n−1

2 	 + 2..n] comes as the right
subtree. This can be done in O(n) time simply by scanning
the input array. Then, for each subtree T ′ of T , we com-
pute the four points on the boundary of the bounding box of
the points contained in T ′. This can be done in O(n) time
in total by traversing the tree in postorder and computing
the bounding box of the points in each subtree. Then, for
each node p of T , we check whether all points contained
in the left subtree of p lie on the left of p (or above p de-
pending on the depth of p in T), and similarly whether all
points contained in the right subtree of p lie on the right of
p (or below p). If it is the case for every node of T , then we
can conclude that T is the kd-tree for P, and consequently
P represents the kd-tree; Otherwise P does not represent the
kd-tree. This check can also be done in O(n) time with help
of four extreme points associated with each subtree that we
have already computed. Thus, the whole computation can
be done in linear time.

Combining this procedure with a usual recursive con-
struction of a kd-tree gives the following theorem.

Theorem 8. We can compute the kd-tree of a given (non-

188
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

degenerate) point set in the plane in O(n(1+log(1+k))) time,
where n is the number of input points and k is the number of
inversions for the input and the desired output.

Proof. The algorithm below does the job. It has an auxiliary
argument “subdiv,” which describes the direction for subdi-
vision. Namely, when subdiv = v, we subdivide the point set
by a vertical line (left and right); when subdiv = h, we sub-
divide the points by a horizontal line. Given an input array
P, we execute KdTree(P, v).

Algorithm: KdTree(P, subdiv)
Step 1: If P is arranged as a desired output, then output P

itself and halt. (Note: this case only deal when P con-
tains at most one point.)

Step 2: Otherwise, we have two cases depending on subdiv.
Step 2-1: If subdiv = v, then we identify a point p in P with

the median x-coordinate. Let PL be the array of points
in P that are left to p, and PR be the array of points in P
that are right to p. Then, output {p} ◦ KdTree(PL, h) ◦
KdTree(PR, h). Halt.

Step 2-2: If subdiv = h, then we identify a point p in P with
the median y-coordinate. Let PA be the array of points
in P that are above p, and PB be the array of points in
P that are below p. Then, output {p} ◦KdTree(PA, v) ◦
KdTree(PB, v). Halt.

The correctness of the algorithm immediately follows from
the definition of kd-trees. To bound the running time, we
just need to observe the following lemma which can be seen
as easily as Lemma 1.

Lemma 9. Denote by k′, k′′ the number of inversions for
PL, PR (or PA, PB) and their rearrangements appearing ex-
actly as subsequences of the desired output array. Then, it
holds that k′ + k′′ ≤ k.

Then, the analysis similar to one in the proof of Theo-
rem 2 goes. This concludes the proof of Theorem 8. �

A usual argument of the lower bound for the kd-tree
construction gives an adaptive lower bound similar to Theo-
rem 3.

Theorem 10. Any algorithm to solve the kd-tree construc-
tion problem in the plane needs at leastΩ(n(1+log(1+k/n)))
operations in the worst case. Here, n is the number of input
points and k is the number of inversions between the input
array and the desired output array.

Proof. To sort an array A of n numbers, we just need to set
up an array P of n planar points by P[i] = (A[i], A[i]2) for
all i ∈ {1, . . . , n}, construct a kd-tree for P, and traverse the
tree in an appropriate order. Since the procedures except
for the kd-tree construction can be done in O(n) time, the
lower bound by Guibas, McCreight, Plass, and Roberts [19]
proves the theorem. �

6. Concluding Remarks

For the sorting problem, several algorithms running in
O(n(1+ log(1+k/n))) time [1], [2], [22]–[25] have been pre-
sented, and there is a tight lower bound [19]. This lower
bound also applies to the first formulation, and there is a
gap between this lower bound and the running time of our
algorithm. It is desirable to find an optimal algorithm.

For further investigation, we can think of other presort-
edness measures, and other geometric problems that can be
thought of as permutation problems. A lot of questions re-
main unsolved, and we hope that this is a stimulating line of
research.

Acknowledgments

The main part of this work was done while the second author
visited Postech in May 2008 and January 2009. He thanks
the kind support of Postech. Our thanks also go to Tetsuo
Asano, Michael Hoffmann, Yun-Ho Hwang, Sang-Sub Kim,
Iris Reinbacher, and Wan-Bin Son for fruitful discussion.

References

[1] K. Mehlhorn, Sorting and Searching, Data Structures and Algo-
rithms, vol.1, Springer-Verlag, Berlin Heidelberg, 1984.

[2] H. Mannila, “Measures of presortedness and optimal sorting algo-
rithms,” IEEE Trans. Comput., vol.C-34, no.4, pp.318–325, 1985.

[3] V. Estivill-Castro and D. Wood, “A survey of adaptive sorting algo-
rithms,” ACM Comput. Surv., vol.24, pp.441–476, 1992.

[4] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and
J. Vahrenhold, “Space-efficient geometric divide-and-conquer algo-
rithms,” Computational Geometry: Theory and Applications, vol.37,
pp.209–227, 2007.

[5] H. Brönnimann, T. Chan, and E. Chen, “Towards in-place geometric
algorithms and data structures,” Proc. 20th Annual Symposium on
Computational Geometry (SoCG), pp.239–246, 2004.

[6] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, and
G. Toussaint, “Space-efficient planar convex hull algorithms,” The-
oretical Computer Science, vol.321, pp.25–40, 2004.

[7] A. Pagh, R. Pagh, and M. Thorup, “On adaptive integer sorting,”
Proc. 12th Annual European Symposium on Algorithms (ESA),
pp.556–579, 2004.

[8] G. Brodal, R. Fagerberg, and G. Moruz, “Cache-aware and cache-
oblivious adaptive sorting,” Proc. 32nd International Colloquium
on Automata, Languages and Programming (ICALP), pp.576–588,
2005.

[9] E. Demaine, A. López-Ortiz, and J. Munro, “Adaptive set intersec-
tions, unions, and differences,” Proc. 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp.743–752, 2000.

[10] J. Barbay and C. Kenyon, “Adaptive intersection and t-threshold
problems,” Proc. 13th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp.390–399, 2002.

[11] J. Barbay, A. Golynski, J. Munro, and S. Rao, “Adaptive searching in
succinctly encoded binary relations and tree-structured documents,”
Theor. Comput. Sci., vol.387, pp.284–297, 2007.

[12] C. Levcopoulos, A. Lingas, and J. Mitchell, “Adaptive algo-
rithms for constructing convex hulls and triangulations of polygo-
nal chains,” Proc. 8th Scandinavian Workshop on Algorithm Theory
(SWAT), pp.80–89, 2002.

[13] I. Baran and E. Demaine, “Optimal adaptive algorithms for finding

AHN and OKAMOTO: ADAPTIVE ALGORITHMS FOR PLANAR CONVEX HULL PROBLEMS
189

the nearest and farthest point on a parametric black-box curve,” In-
ternational Journal of Computational Geometry and Applications,
vol.15, pp.327–350, 2005.

[14] J. Barbay and E. Chen, “Convex hull of the union of convex objects
in the plane: An adaptive analysis,” Proc. 20th Canadian Conference
on Computational Geometry (CCCG), pp.47–51, 2008.

[15] D. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algo-
rithm?,” SIAM J. Comput., vol.15, pp.287–299, 1986.

[16] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, “Time bounds
for selection,” J. Comput. Syst. Sci., vol.7, pp.448–461, 1972.

[17] N. Megiddo, “Linear programming in linear time when the dimen-
sion is fixed,” J. ACM, vol.31, pp.114–127, 1984.

[18] V. Estivill-Castro and D. Wood, “Practical adaptive sorting,” Proc.
International Conference on Computing and Information (ICCI),
pp.47–54, 1991.

[19] L. Guibas, E. McCreight, M. Plass, and J. Roberts, “A new repre-
sentation of linear lists,” Proc. 9th ACM Symposium on Theory of
Computing (STOC), pp.49–60, 1977.

[20] S. Kapoor and P. Ramanan, “Lower bounds for maximal and convex
layers problems,” Algorithmica, vol.4, pp.447–459, 1989.

[21] J. Bentley, “Multidimensional binary search trees used for associa-
tive searching,” Commun. ACM, vol.18, pp.509–517, 1975.

[22] A. Elmasry, “Priority queues, pairing, and adaptive sorting,” Proc.
29th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pp.183–194, 2002.

[23] A. Elmasry and M. Fredman, “Adaptive sorting: An information
theoretic perspective,” Acta Informatica, vol.45, pp.33–42, 2008.

[24] C. Levcopoulos and O. Petersson, “Splitsort—An adaptive sorting
algorithm,” Inf. Process. Lett., vol.39, pp.205–211, 1991.

[25] C. Levcopoulos and O. Petersson, “Adaptive heapsort,” J. Algo-
rithms, vol.14, pp.395–413, 1993.

Hee-Kap Ahn was born in 1973. He
obtained his Ph.D. from Utrecht University in
2001, and was a scientific researcher at Korea
Institute of Science and Technology from 2001
to 2004, a research professor at Korea Advanced
Institute of Science and Technology from 2004
to 2005, an assistant professor at Sejong univer-
sity from 2006 to 2007. Since 2007, he has been
an assistant professor at Pohang University of
Science and Technology. His research interests
include geometric shape matching and shape ap-

proximation, robust algorithm design under uncertainty, and data struc-
tures.

Yoshio Okamoto was born in 1976. He
obtained his Ph.D. from ETH Zurich in 2005,
and was an assistant professor at Toyohashi
University of Technology from 2005 to 2007.
Since 2007, he has been an associate professor
at Tokyo Insitute of Technology. His research
focuses on discrete mathematics and theory of
computing, especially problems on graphs and
discrete geometry.

