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Boosting Learning Algorithm for Pattern Recognition and Beyond

Osamu KOMORI†a) and Shinto EGUCHI†, Nonmembers

SUMMARY This paper discusses recent developments for pattern
recognition focusing on boosting approach in machine learning. The sta-
tistical properties such as Bayes risk consistency for several loss functions
are discussed in a probabilistic framework. There are a number of loss
functions proposed for different purposes and targets. A unified deriva-
tion is given by a generator function U which naturally defines entropy,
divergence and loss function. The class of U-loss functions associates with
the boosting learning algorithms for the loss minimization, which includes
AdaBoost and LogitBoost as a twin generated from Kullback-Leibler di-
vergence, and the (partial) area under the ROC curve. We expand boosting
to unsupervised learning, typically density estimation employing U-loss
function. Finally, a future perspective in machine learning is discussed.
key words: AUC; boosting; entropy; divergence; ROC; U-loss function;
density estimation

1. Introduction

The methodology for pattern recognition has been actively
proposed and discussed in a field related with neural com-
putation and machine learning rather than statistics in recent
decades, and hence there are a vast number of new develop-
ments beyond standard discriminant analyses such as Fisher
linear discriminant analysis and logistic regression, cf. [1].
In particular, boosting and support vector machine (SVM)
both have got large popularity to break through conventional
methods, see [2], [3]. Statistical considerations give reason-
able understandings for the performance of these methods
in the community of statistics. Presently boosting has been
well established as in [4] where boosting is discussed as the
approximation to additive modeling on the logistic scale us-
ing maximum Bernoulli likelihood.

In this paper we put stress on the characteristic such
that the boosting is not simply a single method to directly
construct a discriminant function, but a hyper-method to
combine selected weak classifiers. In each iteration step the
learning algorithm selects the best candidate in a given dic-
tionary of weak classifiers to linearly combine the candidate
and the discriminant function. Such an idea is creative and
progressive in the research of pattern recognition which in-
corporates a rule of majority vote with effective weights. It
is noted that the performance of boosting depends on the
choice of dictionary in the sense that larger dictionary gives
higher approximation for the Bayes rule associated with the
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underlying density function, but is apt to be over-learning.
Thus we have to carefully investigate the trade-off in the
choice of the dictionary.

Boosting satisfies a great applicability for minimiza-
tion of various loss functions. A class of U-loss functions
is discussed with a close association with U-entropy and U-
divergence [5], [6], where U is a generator function on the
real line such as an exponential function. Any U-loss func-
tion can employ the idea of boosting with a simple change
from AdaBoost. If U is monotone increasing and convex,
then the classifier derived by the minimization of U-loss
function is shown to satisfy Bayes risk consistency in a gen-
eral probabilistic framework. It is discussed that a specific
choice of U leads to the robustness for outlying in both the
spaces of feature vectors and class labels [7]. Although it
is not a convex function, the Heaviside function leads to an
important objective function called the area under the ROC
curve (AUC).

At the end, we discuss an extension of boosting for pat-
tern recognition to other statistical analyses such as density
estimation. In principle, we can define U-loss function in a
situation where the probabilistic framework and the discrim-
inant function are given, so that any statistical analyses are
applicable for the boosting method. In this sense the kernel
method is also applicable. There remain a lot of undevel-
oped areas for data analysis in machine learning. We will
discuss such perspectives from the point of loss functions.

2. Boosting for Pattern Recognition

Statistical pattern recognition aims to conduct good predic-
tion for a category of an observed variable based on a given
empirical examples. This can be said to be a mathematical
expression in which a human brain makes prediction for a
future event based on his own experiences. In fact, the brain
acquires prediction capability in a process of learning from
several experiences accompanying the achievements of mo-
tor ability and language function. We need to take a careful
attention to this characteristic in the discussion of the sta-
tistical pattern recognition, in particular to over-learning for
the training data. The framework is given in a simple form
composed of a feature vector x and a class label y, in which
a mapping h of x into y is called a classifier, or classification
machine. The objective is to build up the classifier h with
good performance for the pattern recognition in the statisti-
cal sense.

A boosting method does not directly give any specific
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proposal for a classifier, but gives a procedure combining
several weak classifiers in a given set, say D = {hω :
ω ∈ Ω}, where Ω is a parameter space. The learning al-
gorithm implements in a reasonable way a convex combi-
nation based on a training data of n tuple examples, say
D = {(x1, y1), · · · , (xn, yn)}, so that a strong classifier is in-
tegrated to outperform all the weak classifiers in the set. In
this combination process we employ the training data many
times to select weak classifiers, in which we can see the
number of examples (xi, yi) that a weak classifier h wrongly
predicts, that is h(xi) � yi for all the iteration steps.

A simple way of reweighting to the training data ef-
ficiently works to take a weighted majority vote of the se-
quence of weak classifiers. On the other hand, SVM is a
batch-type learning algorithm to maximize the margin as-
sociated with D by the use of mathematical programming,
which can sophisticatedly employ kernel functions to pro-
duce a linear decision boundary in the reproducing kernel
Hilbert space. Thus SVM leads to an effective classifier as-
sociated with a higher-dimension space other than the orig-
inal feature space.

There are various applications in pattern recognition
since the first application to Fisher’s iris data, in which a
decision maker wants to predict a categorical variable, or
phenotype from a given input variable, or feature variable.
For example, the class label represents an endpoint in a con-
text of risk analysis.

2.1 U-Boosting

For a training data set D = {(x1, y1), · · · , (xn, yn)}, we dis-
cuss a leaning algorithm as follows. Consider a discriminant
function F : X → R to construct a classifier h : x �→ y
with the relation that h(x) = sgn F(x), where X is a fea-
ture space, sgn denotes the sign function. We prepare a dic-
tionary of weak classifiers D = {h(x, ω) : ω ∈ Ω} which
is assumed to be the negation-closed, that is, if h ∈ D,
then −h ∈ D. For example, the class of all linear classifier
D = {sgn l(x) : l ∈ L} with the class L of linear functions
of x can be considered.

Let U : R → R be a convex and monotone increasing
function. Then we define U-loss function for the discrimi-
nant function F by

LU(F) =
1
n

n∑
i=1

U(−yiF(xi)), (1)

in which the expected loss is given by LU(F) =

EU(−YF(X)), where E denotes the statistical expectation of
the underlying distribution for D. Our proposal is to find

FU = argmax
F∈con(D)

LU(F),

where con(D) is the cone ofD, that is,

con(D) = {α1h1 + α2h2 : α1, α2 ∈ R+, h1, h2 ∈ D}.
A variational argument leads to

p(y = +1|x)
p(y = −1|x)

=
U̇(FU(x))

U̇(−FU(x))
,

which implies the Bayes risk consistency such that

FU(x) = Ψ−1(p(y = +1|x)),

where Ψ( f ) = U̇( f )/{U̇( f ) + U̇(− f )}. Note that there exists
the inverse function of Ψ since

∂

∂ f
Ψ( f ) =

Ü( f )U̇(− f ) + Ü(− f )U̇( f )

{U̇( f ) + U̇(− f )}2 > 0

from the assumption of U.
On the other hand, the U-loss function has a normal-

ized form defined by

LU(F) =
1
n

n∑
i=1

{ − yiF(xi) (2)

+U(F(xi) − b(xi)) + U(−F(xi) − b(xi))
}
,

where b(x) is the normalizing factor satisfying

U̇(F(x) − b(x)) + U̇(−F(x) − b(x)) = 1.

In this way we have two forms of loss functions as in (1) and
(2). If U(t) = exp(t), then (1) is exp-loss, and (2) is log-loss

LU(F) =
1
n

n∑
i=1

log
(
1 + exp(−yiF(xi))

)

because b(x) = log{exp(F(x)) + exp(−F(x))}. In general
U(t) = exp(t) generates the Kullback-Leibler divergence in
which AdaBoost and LogitBoost are viewed as twin in this
context. In a subsequent discussion we will consider the U-
loss function for supervised learning.

2.2 U-Boost Algorithm

The learning algorithm for a sequential minimization of U-
loss function in the convex hull of the dictionary D is as
follows.

1. In the initial step we set F0(x) = 0 for all x in X.
2. For t, 0 ≤ t ≤ T update as Ft+1(x) = Ft(x) + αtht(x),

where

(αt, ht) = argmin
(α,h)∈R+×D

LU(Ft + αh)

3. In the final, output a discriminant function as

F(x) =
T∑

t=1

αtht(x).

The main step 2 is sometimes changed to a gradient-type
algorithm

ht = argmin
h∈D

∂

∂α
LU(Ft + αh)

∣∣∣∣
α=0

and



KOMORI and EGUCHI: BOOSTING LEARNING ALGORITHM FOR PATTERN RECOGNITION AND BEYOND
1865

αt = argmin
α∈R

LU(Ft + αht).

In particular, this change is recommended when the cost of
joint optimization in step 2 is considerable. A overlearning
of this algorithm to the data set D is reported when the dic-
tionary D is unbalanced with D. In fact, after only a few
step, the error rate becomes 0, and any further steps do not
improve the performance. In such a situation it is better to
fix a predetermined sequence of step lengths independent
of D, see the early stopping rule in [8]. Hence if we write
the sequence by α, then the algorithm selects only the best
candidate as

ht = argmin
h∈D

LU(Ft + α h).

3. Boosting AUC

The expected U-loss function LU(F) = EU(−YF(X)) is
expressed using joint probability in the same way as error
rate. It is very common and useful for measuring the ac-
curacy of classification performance. However, in medical
and biological sciences, the type I error and type II error
must be treated differently. Suppose a classification prob-
lem for disease screening in which the prevalence rate is
very low. In that case, classifying all subjects to be negative
(non-diseased) leads to almost perfect classification based
on U-loss or error rate, though it is not practical. In this
context, the false positive rate (FPR) and true positive rate
(TPR) are used in practical situations, and the classification
performance is often measured by the area under the ROC
curve (AUC). See the relationship between U-loss function
and the AUC in the logistic-type context [9].

3.1 Area under the ROC Curve

For probability density function g−(x) and g+(x) for y ∈
{−1, +1}, the FPR and TPR are defined as

FPR(c)=
∫

F(x)≥c
g−(x)dx, and TPR(c)=

∫
F(x)≥c

g+(x)dx,

where the subject is classified to be positive when F(x) > c,
and to be negative when otherwise. Hence we have

ROC(F) = {(FPR(c),TPR(c)) |c ∈ R}.
Then, the area under the ROC curve (AUC) is given as

AUC(F) =
∫ −∞

∞
TPR(c)dFPR(c).

It is rewritten as

AUC(F)=
∫ ∫

H(F(x+)−F(x−))g−(x−)g+(x+)dx−dx+,

(3)

where H(z) is the Heaviside function: H(z) = 1 if z ≥ 0 and
0 otherwise. Hence, the empirical AUC is given by

AUC(F) =
1

n−n+

n−∑
i=1

n+∑
j=1

H(F(x+ j) − F(x−i)),

where {x−1, . . . , x−n− } and {x+1, . . . , x+n+ } are samples with
sample size n− and n+ for y = −1 and y = +1, respectively.
Its probabilistic interpretation is given in [10] as

AUC(F) = P(F(X+) ≥ F(X−)).

In order to facilitate the maximization process, the standard
normal distribution function is used in place of H(z) [9], or a
sigmoid approximation for this purpose is also proposed in
[11] and [12]. Here, we consider the former approximation:

AUCσ(F) =
1

n−n+

n−∑
i=1

n+∑
j=1

Hσ(F(x+ j) − F(x−i)),

where Hσ(z) = Φ (z/σ), with Φ being the standard normal
distribution function.

Similarly to Eq. (3), the approximate AUC is given as

AUCσ(F)=
∫ ∫

Hσ(F(x+) − F(x−))g−(x−)g+(x+)dx−dx+.

(4)

The next theorem in [13] justifies the use of the approximate
AUC in place of the AUC as follows.

Theorem 1: Let

Ψ(γ) = AUCσ

(
F + γ m

(
Λ
))
,

where Λ(x) = g+(x)/g−(x) and m is a strictly increasing
function. Then, Ψ(γ) is a strictly increasing function of γ ∈
R, and

sup
F

AUCσ(F) = lim
γ→∞Ψ(γ) = AUC

(
Λ
)
.

Theorem 1 can be extended into the justification of the use
of the approximate pAUC [14]. See Theorem 2 for more
details.

3.2 Objective Function

At first, we prepare a set of weak classifiers, Dk, for each
k-th component of x ∈ Rp and combine the sets into

D =
p⋃

k=1

Dk,

among which we choose weak classifiers to construct F(x).
In this setting, F(x) can be decomposed componen-

tially:

F(x) = F1(x1) + · · · + Fp(xp).

Then, the objective function is given as

AUCσ,λ(F)
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=
1

n−n+

n−∑
i=1

n+∑
j=1

Hσ(F(x+ j)−F(x−i))−λ
p∑

k=1

∑
xk∈Bk

{
F(2)

k (xk)
}2
,

where λ is a smoothing parameter and F(2)
k (xk) denotes the

second-order difference of Fk(xk). The second-order differ-
ence is considered for Bk, which is a set of quantiles for xk.

By a simple calculation, we have

AUCσ,λ(F) = AUCσ′,λ′

(
σ′

σ
F

)
,

if λσ2 = λ′σ′2. This implies that the maximization of
AUCσ,λ(F) is equivalent to that of AUC1,λσ2

(
F
σ

)
. Therefore,

we have

max
σ,λ,F

AUCσ,λ(F) = max
λ,F

AUC1,λ(F).

From this consideration, we can fix σ = 1 without loss of
generality, and redefine AUCλ(F) ≡ AUC1,λ(F).

3.3 AUCBoost Algorithm

1. Start with a discriminant function F0(x).

2. For t = 1, . . . ,T

a. Find the best weak classifier ht and calculate the
coefficient αt as

ht = argmax
h∈D

∂

∂α
AUCλ(Ft−1 + αh)

∣∣∣∣∣
α=0

,

αt = argmax
α>0

AUCλ(Ft−1 + αht).

b. Update the discriminant function as

Ft(x) = Ft−1(x) + αtht(x).

3. Finally, output the final discriminant function:

F(x) = F0(x) +
T∑

t=1

αtht(x).

If we have no prior information about the data, we set
F0(x) = 0. In step 2.a, we search D for a ht which
maximizes the first derivative of AUCλ(F) at the point
Ft−1(x) + αh(x). This argument is similar to that of [3]
and [7]. Next, we calculate the coefficient of ht(x) using
the Newton-Raphson method, and add αtht(x) to the previ-
ous discriminant function. We repeat this process T times
and output the final discriminant function. Thus, the resul-
tant discriminant function is an aggregation of ht(x)’s with
weights αt’s.

4. Boosting pAUC

In medical practice, a part of the range of FPR or TPR is
essential. For example, in disease screening, the targeted

population consists mainly of healthy subjects. In that case,
a very low FPR is required to avoid a large amount of unnec-
essary treatments. On the other hand, in the case where se-
vere medical treatments such as biopsies or surgeries follow
the diagnosis of subjects when being judged to be positive,
TPR needs to be kept as high as possible. In this context,
the partial area under the ROC curve is getting more useful
than the AUC itself. The classification problems relating to
the pAUC are discussed in several papers such as [14]–[16].

4.1 Partial Area under the ROC Curve

We consider a part of the AUC by limiting the value of FPR
between α1 and α2, which are determined by thresholds c1

and c2, respectively:

α1 =

∫
H(F(x)−c1)g−(x)dx, α2 =

∫
H(F(x)−c2)g−(x)dx,

(5)

where 0 ≤ α1 < α2 ≤ 1 (c2 < c1). Usually, the values are
set to be 0 and 0.1, respectively. However, it is also worth
considering to take α1 > 0 and choose α2 − α1 to be small
enough, so that we essentially maximize TPR for fixed FPR.
Then, the pAUC can be divided into a fan-shaped part and a
rectangular part:

pAUC(F, α1, α2)

=

∫ c2

c1

TPR(c)dFPR(c)

=

∫ c2

c1

∫
c2≤F(x)≤c1

H(F(x) − c)g+(x)dxdFPR(c)

+TPR(c1)(α2 − α1).

Its probabilistic interpretation is offered by [17] as

pAUC(F, α1, α2)=P(F(X+)≥F(X−) , c2≤F(X−)≤c1).

The empirical form is expressed as

pAUC(F, α1, α2) =
1

n−n+

∑
i∈I

n+∑
j=1

H(F(x+ j) − F(x−i)),

where α1 and α2 are empirical values that are the closest to
α1 and α2, respectively; I = {i| c2 ≤ F(x−i) ≤ c1}, where c1

and c2 are thresholds determined by α1 and α2.
In the same way as Eq. (4), the approximate pAUC is

given as

pAUCσ(F, α1, α2)

=

∫ c2

c1

∫
c2≤F(x)≤c1

Hσ(F(x) − c)g+(x)dxdFPR(c)

+TPR(c1)(α2 − α1),

where α1 and α2 are defined in (5). Similarly, the corre-
sponding empirical pAUC is defined as

pAUCσ(F, α1, α2)



KOMORI and EGUCHI: BOOSTING LEARNING ALGORITHM FOR PATTERN RECOGNITION AND BEYOND
1867

=
1

n−n+

∑
i∈I

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j∈Jfan

Hσ(F(x+ j) − F(x−i))

+
∑
j∈Jrec

H(F(x+ j) − F(x−i))

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
where Jfan = { j| c2 ≤ F(x+ j) ≤ c1} and Jrec = { j| c1 <
F(x+ j)}. Before discussing a boosting method for the
pAUC, we give a theoretical justification of the use of the
approximate pAUC in the following theorem [14].

Theorem 2: For a pair of fixed α1 and α2, let

Ψ(γ) = pAUCσ

(
F + γ m

(
Λ
)
, α1, α2

)
,

where γ is a scalar, Λ(x) = g+(x)/g−(x) and m is a strictly
increasing function. Then, Ψ(γ) is a strictly increasing func-
tion of γ, and

sup
F

pAUCσ(F, α1, α2) = lim
γ→∞Ψ(γ) = pAUC

(
Λ, α1, α2

)
.

As proved by [9] and [18], the likelihood ratio Λ(x) is the
optimal discriminant function that maximizes the AUC as
well as the pAUC. Theorem 2 suggests a weak version of
the Bayes risk consistency in the limiting sense.

4.2 pAUCBoost Algorithm

The difference from AUCBoost algorithm is that the thresh-
olds c1 and c2 should be calculated, and that they depend on
a discriminant function F(x). Hence, the coefficient should
be individually calculated for each weak classifier h, which
is explicitly denoted by β(h) in the following algorithm.

1. Start with a discriminant function F0(x) = 0 and set
each coefficient β0(h) of weak classifiers to be 1 or −1.

2. For t = 1, . . . ,T

a. Calculate the values of thresholds c1 and c2 for
each Ft−1 + βt−1(h)h.

b. Update βt−1(h) to βt(h) with a one-step Newton-
Raphson iteration.

c. Find the best weak classifier ht

ht = argmax
h∈D

pAUCλ(Ft−1 + βt(h)h, α1, α2)

d. Update the discriminant function as

Ft(x) = Ft−1(x) + βt(ht)ht(x).

3. Finally, output a final discriminant function F(x) =∑T
t=1 βt(ht)ht(x).

The dependency of the pAUCλ(Ft−1 + βt(h)h, α1, α2) on
thresholds c1 and c2 makes it necessary to pick up the best
pair of (βt(ht), ht) at the same time in step 2.c. Because of
the dependency and the difficulty of getting the exact solu-
tion of βt(ht), the one-step Newton-Raphson calculation is

conducted in the boosting process. In this algorithm, the
components x1, . . . , xp of x are combined componentially
for maximizing the pAUC using natural cubic splines or de-
cision stumps (single-level decision trees) in a dictionaryD,
according to the values of variables (continuous or discrete).
See [14] for more details.

5. Boosting for Density Estimation

A lot of boosting methods for prediction or classification
have been proposed so far. The first and typical one in
machine learning community is AdaBoost [19] for the min-
imization of the exponential loss. Other boosting meth-
ods for various objective function such as likelihood, L2-
loss, mixture of the exponential loss and naive loss, U-loss,
AUC and pAUC [4], [5], [7], [13], [14], [20] have been con-
sidered and applied to real data analysis. However, the
boosting methods for other purpose than prediction seem
to have been paid little attention, see [21]–[23]. Recently,
[24] has proposed a stagewise methods for density estima-
tion based on L2 loss and derived a non-asymptotic error
bound. See [25] for further details. Then [26] extended the
estimation method based on U-divergence and [27] modi-
fied it so that it can be applied in more general setting and
with less computational cost.

5.1 U-Divergence

We employ the same generator function U to define the loss
function for a density estimator. Here we redefine U as fol-
lows. Let U be a convex and monotone increasing func-
tion, and u be the first derivative. Then the conjugate convex
function is given as

Ξ(s) = max
t∈R
{st − U(t)}.

By differentiating it with respect to t, we have

Ξ(s) = sξ(s) − U(ξ(s)),

where ξ is the inverse function of u. Then, for x ∈ Rp,
f (x) > 0 and g(x) > 0, the U-divergence is defined as

DU( f , g)

=

∫
U

(
ξ(g(x))

)
− U

(
ξ( f (x))

)
− f (x)

{
ξ(g(x)) − ξ( f (x))

}
dx.

It is rewritten as

DU( f , g) = CU( f , g) − HU( f ),

where

CU( f , g) =
∫

U
(
ξ(g(x))

)
− f (x)ξ(g(x))dx

and

HU( f ) =
∫

U
(
ξ( f (x))

)
− f (x)ξ( f (x))dx.
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Here, CU( f , g) and HU( f ) are U-cross entropy and U-
entropy, respectively. From the relation that HU( f ) =
− ∫
Ξ( f (x))dx, we have DU( f , g) ≥ 0. In the case that

U(t) = exp(t), we have u(t) = exp(t) and ξ(t) = log(t),
which leads to

DU( f , g)

=

∫
g(x) − f (x) − f (x)

{
log(g(x)) − log( f (x))

}
dx.

This is the Kullback-Leibler divergence. In the same way, if
we consider

U(t) =
1

1 + β
(1 + βt)

1+β
β . (6)

Then u and ξ are given as

u(t) = (1 + βt)
1
β , ξ(t) =

tβ − 1
β

,

Dβ( f , g) = −1
β

∫
f (x)(g(x)β − f (x)β)dx

+
1

1 + β

∫
g(x)1+β − f (x)1+βdx.

This is the β-divergence [28], [29]. It becomes the Kullback-
Leibler divergence when β → 0; it becomes L2 norm when
β = 1.

5.2 Loss Function for β-Divergence

For observations {x1, . . . , xn}, the loss function for U-
divergence is given as

LU(g) = −1
n

n∑
i=1

ξ(g(xi)) +
∫

U
(
ξ(g(x))

)
dx.

From Eq. (6), the loss function for β-divergence is given as

Lβ(g) = − 1
nβ

n∑
i=1

{g(xi)
β − 1} + 1

1 + β

∫
g(x)1+βdx.

This loss function is known to be robust to outliers. See [30]
for the application to ICA, and [31] for that to PCA mixture.

5.3 Boosting Algorithm

For a dictionary of density function D, the dictionary used
in the boosting algorithm is defined as

Dβ =
{
ψ = ξ(φ)

∣∣∣∣ φ ∈ D}
,

where ξ(t) = (tβ − 1)/β. Then, we consider the following
mixture model:

M =
⎧⎪⎪⎪⎨⎪⎪⎪⎩ u

( N∑
j=1

p jψ j(x)
) ∣∣∣∣∣ p1, . . . , pN ≥ 0,

N∑
j=1

p j = 1, ψ1, . . . , ψN ∈ Dβ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

based on which we construct the density estimator f̂ .
For a positive numerical sequence π1, . . . , πT , the stage-

wise algorithm for f̂ is proposed by [26] as follows.

1. Choose f0 ∈ D so that

Lβ( f0) ≤ inf
φ∈DLβ(φ) + ε,

where ε > 0 is an approximation bound.
2. For t = 1, . . . ,T , ft is given as

ft = u
(
(1 − πt)ξ( ft−1) + πtξ(φt)

)
,

where, φt is chosen such that

Lβ( ft) ≤ inf
φ∈DLβ

(
u
(
(1 − πt)ξ( ft−1) + πtξ(φ)

))
+ πtε.

3. Finally, we have f̂ = fT ∈ M.

The numerical performance of this method is illustrated and
the non-asymptotic error bound is derived in [26].

6. Discussion and Future Problems

We overview a unified perspective associated with U-loss
function. In fact, any generator function U leads to a
cross/diagonal entropy and divergence, in which U-cross
entropy easily yields U-loss function by plugging the em-
pirical distribution because this is a linear functional with
respect to the data distribution. In this framework U model
and U estimator are connected with a dualistic structure in
the sense of information geometry, see [32].

Hence U-loss function naturally utilizes boosting
learning by the use of prescribed set of weak classi-
fiers, called dictionary, while U-loss function utilizes ker-
nel methods for linear learning in the reproducing kernel
Hilbert space. This tells us that such boosting and kernel
methods are applicable for any loss functions such as the
AUC, which is not convex but still applicable for boosting
method as discussed here. In some applications we can build
boosting learning algorithms for mixture model and princi-
pal/independent component analysis. AdaBoost and SVM
have been established as the most popular methods in pat-
tern recognition, however, we remark that what they have
done by specific choice of the loss function is not so es-
sential. We have not explored yet the performance of inte-
grating local learning by specific choice of the loss function
here. In the near future, it may be possible that the surprising
performance is implemented for data learning in machine
learning.
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