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SUMMARY  Histogram-based image features such as HoG, SIFT and
histogram of visual words are generally represented as high-dimensional,
non-negative vectors. We propose a supervised method of reducing the
dimensionality of histogram-based features by using non-negative matrix
factorization (NMF). We define a cost function for supervised NMF that
consists of two terms. The first term is the generalized divergence term
between an input matrix and a product of factorized matrices. The sec-
ond term is the penalty term that reflects prior knowledge on a training set
by assigning predefined constants to cannot-links and must-links in pairs
of training data. A multiplicative update rule for minimizing the newly-
defined cost function is also proposed. We tested our method on a task of
scene classification using histograms of visual words. The experimental re-
sults revealed that each of the low-dimensional basis vectors obtained from
the proposed method only appeared in a single specific category in most
cases. This interesting characteristic not only makes it easy to interpret the
meaning of each basis but also improves the power of classification.

key words: dimensionality reduction, non-negative matrix factorization,
histogram-based features

1. Introduction

Histogram-based features such as HoG[1], SIFT[2], and
bag-of-features representations using visual words [3]—[5]
have been used for a broad range of applications; for in-
stance, human detection, image matching, scene classifica-
tion, and many more. Histogram-based features are gener-
ally represented by a few hundred [2], [3] to one million [4],
[5] dimensional vectors. Because of the high dimensionality
of the features, techniques of reducing dimensionality have
often been applied to extract fundamental information that
has made data analysis feasible [6].

Here, it should be noted that the histogram features
are non-negative. For the purpose of constructing a low-
dimensional feature space for non-negative data, use of
non-negative matrix factorization (NMF)[7] has been fo-
cused on, instead of principal component analysis (PCA).
The main focus of this paper is to propose a supervised
method of reducing dimensionality for histogram-based fea-
tures based on NMF.

1.1 Previous Work

NMF decomposes an input matrix X into two non-negative
matrices: a basis matrix F and a coefficient matrix G,
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minimizing some types of similarity measures between X
and FG'. Interestingly, it has been reported that the non-
negativity of F and G results in sparse and part-based rep-
resentation of the input data[7]. For example, each of non-
negative basis vectors obtained by factorizing face images
obviously corresponds to a local part of the face. Thanks to
this characteristic, we can automatically find common parts
of the faces. In another example, semantic topics shared
with a large number of documents can be found by decom-
posing term-document matrix of the documents. Thanks to
the non-negativity of F, relationship between terms and top-
ics can be easily interpreted by observing elements in the
F. Thus NMF enables us to easily interpret the meaning of
each basis. This is an important advantage of NMF.

Various kinds of similarity measures have been used as
cost functions of NMF, e.g., the Frobenius norm [7], gen-
eralized divergence [8], the earth mover’s distance [9] and
many more [10]. The performance of NMF strongly de-
pends on the type of input data and the choice of similarity
measures; therefore, it is important to select a good similar-
ity measure. For stochastic vectors such as histogram-based
features, it has been reported that the use of a similarity mea-
sure that is defined from the perspective of information the-
ory is important [10].

The generalized divergence proposed by Lee et al. [8]
is one of the simplest and most common similarity measures
based on information theory. This similarity measure is de-
fined between two distributions A and B as:

Aj
D(AIB) = > Ay;log (B—') ~Aij+ By (1)
ij Y

Figure 1 visualizes the generalized divergence and the
Frobenius norm with colored images to enable comparison.
The divergence takes frequently occurring signals as unim-
portant information. For example, let us consider an image
recognition task using a histogram of visual words. Because
it is natural to think that frequently appearing visual words
can be regarded as common visual features among images,
such visual words are not important to construct a discrim-
inative subspace. In this case, use of the generalized diver-
gence as a similarity measure has an advantage in image
recognition.

There is another approach to give advantageous char-
acteristics to NMF. By adding a penalty term into the cost
function, application-specific characteristics can be incor-
porated into NMF [11]-[14]. The addition of penalty terms
that reflect prior knowledge on input data to cost functions
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has recently attracted increasing attention to construct more
discriminative feature space [15]-[18]. For example, Wang
et al.[15] proposed Fisher NMF that minimizes within-
class scatter and maximizes between-class scatter of labeled
input data in the constructed feature space. The within-
and between-class scatters were represented by two penalty
terms.

Constraint matrices have more recently been used to
express prior knowledge on input data[16]-[18]. Yang et
al. [16] expressed similarities and dissimilarities of inputs as
a constraint matrix and embedded them into the cost func-
tion as a penalty term. Wang et al. [17] gave a computation-
ally efficient algorithm to minimize Yang’s cost function. A
similar cost function using the constraint matrix has been
proposed by Wang et al. [18] for the purpose of clustering
semi-supervised data. The magnitude of each element in
the constraint matrix expresses the reliability of prior knowl-
edge. This expression is practical for a broad range of ap-
plications.

Previous methods [16]—[18] have used the constraint
matrix together with the Frobenius norm. It is reasonable
to expect that the use of a constraint matrix together with
generalized divergence is effective for constructing a more
discriminative feature space for histogram-based features.

1.2 Contribution

We propose a supervised method of reducing dimensional-
ity for histogram-based features based on NMF using the di-
vergence similarity measure with a constraint matrix in this
paper. We describe our method as D-SNMF in the sections
that follow. The two main contributions of this paper are:

1. NMF with the divergence similarity measure is refor-
mulated within a supervised learning context. The
prior knowledge on input data is expressed in the form
of a constraint matrix, and incorporated into NMF as a
penalty term.

2. A multiplicative update rule is proposed to optimize
the new cost function. In exchange for mathematically
guaranteed convergence, our update rule becomes nu-
merically simple. Despite the compromise, we exper-
imentally confirmed that the update rule works so ro-
bustly that convergence of the algorithm is not an issue

in practice.
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Fig.1 Difference between Frobenius norm (left) and generalized diver-
gence (right). When A;; and B;; are small, the generalized divergence be-
comes more sensitive to the difference between A;; and B;; than the Frobe-
nius norm.
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We tested our method on classification tasks using
datasets for 13 Natural Scene Categories [19] that were en-
coded into the histograms of visual words. We examined
various types of NMFs including our method for scene clas-
sification. The experimental results revealed that each basis
vector obtained from our method was strongly associated
with a single specific category in most cases. This interest-
ing characteristic not only makes it easy to interpret what
each basis means but also improves the power of classifica-
tion.

Section 2 gives an overview of NMF with the Frobe-
nius norm (L,-NMF [7]) and with divergence (D-NMF [8]).
Section 3 is the most important part of this paper, where we
describe the modified cost function of D-NMF with prior
knowledge (D-SNMF) in detail. The update rule for opti-
mization is also proposed. In Sect.4, we discuss the L;-
NMF with prior knowledge (L,-SNMF) for the purpose of
comparing it with our method. Readers are referred to [18]
for the original discussion on L,-SNMF. The experimental
results are presented in Sect. 5.

2. L,-NMF and D-NMF

The NMF decomposes a non-negative matrix X into two
non-negative matrices F and G as:

X=~FG', 2)

where F € R®* is a basis matrix and G € R™ is a
coefficient matrix. In the convention we use, input data
x; € R are column vectors in X = [X1,X,---,X,]. A
low-dimensional representation of x; is g; € R®!. They are
stored as row vectors in G = [g;, g,, "+, g,]" fork <d.

The cost functions of L,-NMF and D-NMF are defined
in Egs. (3) and (4), respectively.

Ji(F,G) =X -FG|2 st F>0,G>0. 3)
J»(F,G) = DX|FG™) st F>0,G > 0. 4)

The function D(:||-) is the generalized divergence defined
in Eq.(1). The multiplicative update rules for minimizing
these cost functions are summarized in Tables 1 and 2.

In Eqgs. (3) and (4), the optimal solutions for F and G
are not unique. For any non-negative and non-singular ma-
trix U, F and G can be replaced with FU and GU™" without
changing the value of the cost function. A diagonal matrix
that normalizes the L, norm of the column vectors in F is
often used as U to make the solution unique.

Table 1  Multiplicative update rule for L,-NMF.

Algorithm 1 - L,-NMF (Lee et al. [7], [8])
Step 1 Initialize F and G as a random dense matrix.
Step 2 Update F and G until convergence.
(XG);j
(2) Fij  Fij——=——
(FG'G);j
(b) Normalize Fand G. F « FU, G « GU™T
XTF);;
(GFF);;

(©) Gij < Gij
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Table 2  Multiplicative update rule for D-NMF.

Algorithm 2 - D-NMF (Lee et al. [7], [8])
Step 1 Initialize F and G as a random dense matrix.
Step 2 Update F and G until convergence.
Yk Xi G/ (FG i
(@F; « Fjj—————
Y Y 2k Grj
(b) Normalize Fand G. F « FU, G « GU™T
Yk XiiFrj/(FGT )y
©) Gjj « G =——— L~
Y Y 2 Fij

3. D-NMF with Prior Knowledge (D-SNMF)
3.1 Penalty Term for Prior Knowledge

Imposing penalty terms on the cost function can control the
characteristics of NMF [11]-[14].

J(F,G) = DX|[FG") + J/(F) + J,(G) (5)
st. F>0,G>0.

J¢(F) and J,(G) in Eq. (5) are the penalty terms of the coef-
ficient and basis matrix, respectively. Various penalty terms
have been proposed to yield application-specific character-
istics. Prior knowledge of input data can also be represented
as a penalty term. The distribution of g;, g,,- -, g, in a low-
dimensional feature space should reflect prior knowledge;
therefore, the penalty term should be a function of the coef-
ficient matrix. Consequently, we only discuss the definition
of J,(G) and let J;(F) = 0.

The prior knowledge given to the low-dimensional co-
efficient matrix G can be incorporated into J,(G) by using
an n-by-n constraint matrix C = {C;;}. If input vectors x;
and x; stand close to each other in the feature space, C;; is
set to a negative value, representing a “must-link”. However,
if input vectors x; and X; stand apart in the feature space, C;;
is set to a positive value, representing a “cannot-link”. The
magnitude of the element |C;;| means the reliability of prior
knowledge. If no prior knowledge is available between x;
and x;, we just set C;; = 0.

The penalty term J,(G) can be defined using the con-
straint matrix C;; as:

JoG) =Y Cygg; = tr(GCG). 6)
ij

The J,(G) constrains the behavior of dot products between
coeflicient vectors in the optimization process. If C;; is pos-
itive, g'g; becomes a small value. If C;; is negative, g/g;
becomes a large value. This enforces the feature space to be
discriminative for the input data according to prior knowl-
edge C;;. It should be noted, if the lengths of g; and g; are
obviously different, it is still possible g; and g; stand apart
from each other even if C;; is negative. However the lengths
of input vectors and basis vectors are normalized to 1 in our
experiments. Therefore the lengths of all of the coefficient
vectors are almost similar to each other. Thanks to this weak
constraint on the lengths of the coefficient vectors, g; and g;
stand close to each other in the reduced space by minimizing
J4(G) when C;; is set to a negative value.
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Table3  Multiplicative update rule for D-SNMF.

Algorithm 3 - D-SNMF  (our method)
Step 1 Initialize F and G as a random dense matrix.
Step 2 Update F and G until convergence.

Yk Xi G/ (FG Mg
A F;; « Fj; 2220 7 %
( ij ij Zk ij
(b) Normalize F. F « FU

X Fyi _
Lk FGT HUC Gy
© Gij « Gyj i
Y Y \ Y Fij +2(C*G);;

3.2 Cost Function and Update Rule for D-SNMF

Based on the previous discussion, the cost function for D-
SNMF is defined as:

J3(F,G) = DX|[FG") + tr(GTCG) 7
st. F>0,G>0.

This cost function can be minimized with the update rule in
Table 3.

The update rule in Step 2 (a) in Table 3 is the same
as that for D-NMF. The penalty term t7(G" CG) in Eq. (7)
stays constant during the updating process of F. There are
no differences in the updating process of F between D-NMF
and D-SNMF.

The following normalization step in Table 3 is done
differently between the two NMFs. For D-NMF, the column
vectors in F can be normalized without changing the value
of the cost function, because Jo(F,G) = Jo(FU,GU™ ") for
any non-negative and non-singular matrix U. However, this
equation is not satisfied for D-SNMF, because Eq. (7) has a
penalty term that only depends on G.

J5(F,G) # J3(FU,GU™"). ()

It is possible that normalizing F increases the value of the
cost function. To avoid this problem, Yang et al. [16] intro-
duced a more complicated penalty term that is independent
of the length of the column vectors of F. However, such a
complicated penalty term makes the update rule for F and G
more complex.

We instead avoid such complexity and allow the cost
function to vary under normalization. The basis matrix F
is only normalized during iteration in our proposed method.
Although it is possible that normalization may increase the
cost function, it was experimentally proved that the update
rule for F and G in Step 2(a) and (c) can decrease larger
amounts of the value of the cost function in almost any situ-
ation. In exchange for compromising mathematically guar-
anteed convergence, our update rule becomes simpler than
the previously proposed method [16]. This is a great advan-
tage that enables computational efficiency. In the last of this
section, we discuss about the order of the computation time
in detail.

The update rule of G can be derived from the Karush-
Kuhn-Tucker (KKT) condition in a similar fashion to that by
Wang et al. [18]. If the cost function converges in the update
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process, the final solution must satisfy the KKT condition.
The KKT condition can be derived from the Lagrangian
function for the cost function

L= J;F,G)-tr(BG"), ©)

where B € R™* is a Lagrangian multiplier. Eq.(10) is a
differentiation of L with respect to G.

aL X, Fyj
=—§ EF-Z i—Bi. (
0G;; : FGT), - b+ 2CCY =y (10

Letting dL/0G;; = 0, we obtain

X Fyj
ﬁij = — Zk: (FGT)ki + Zk: ij + Z(CG)U (11)

Equation (12) is the KKT condition that must be satisfied at
convergence.

X Fyj
- + F.; + Z(CG), Gi‘
( Zk: (FGT)y Zk: kj J i

= ﬂijGij =0. (12)

Here, we consider the following update rule of G.

XiiFr:/(FG ) + 2(CG);;
Giﬁcm\/zk WP/ PG +2C 6y

Y1 Fij +2(CTG);;

where C* and C~ are non-negative matrices that satisfy
C = C" — C". Because all the matrices that appeared in
the update rule are non-negative, it is clear that G is always
non-negative during iteration.

If the cost function converges in the update process, the
left part of Eq. (13) becomes equivalent to the right part at
the final solution as shown in Eq. (14).

Gy =Gy \/Zk XiiF i/ (FG )y + 2(C_G)ij. (14)

Y Fij +2(CTG);;

We rewrite Eq. (14) to obtain

XiiFyj )
- + Fi; + 2(CG);; |G, = 0. 15
X e acanfa-oas

This equation is equivalent to Eq. (12). Therefore, the up-
date rule satisfies the KKT condition at its final solution.

It is still unknown whether the update rule monotoni-
cally decreases the cost function or not. Although an auxil-
iary function is often used for proving a monotonic decrease
of NMF [8], it is difficult to define an auxiliary function for
the cost function in Eq. (7). However, despite the lack of
mathematical proof, the update rule did monotonically de-
crease the cost function for all input matrix and configu-
ration parameters used in all of our experiments; thus, we
believe that the proposed update rule is fairly robust in prac-
tical usage. The discussion about how the cost function de-
creased will be presented in the experiment section, 4.2.2.
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It should be emphasized that the penalty term is not al-
ways bounded below. If a constraint matrix only has cannot-
links, the penalty term is bounded below by zero because
both G and C are non-negative. However, when a con-
straint matrix has strong must-links with large magnitudes,
the penalty term occasionally goes to negative infinity. What
happens in this case is that the strong must-links make the
penalty term dominate over the divergence term. The mag-
nitudes of the penalty term should be set so that the penalty
term and the divergence term are well balanced for super-
vised learning. The magnitudes of must-links in the pro-
posed update rule should be chosen very carefully. The dis-
cussion about how the must-links and cannot-links were set
in our experiments will be presented in Sect. 4.1.3.

The previously proposed method[16] needs heavy
computation of an n-by-n inverse matrix, where n is a num-
ber of input data. Since the computation time of the inverse
matrix is proportional to the cube of n, the order of the com-
putation for each updating steps of [16] is about o(n*). On
the other hand, the bottle neck of our method is the computa-
tion of C*G and C™G if n is large. Since C*G and C~G are
n-by-n matrices, the order of the computation for each up-
dating steps is about o(n?). Besides, it has been reported in
[17] that multiplicative update approach converges within a
smaller number of iterations than such inverse-matrix-based
update rule. Therefore our updating rule is significantly
faster than [16].

3.3 L,-NMF with Prior Knowledge (L,-SNMF)

In this section, L,-NMF with prior knowledge is discussed
for the purpose of comparing it with D-SNMF. Similar to
the discussion in the previous section, the L,-NMF with
prior knowledge can be defined as:

J4(F,G) = |X - FGT|2 + tr(GTCG) (16)
st. F>0,G>0.

Similar optimization issues have already been tackled in
previous work [16]-[18]. In particular, Eq. (16) is equiva-
lent to the optimization problem discussed in [18] with ad-
ditional constraint F > 0. Taking this constraint into ac-
count, one can minimize the cost function with the update
rule given in Table 4.

Note that the update process of F in Table 4 is exactly
the same as that in Table 1, due to the fact that the penalty
term, (G " CG), stays constant during the updating process

Table 4  Multiplicative update rule for L,-SNMF.

Algorithm 4 - L,-SNMF (similar to Wang et al. [18])
Step 1 Initialize F and G as a random dense matrix.
Step 2 Update F and G until convergence.
(XG);j
(@) Fij e Fijm g
(FG' G);;

(b) Normalize F. F « FU
XTF);j + (C”G);j
(GFTF),'j + (C+G)l‘j

(©) Gij < Gyj
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of F. In Step 2(b), the cost function is less affected by nor-
malizing F as well as D-SNMF. Furthermore, it is clear
from the discussion in Wang et al. [18] that the update rule
of Step 2 (c) monotonically decreases the cost function.

4. Experiments on Image Dataset

We demonstrate that the proposed method, D-SNMF, can
construct an appropriate low-dimensional feature space for
classifying histogram features of images in this section.
To compare it with existing methods, D-SNMF, D-NMF,
L,-SNMF, L,-NMF, PCA, Linear Discriminant Analysis
(LDA) [20] and Marginal Fisher Analysis (MFA) [21] were
tested for a scene classification task using 13 Natural Scene
Categories [19]. This database includes four indoor and nine
outdoor categories. The sizes of images in the database
are varied. The average size of them is approximately
250 x 300 pixels. Before testing LDA and MFA, we applied
PCA to make a matrix non-singular in the same manner as
those in [20], [21]. 90% cumulative energies of original sig-
nals were retained in the preprocessing.

We will discuss three main points: differences in de-
composed factors with and without prior knowledge, con-
vergence performance, and comparison of classification ac-
curacies.

4.1 Experimental Setup
4.1.1 Extracting Histogram Features

First, an image was divided into blocks of 8 x 8 pixels, and
then every 2 x 2 blocks were defined as image patches. SIFT
descriptors [2] were computed from all the patches. Approx-
imate k-means clustering was applied to random subsets of
the descriptors obtained from the training set to define the
visual dictionary. Vocabulary size k was set to 200. Training
and testing images were encoded to visual words according
to the visual dictionary. The images were spatially divided
into 4 x 4 sub-regions to take into account the spatial layout
of visual words as shown in Fig.2. The pixel size of each
sub-region depends on the size of the image. Every train-
ing/test image commonly has 16 sub-regions. We extracted
200 dimensional histogram features from each of the 16 sub-
regions. Sixteen histogram features from the sub-regions
were integrated into a single 3200 dimensional feature vec-
tor. The L, norm of the vector was normalized to one.

Fig.2  The images were spatially divided into 4 X 4 sub-regions to take
into account the spatial layout of visual words. A red rectangle represents
each sub-region. The pixel size of the sub-regions depends on the size of
the image as shown in this figure.
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4.1.2 Learning and Classification

The 13 Natural Scene Categories consisted of four indoor
and nine outdoor categories. Each category included a few
hundred images. In each category, 100 images were ran-
domly chosen as training samples and another 100 images
were randomly chosen as testing samples. This means that a
number of input data, n, is 100x13 = 1,300 in the both cases
of training and testing. The experiments were repeated ten
times with different training and testing sets under the same
parameter conditions. The mean and standard deviation of
the classification accuracies were evaluated. In our exper-
iment, the dimension of feature vector, d, was 3,200 and a
number of basis vectors, k, were varied.

The learning and classification algorithm of the NMF
family is summarized in Table 5. The feature vectors of
training data were stored as column vectors in a training
matrix X, The training matrix X, was decomposed
into Fy,4;, and Gy, by using D-SNMF, D-NMF L,-SNMF,
and L,-NMF. The testing matrix X;.;; was decomposed into
G5 and Fy.,, keeping Fy;, fixed. This factorization can
be done by using D-NMF or L,-NMF without Step 2 (a) and
(b) in Table 1 or 2. The k-nearest neighbour algorithm was
applied to the testing data in the low-dimensional feature
space. Ten nearest neighbours were used in our experiment.

4.1.3 Adjusting Parameters of Constraint Matrix

The constraint matrices for D-SNMF and L,-SNMF were
determined as follows. Negative constant values were given
to must-links that were all the pairs of training data belong-
ing to the same category. Similarly, positive constant values
were given to cannot-links that were all the pairs of train-
ing data belonging to different categories. Figure 3 shows
the relationship between classification accuracy and the pa-
rameters of the cannot-links and must-links for L,-SNMF
and D-SNMF. The number of dimensions in reduced fea-
ture space was set to 25 in both cases. As can be seen

Table 5

Learning:
Input: Training images, C
Step 1 Define visual dictionary using training images.
Step 2 Extract histogram features from training images.
Step 3 Normalize Ly norm of features to one and
pack them into training matrix Xy.4i-
Step 4 Apply NMF to Xyqin.
Xtruin - FtrainG:;ain
OUtPUt: Ftrains Gtrain
Classification:
Input: Testing images, Fy4in,Girain
Step 1 Extract histogram features from testing images
Step 2 Normalize L, norm of the features to 1 and
pack them into testing matrix Xyg;.
Step 3 Apply NMF to X, (only updating Gy.sr)
Xtest - FtrainG;n
Step 4 Apply k-NN method using Gqgin and Gyegs.
Output: Classification results.

Learning and classification algorithm.
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L>-SNMF D-SNMF
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Fig.3  Relationship between constraint matrix and classification accura-
cies of D-SNMF and L,-SNMF. While cannot-links obviously improved
accuracy, must-links had less effect on accuracy than cannot-links.
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Fig.4 Coefficient matrix of testing data (left) and Euclidean distances
between all pairs of factorized testing data (right).

from Fig. 3, must-links have less effect on the classification
accuracy than cannot-links. We observed that the penalty
term occasionally went to negative infinity, when the val-
ues of must-links were set below —0.005. These observa-
tions indicate weak must-links should be used. Throughout
the experiment, the cannot-links were set to 1 for D-SNMF
and the must-links were set to —0.005. For L,-SNMEF, the
cannot-links were set to 0.005 and the must-links were set
to —0.005.

4.2 Experimental Results and Discussion
4.2.1 Differences in Decomposed Factors

It can be observed from Figs.4 and 5 that decomposed
factors obtained with D-SNMF have significant differences
compared with D-NMF. The left part of Fig.4 shows the
coefficient matrices G,y of the testing data. The right part
of Fig. 4 shows the Euclidean distance between all pairs of
testing data in the low-dimensional spaces. In the left and
right parts, the testing data that belong to the same category
are sequentially aligned along the axis. All the 13 scene
categories and 25 dimensional feature space were used to
obtain the results in Fig. 4.
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Figure 5 visualizes the basis vectors for testing im-
ages with different colored markers. Only four scene cat-
egories (streets, offices, bedrooms, and living rooms) and
four dimensional feature space were used to obtain the re-
sults in Fig.5. The basis vectors were visualized by us-
ing the following procedure. A testing vector X consists
of the four basis vectors F = [f},f,,f3,f,] weighted by
g = [91,92,93, 941" as follows:

x = gif| + gof 2 + g3f3 + gafs, (17

where f; = [fji,- -+, fiz200]" is a 3,200 dimensional basis
vector. For each basis vector f;, we considered to extract
specific visual words strongly relevant to the testing vector
x by using the following thresholding method. If g;fj, > T,
we regarded v-th visual word as relevant to x. Otherwise,
we regarded v-th visual word as irrelevant to x. All of
the relevant visual words were drawn as colored markers.
Since each visual word was extracted from an image patch
as shown in Sect. 4.1.1, the colored marker was drawn at the
center of the image patch which brought the relevant visual
word. If v-th visual word was regarded as relevant, all of
the image patches which brought the v-th visual word were
marked by the colored markers.

As can be seen from the left part of Fig. 4, the coeffi-
cient matrix of D-SNMF became more sparse than D-NMF.
Therefore, D-SNMF represented an input vector as a lin-
ear combination of fewer basis vectors than D-NMF, mean-
ing that a basis vector of D-SNMF was mostly assigned to
only a single category. The one-to-one correspondence be-
tween basis vectors and a category can also be observed
from Fig.5. We can clearly see that each basis vector ob-
tained by D-SNMF is strongly associated with a particular
category. However, for D-NMF, the basis vectors depicted
by yellow markers appeared in all four categories. Such
commonly observed basis vectors are not helpful for con-
structing a low-dimensional feature space.

Feature vectors in a low-dimensional space should
have small mutual distances within a class compared to be-
tween classes to achieve good classification. One can ob-
serve in the right part of Fig.4 that the difference between
within-class distances (the block-diagonal elements) and
between-class distances (the off-block-diagonal elements)
of D-SNMF is clearer than that of D-NMF, for almost all
category combinations. This indicates that supervised train-
ing by adding the penalty term to divergence results in supe-
rior performance in classification tasks, compared with un-
supervised NMF.

4.2.2 Convergence Performance

Figure 6 shows how the cost function of D-SNMF, J3, de-
creased during iterations. The first and the second term of
J3 in Eq. (7) are also shown in the figure. In all the experi-
ments, the cost function, i.e., the sum of divergence and the
penalty term, did converge after a few hundred iterations.
Even though each term went up and down at the beginning
of the iterations, both terms minimized toward their end. In



streets bedroom livingroom

(a) D-NMF

IEICE TRANS. INE. & SYST., VOL.E94-D, NO.10 OCTOBER 2011

streets office bedroom livingroom

(a) D-SNMF

Fig.5  Visualized basis vectors of (a) D-NMF and (b) D-SNMF: D-NMF and D-SNMF were applied
to four scenes (streets, offices, bedrooms and living rooms). Testing data were factorized to four dimen-
sional feature vectors. Each basis vector was depicted as colored makers on the images. Different basis
vectors of D-NMF were mixed up within same category. For D-SNMF, only single basis vector was
assigned to single category with few exceptions, e.g., “office-specific” vector or “living-room-specific”
vector was singled out. (This figure is best viewed in color.)
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Fig.6  Cost function of D-SNMF decreased by update rule in Table 4.
First term (divergence) and second term (penalty) of cost function are also
shown in figure.

Cost Function Value

the experiments, the update rule of D-SNMF always con-
verged for any input matrix and number of dimensions. The
update rule was demonstrated to be very robust for mini-
mizing the cost function if the must-links were reasonably

weak.
4.2.3 Comparison of Classification Accuracies

The classification accuracies of D-SNMF, D-NMF, L,-
SNMF, L,-NMF, PCA, LDA, and MFA are summarized in
Figs.7, 8 and Table 6. To enable the effect of reduced di-
mensionality to be seen more clearly, classification accu-
racies without dimensionality reduction are also shown in
Fig. 7 and Table 6. Figure 7 shows the relationship between
mean accuracy and the number of dimensions. Table 6 lists
the best mean accuracy and dimensions for each method.
Figure 8 shows the confusion matrices for D-NMF and D-
SNMFE.

The best mean accuracy of D-SNMF was 76.6%, which
was observed when 18 dimensional feature space was used.
Our D-SNMF achieved the highest classification rate for
the lowest dimensions among the four kinds of NMFs: D-
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Fig.8 Confusion matrices of D-NMF (left) and D-SNMF (right). D-
SNMF distinguished four scene categories indicated by arrows more
clearly than D-NMF.

Table 6 Comparison of best accuracies. Our D-SNMF achieved the
highest classification rate for the lowest dimensions among the four kinds
of NMFs: D-SNMF, L,-SNMF, D-NMF and L,-NMF.

Method Dim. | Accuracy (%)
org. 3200 61.4x1.7
PCA 35 68.1+1.1
LDA 12 76.0+0.4
MFA 15 73.1+1.1

L,-NMF 26 63.0+1.2

D-NMF 21 68.6x1.1

L,-SNMF 31 73.3x0.9
D-SNMF 18 76.6+0.6

SNMEF, L,-SNMF, D-NMF and L,-NMF. The best mean ac-
curacy of D-NMF was at most 68.6%. It was proved that the
constraint matrix had a significant effect on classification ac-
curacy. The classification accuracy of D-SNMF was slightly
superior to LDA and MFA, which were based on non-sparse
expression. The effect of supervised learning can also be
clearly observed from Fig. 8. For D-NMEF, the classification
results of offices, bedrooms, kitchens, and living rooms were
confusing, because many image features of these categories
resembled each other. D-SNMF ignores such common im-
age features and only extracts features that are specific to
each category. Figure 8 showed that D-SNMF clearly dis-
tinguished these four categories.

The advantage of divergence could be verified from the
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results of L,- and D- (S)NMFs. Although Frobenius norms
have been used as a standard metric for NMEF, reduced di-
mensionality by using L,-NMF had very little effect on his-
togram features. The best mean accuracy of L,-NMF was
63.3% and that was almost equivalent to the results for orig-
inal space. D-NMF performed better than L,-NMF as is
evident from Table 6. Although incorporating supervision
into L,-NMF increased classification accuracy, it was still
inferior to D-SNMF. The best mean accuracy of L,-SNMF
was 73.3%, which needed 31 dimensional space. D-SNMF
achieved even better accuracy with much smaller dimen-
sions. Furthermore, the classification accuracy of L,-SNMF
tended to drop as dimensions decreased, such as from 1 to
15. The mean accuracy of D-SNMF was always superior to
L,-SNMF for any dimensions.

One reason why the divergence-based NMFs outper-
formed the L,-based NMFs is that the generalized diver-
gence regarded frequently occurring visual words as in-
significant and less-frequently occurring visual words as
significant. This characteristic is very important to im-
prove classification accuracies because natural images in-
clude frequently-appearing texture patterns, (e.g., flat tex-
ture patterns) which are not informative and should be ig-
nored in classification task. The divergence-based NMFs
naturally ignore such insignificant visual words. This phi-
losophy is similar to that of tf-idf weighting scheme, which
gives large weights to meaningful visual words. Therefore
it makes sense that the tf-idf scheme also contributes to im-
prove object recognition accuracy as reported in [4].

It is interesting to discuss the reason why the classifica-
tion performances of the supervised methods, D-SNMF and
L,-SNMF, were dropped compared to the other methods in
the cases of lower dimensional spaces as shown in Fig.7.
We observed that the supervised NMFs tended to provide
many-to-one correspondences from basis vectors to a single
category, while the unsupervised NMFs gave many-to-many
correspondences from basis vectors to different categories.
In the case of low dimensions less than the number of cate-
gories, the supervised NMFs did not assign any basis vectors
to some categories. However, when the number of dimen-
sions was reached at 13 or more, the supervised NMFs gave
good classification performances, because at least one basis
vector was assigned to each category. This is an interesting
observation.

5. Experiments on Document Dataset

In this section, we demonstrate that our method also works
well for document classification. We show that D-SNMF
can create an appropriate low-dimensional feature space
even in the case where only a small number of training
samples are available. The 20 Newsgroups dataset [22],
which includes 18,774 documents and 61,188 words col-
lected from 20 different newsgroups, were used in this ex-
periments.

A method for learning and classification is almost the
same as the procedure shown in Sect.4.1.2. The major
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Fig.9 Classification accuracies of the 20 Newsgroups dataset.

difference from the Sect.4.1.2 is the way to choose train-
ing samples. In each category, n,.4; documents were ran-
domly chosen as training samples and another 50 documents
were randomly chosen as testing samples. This means that
20n,4i, training samples and 1,000 testing samples were
used in total. We observed the classification accuracies of D-
SNMF and D-NMF while increasing 7,4, from 20 to 100.
A number of topics, k, was set to 20. Thus 61,188 dimen-
sional feature vectors are mapped to 20 dimensional feature
space by D-(S)NMFs.

Figure 9 shows obvious difference between D-SNMF
and D-NMF. This figure leads to the suggestion that D-
NMF failed to discover category-specific topics from the
document dataset. On the other hand, D-SNMF succeeded
in finding the category-specific topics and gave good classi-
fication accuracies even in the case where only a small num-
ber of training samples, such as n,.,;, = 60, were used. We
believe that this characteristic is effective to classification
problem with a much larger number of categories. Because
even if we must cope with tens or hundreds of categories,
D-SNMF holds promise for reducing a number of training
samples to tractable size with small loss in classification ac-
curacy.

Although LDA provided the second best results in
the experiments on the image dataset as shown in Sect. 4,
we couldn’t tested the LDA on the document datasets be-
cause of the high dimensionality of the training/test samples.
Since an original feature space is 61,188 dimensions, scat-
ter matrices of size 61188 x 61188 have 3.7 x 10° elements
which require approximately 14 GBytes in single precision.
Therefore the computation of eigenvectors of the scatter ma-
trices was infeasible. The memory usage of D-SNMF was
so compact compared to LDA that the D-SNMF could cope
with such high dimensional features.

We checked a basis matrix, F = [f;,---,fy], to find
relationship between terms and topics. The element of the
basis vectors, £; = (fj1,- - ,fjﬁ“gg)T, were thresholded by a
constant value z. If f;, is larger than ¢ and f;, is smaller than
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Table 7

Category | Term

Baseball | san, ball, nl, red, al, jim, least, pretty, maybe, baseball, lost,
duke, having, today, runs, bob, park, early, roger, average,
hit, career, league, smith, bat, cubs, boggs, braves, pennant,
pitching, pitcher, phillies, yankees, sox, hitter, giants,
batting

buffalo, ny, period, maine, goal, during, show, pre, far,
wings, joseph, se, points, april, cup, chicago, andrew, cmu,
flyers, night, finland, nj, la, stars, canada, patrick, pts,
division, regular, score, sweden, italy, gary, boston,
pittsburgh, beat, ericsson, pens, louis, winnipeg, blues,
coverage, gerald, nyi, ulf, hockey, gld, jets, stanley, rangers,
playoffs, detroit, coach, espn, playoff, leafs, bruins, messier,
penguins, nhl, hawks

Category-specific terms extracted by D-SNMF.

Hockey

t for any i # j, we regarded v-th term as category-specific
term. In our experiment, ¢ was set to 0.05. Table 7 shows
the category-specific terms obtained by D-SNMF. Although
the 20 Newsgroups dataset includes similar categories such
as baseball and hockey, D-SNMF assigned them to different
basis vectors and succeeded in extracting category-specific
words. On the other hand, D-NMF assigned baseball and
hockey categories to the same basis vector. As shown in Ta-
ble 7, it was easily possible to interpret the meaning of basis
vectors obtained by D-SNMF at least 20 category classifi-
cation. It is still not known if it is possible to interpret the
meaning of basis vectors obtained from a dataset with much
larger number of categories. We think such large-scale ex-
periment is interesting for future work.

6. Conclusion and Future Work

We proposed a supervised method of reducing dimensional-
ity for histogram-based features by using NMF framework
in this paper. We reformulated NMF with a divergence simi-
larity measure within a supervised learning context by using
must-links and cannot-links between input data. A multi-
plicative update rule for minimizing the newly-defined cost
function was also proposed. The experimental results re-
vealed that supervised learning emphasized the sparsity of
factorized matrices. All basis vectors obtained from D-
SNMF represented a single specific category in most cases.
The class-specific characteristics not only had positive ef-
fects on classification accuracy but also made it easier to
interpret the bases.

It is naturally expected that D-SNMF can also construct
appropriate low-dimensional feature spaces for HoG, SIFT,
and other types of histogram-based features. Applying D-
SNMF to other types of histogram-based features would be
an interesting prospect for future work.
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