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SUMMARY We revisit the problem with generic object recognition
from the point of view of human-computer interaction. While many ex-
isting algorithms for generic object recognition first try to detect target ob-
jects before features are extracted and classified in processing, our work is
motivated by the belief that solving the task of detection by computer is not
always necessary in many practical situations, such as those involving mo-
bile recognition systems with touch displays and cameras. It is natural for
these systems to ask users to input the segmentation data for targets through
their touch displays. Speaking from the perspective of usability, such sys-
tems should involve rough segmentation to reduce the user workload. In
this situation, different people would provide different segmentation data.
Here, an interesting question arises – if multiple training samples are gen-
erated from a single image by using various segmentation data created by
different people, what would happen to the accuracy of classification? We
created “20 wild bird datasets” that had a large number of rough segmenta-
tion datasets made by 383 people in an attempt to answer this question. Our
experiments revealed two interesting facts: (i) generating multiple training
samples from a single image had positive effects on classification accu-
racies, especially when image features including spatial information were
used and (ii) augmenting training samples with artificial segmentation data
synthesized with a morphing technique also had slightly positive effects on
classification accuracies.
key words: Interactive recognition, generic object recognition

1. Introduction

Algorithms for generic object recognition generally first de-
tect target objects before features are extracted and classified
in processing. Since an input image includes various visual
information, the target detection task plays an important role
in removing insignificant image signals such as background
components. A sliding window is a classical way of detect-
ing targets. This approach tests predefined bounding boxes
on the targets using an object classifier. Although exhaus-
tive searches for possible bounding boxes are apt to increase
computational costs, it has been demonstrated that a cas-
caded classifier [1], [2] and a branch and bound search ap-
proach [3] can effectively reduce computational costs. An-
other approach makes use of the recent advantages of the
segmentation technique [4], [5] to identify the region con-
taining the target object. Gu et al. [6] focused on the subdi-
vided regions of an input image as perceptually meaningful
entities for the purpose of recognizing objects. They divided
an input image into small parts and used a “bag of regions”
representation to recognize the objects. The region-based
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approach naturally incorporates shape and scale information
into a feature vector without being affected by clutter from
outside the regions. This is a great advantage in generic ob-
ject recognition.

However, fully automatic object segmentation by com-
puter is still a complex problem because of ambiguity in the
object boundary. Let us consider some body parts of an
avian animal such as its head, legs, abdomen, chest, and
wings. No one can determine the “exact” boundaries of
these parts, because their boundaries are not precisely de-
fined. This means there is no ground truth for segmentation.
Despite such difficulties, most methods of segmentation de-
termine the boundary of regions based on edge intensities
without taking into account their conceptual meanings. The
segmentation of natural objects is a still challenging prob-
lem that remains unsolved in machine vision.

2. Motivation and Contribution

Our work was motivated by a belief that solving segmen-
tation tasks by computer is not always necessary in many
practical cases. Let us take an example of a recognition
system for wild birds using a mobile device equipped with
a touch display and a camera. It is natural in this situation
to delegate the task of segmentation to users. Human vi-
sual perception is still superior to that of computers. Even
if users do not know the name of the target, they can eas-
ily draw a contour of the target and even boundaries of their
parts with a touch display. The computer can then skip im-
age segmentation and only concentrate on feature extraction
and the classification. This means that users and the com-
puter can share the recognition task. Users can help detect
the target, and the computer can provide the name of the
target.

From the perspective of usability, the system should
not require users to draw closed contours in detail. More-
over, as was pointed out earlier, it is impossible to define
precise boundaries in the first place because of the problem
with ambiguity. For these reasons, the recognition system
should ask the user to input rough segmentation data. Fig-
ure 1 shows examples of roughly segmented regions drawn
by 10 different people. We asked them to draw four closed
curves that included four body parts of a bird: its entire
body, head, wing and torso (i.e., abdomen and chest). As
can be seen from the figure, they enclosed the regions in
various shapes depending on their own interpretations. All
different segmentation data provide different feature vectors
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(a) Entire body (b) Head

(c) Wing (d) Torso

Fig. 1 Ten rough segmentations drawn by different people who seg-
mented data differently for single image.

even from the same image. This characterizes the setting for
our problem.

Here, we propose a hypothesis that if training samples
are expanded by adopting diverse segmentation data, higher
classification accuracies will be achieved. While previous
approaches such as those by [7], [8] have generated only a
single training sample from a single image, our approach
generates multiple training samples from a single image us-
ing different segmentation results made by different people.
Our approach represents the ambiguity of segmentation as
diverse training samples. The problem with ambiguity is
expected to be solved in the learning process.

To test this hypothesis, we prepared “20 wild bird
datasets” with rough segmentation data that were composed
of four types of regions: the entire body, head, wing, and
torso of a bird. Ten different people independently prepared
the segmentation data for each single image. Seven kinds
of image features were tested through our experiments that
proved two interesting facts:

1. Generating multiple training samples from a single im-
age based on diverse segmentation datasets had pos-
itive effects on classification accuracies. The magni-
tudes of improvements depended on the types of image
features. Image features including spatial information
such as PHOG [9], [10] and PHOW [10] tended to have
greater apparent positive effects than “bags of features”
representations.

2. By using synthesized segmentation datasets together
with manually made segmentation datasets, the clas-
sification accuracies were slightly improved. Synthe-
sized segmentation datasets could be obtained by us-
ing a morphing technique that blended the two different
segmentation data made by people.

3. Related Works

3.1 Existing Methods

Classification accuracy strongly depends on the number of
training samples. A larger number of training samples gen-
erally results in higher classification accuracy. Since collect-
ing a sufficient number of training samples is problematic,

learning an object model from a small number of training
images has attracted a great deal of attention.

Representative works with the above motivation have
been proposed in [11], [12]. Fei-Fei et al. [11] created visual
models of object categories from just a few images, i.e., less
than or equal to five images per single category. They used
the generic knowledge derived from visual models that had
already been learned in advance. Lampert et al. [12] tack-
led a more challenging problem where no training samples
of a target class were available. They proposed attribute-
based classification to solve this problem. Their method was
based on the idea that certain kinds of attributes are shared
even with different categories. Image feature information is
transferred via the attributes from categories with training
samples to categories without training samples.

While we shared an awareness of the issues with [11],
[12], our approach utilized a technique that is often used
in the field of image pattern recognition [13], [14]. Ranzato
et al. [13] augmented the training image samples with new
image samples obtained by elastically distorting the origi-
nal training samples and they achieved the best classifica-
tion rate for the MNIST dataset [15], which is a widely used
dataset of handwritten digits. Lauer et al. [14] used affine
transformation to deform the original training samples and
obtained comparable results to [13]. This work revealed that
synthesizing new datasets from the original datasets effec-
tively improved classification accuracy. Our approach also
belongs to these kinds of studies.

From the perspective of human-computer interaction,
the system proposed by Zou et al. [16] is similar to our work.
Their system asks users to input the roughly shaped model
of a target to recognize flowers. Although their concept is
similar to ours in terms of sharing the recognition task be-
tween users and a computer, many more improvements can
be made to the part to extract features. They used simple im-
age features such as color histograms that did not have suffi-
cient discriminative power to enable generic object recogni-
tion. Researchers in the field of human-computer interaction
and multimedia generally tend to avoid discussion on image
features that are vitally important for generic object recog-
nition.

3.2 Difference between Our Method and Existing Meth-
ods

We attempt to augment training samples as well as [13] and
[14]. It can be safely said that the main difference between
our method and the existing methods is a way how to de-
form a feature vector of a target. The existing methods, so-
called elastic distortion [13] and affine distortion [14], geo-
metrically deform pixel patterns. On the other hand, our
method deforms a boundary of the target in accordance with
various segmentation datasets provided by different people.

The reason why we preferred the boundary deforma-
tion to the elastic and the affine deformation is that we in-
tend to incorporate human-factor into augmenting training
samples. For example, as can be seen from Fig. 1, people
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differently recognized boundaries of the torso and provided
enormously varied boundaries. On the other hand, all of
the people gave relatively similar boundaries to the head.
This is caused by ambiguity of object boundaries. The level
of the variation of boundaries depends on parts of targets
and individuals. It is difficult to cope with the ambiguity is-
sue of boundaries by the simple systematic approaches such
as the elastic and the affine distortion, because they don’t
take into account any of the human-factor. It is needless to
say that if the pixel displacements by the elastic and affine
deformation are too large to preserve original signals, the
classification accuracy will decrease rather than increase.
Therefore it is very important to choose good deformation
parameters which provides naturally deformed image sets.
However, in our problem setting, it is very difficult to find
such good parameters because the deformation magnitude
of boundaries greatly depends on parts of targets and indi-
viduals. By collecting real segmentation data from people
in advance, we can naturally model the variation of bound-
aries. This leads to good classification accuracy. In sum-
mary, our approach revisits the conventional approach of in-
creasing training samples from the point of view of human-
computer interaction, which leads to solving the ambiguity
issue.

In statistics, bootstrapping [17] is often used to estimate
parameters by random sampling with replacement from a
small number of observations. The concept of the bootstrap-
ping is also similar to that of our method, but does not take
the human-factor into consideration.

After this, the rough region boundary drawn by a per-
son will be denoted as a “stroke” to distinguish it from a
precise boundary.

4. Datasets and Methodology

4.1 20 Wild Bird Datasets

Some previous image datasets such as the VOC2009 [18]
and the Caltech101 [19] have detailed segmentation data
that were prepared by people. In contrast, a rough yet a large
number of segmentation datasets are necessary to evaluate
our idea of interactive recognition.

We created 20 wild bird datasets with strokes that were
created by 383 people. Sample images in our datasets are
presented in Fig. 2 and sample strokes are given in Fig. 3.
The datasets consist of 20 kinds of wild birds. Each category
is composed of 36-112 images, and there are a total of 1,230
images. Ten different individuals made four types of strokes
for a single image, i.e., the entire body, head, wing, and
torso in turn. Each stroke was a single closed curve and
was represented as a two-dimensional point sequence. The
average size of the images was approximately 400 × 490
pixels. The widths ranged from 180 to 640 pixels, and the
heights ranged from 116 to 640 pixels. A bird was captured
in various poses and on various scales in each of the images
and it was not aligned.

These images were downloaded from Google image

search and they were manually cropped so as to capture just
a single bird in an image. All strokes were collected using
the Amazon Mechanical Turk [20] Web service that enabled
us to ask a large number of workers to do simple yet intelli-
gent tasks. We sent requests for them to draw the four types
of rough strokes on each image. The strokes we obtained in
our datasets were made by 383 different workers in total.

4.2 Synthesizing Strokes

A new stroke can be synthesized from two manually made
strokes by using a morphing technique. This method, which
is similar to elastic distortion [13] and affine transforma-
tion [14], makes it possible to increase the number of train-
ing samples. The morphing process consists of two steps of
(i) obtaining a correspondence between two strokes and (ii)
interpolating them.

Scott et al. [21] proposed a method of obtaining corre-
spondences between two closed curves subject to preserv-
ing order in the sequence of points. The costs in their for-
mulation of all possible pairing points were expressed as an
M×N cost matrix, where M and N are the numbers of points
on the two curves. They solved the assignment problem for
the cost matrix by using an efficient dynamic programming
algorithm. Here, we denote the numbers of points of two
strokes as N1 and N2. The size of the cost matrix is N1 × N2

and its elements are defined as squared distances among all
possible pairing points. Figure 4 (a) shows an example of a
matching result.

New points are uniformly inserted onto line segments
between the matching points to obtain one-to-one corre-
spondences for every point as seen in Figs. 4 (b) and (c).
This generates two resampled strokes that are composed of
the same number of points. A new morphed stroke can be
generated by linearly interpolating them by using a blending
factor in a range from 0 to 1.

4.3 Image Features

This section describes methods of extracting a single feature
vector from a single stroke. Here, we introduce seven types
of image features without color information for comparison.
Three of them are “bags of features” and the rest of them are
image features with spatial information.

4.3.1 Bags of Features (without Spatial Information)

A histogram representation of visual words was extracted
from an image only inside the stroke according to [22] with
slight modifications. Three hundred kinds of visual words
were defined based on training images. This provided a 300
dimensional vector for each stroke.

Three types of image features of original SIFT, dense
SIFT, and affine SIFT were tested. While these three meth-
ods use the same descriptor proposed by [23], their detection
processes for points of interest differ. The original SIFT [23]
detects feature points with a surrounding circle at the max-
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(1) Azure-winged Magpie (2) Bewick’s Swan

(3) Black-headed Gull (4) Blue-and-white Flycatcher

(5) Bohemian Waxwing (6) Bull-headed Shrike

(7) Great Spotted Woodpecker (8) Japanese Pheasant

(9) Japanese White-eye (10) Lesser Short-toed Lark

(11) Little Ringed Plover (12) Long-tailed Tit

(13) Pheasant-tailed Jacana (14) Pine Grosbeak

(15) Rock Ptarmigan (16) Starling

(17) White Wagtail (18) White-naped Crane

(19) Willow Tit (20) Yellow Wagtail

Fig. 2 Sample images of 20 wild bird datasets.

Fig. 3 Sample strokes of entire bodies, heads, wings, and torsos are shown in these figures. Each
image has 10 different strokes for each body part. The 10 different strokes have been overlaid on these
images.
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(a) Matching (b) Resampling (c) One-to-one correspondence

Fig. 4 Morphing process.

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Fig. 5 Multilevel pyramids for PHOG and PHOW. Bounding box is di-
vided into many cells at each level.

ima/minima of the Difference of Gaussians (DoG) of the
given image. Dense SIFT [7] divides the image into blocks
of 8 × 8 pixels, and then every 2 × 2 blocks are defined
as image patches. Descriptors were computed from all the
patches. Affine SIFT [24] finds scale and affine invariant
points by using a multi-scale representation for the Harris
interest point detector. Affine invariant regions around the
points are represented as ellipses.

4.3.2 Features with Spatial Information

Pyramid histograms of orientation gradients (PHOG [9])
and pyramid histograms of visual words (PHOW [10]) were
also used in our experiments.

PHOG divides a target region into K × K grids at each
level l, where K = 2l as shown in Fig. 5. The target region
is determined as a minimum rectangle without rotation that
encloses a stroke. Histograms of the orientation of gradients
are calculated from each cell excepting pixels outside the
stroke. The gradient angles in the 0 to 360 range are quan-
tized into eight bins.All the histograms of cells that appear
in 0 to L levels are concatenated into a single vector with
dimensionality 8

∑L
l=0 4l.

PHOW is similar to PHOG in terms of dividing the tar-
get region into multilevel pyramids. Instead of using the ori-
entation of gradients, PHOW calculates the histogram rep-

resentation of visual words from each cell excluding feature
points outside a stroke. Three hundred dimensional vectors
are extracted from each cell. This results in a feature vec-
tor with dimensionality 300

∑L
l=0 4l. The three types of point

detectors of original SIFT, dense SIFT, and affine SIFT are
also used for PHOW. If L = 0, PHOW is equivalent to a bag
of features representation. In our experiment, L was set to
three for both PHOG and PHOW.

5. Experiments

5.1 Experimental Conditions

The five experimental conditions for classification are sum-
marized below.

• Classifier
A linear SVM based on one-vs-the rest approach was
used for multi-class classification. A software package,
the LIBLINEAR [25], was used for this purpose.
• Images for training/testing

Each category of our dataset is composed of 36-112
images. First, 35 images were randomly chosen from
each category. The randomly chosen images were sep-
arated into 20 training images and 15 test images. Thus
the training and the testing samples were not over-
lapped. Experiments were repeated ten times with
different training and testing sets. The mean values
and standard deviations for the classification accuracies
were evaluated.
• Strokes

For each training image, multiple manually made and
synthesized strokes were used. Two manually made
strokes were randomly chosen to synthesize a new syn-
thesized stroke. A blending factor for morphing was
randomly determined between 0 and 1. For each testing
image, a single manually made stroke was randomly
chosen from our datasets.
• Target region

Two different experiments were performed. (i) Indi-
vidual body parts: The first was where a feature vec-
tor was only extracted from one of the four kinds of
regions: an entire body, head, wing, and torso. The
L2-norm of the feature vector was normalized to 1. (ii)
Integrated body parts: The second experiment was
where all four regions were used in a feature vector.
First, four feature vector components were extracted
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(a) Integrated body parts (b) Entire body (c) Head

(d) Wing (e) Torso

Fig. 6 Relationships between classification accuracies for 20 wild birds and numbers of manually
made strokes used for training samples.

from the four kinds of regions, and each of the L1-
norms was normalized to one. Then, the four compo-
nents were concatenated into a single integrated feature
vector. The L2-norm of the integrated feature vector
was normalized to one.
• Image feature selection

Seven kinds of image features described in Sect. 4.3
were tested.

5.2 Experimental Results

5.2.1 Results Using Manually Made Strokes

Figure 6 plots the relationships between classification accu-
racies for the 20 wild birds and numbers of manually made
strokes used in the training samples. No synthesized strokes
were used for training. The numbers of manually made
strokes ranged between 1 to 10. Thus, the total numbers
of training samples ranged from 400 up to 4000. The results
for integrated body parts are given in Fig. 6 (a). In addi-
tion, the results for individual body parts are presented in
Figs. 6 (b)-(d). Seven kinds of image features explained in
Sect. 4.3 are compared in these figures.

Table 1 compares the single-stroke results and 10-
stroke results. The statistical significances in improvements
to classification by expanding the number of training sample
were evaluated based on the Wilcoxon signed-rank test at a
significance level of 5%. Statistically significant improve-

Table 1 Magnitudes of improvements when numbers of strokes were
increased from 1 to 10. Statistically significant improvements are in bold
face.

(a) Integrated body parts
Image features Number of strokes Improvement

1 10
PHOG 43.3 ± 3.7 56.2 ± 2.5 12.9 ± 2.9

PHOW (Original SIFT) 44.5 ± 1.9 51.0 ± 2.3 6.5 ± 2.3
PHOW (Affine SIFT) 50.6 ± 2.5 57.5 ± 2.0 6.9 ± 2.3
PHOW (Dense SIFT) 54.9 ± 2.0 61.3 ± 1.8 6.4 ± 1.6
BoF (Original SIFT) 41.3 ± 3.9 44.0 ± 2.2 2.7 ± 2.8
BoF (Affine SIFT) 46.1 ± 2.0 50.0 ± 2.6 3.9 ± 2.6
BoF (Dense SIFT) 48.6 ± 2.0 53.0 ± 2.3 4.4 ± 1.6

BoF: Bags of features
(b) Entire body

Image feature Number of strokes Improvement
1 10

PHOG 35.7 ± 3.0 40.9 ± 2.7 5.1 ± 2.1
PHOW (Original SIFT) 40.0 ± 3.1 40.8 ± 3.0 0.8 ± 1.8
PHOW (Affine SIFT) 43.9 ± 2.2 45.2 ± 1.9 1.3 ± 1.8
PHOW (Dense SIFT) 44.2 ± 2.2 47.1 ± 3.3 2.9 ± 2.2
BoF (Original SIFT) 32.5 ± 1.9 28.6 ± 2.8 −3.9 ± 1.4
BoF (Affine SIFT) 33.8 ± 0.8 29.9 ± 1.3 −3.9 ± 1.3
BoF (Dense SIFT) 34.4 ± 2.6 33.0 ± 2.1 −1.4 ± 1.6

ments are indicated in bold face.

5.2.2 Results Using Synthesized Strokes

Figure 7 plots the relationships between accuracies and
numbers of augmented strokes obtained with the morph-
ing technique described in Sect. 4.2. In this experiment,
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(a) PHOG

(b) PHOW (Original SIFT) (c) PHOW (Affine SIFT) (d) PHOW (Dense SIFT)

Fig. 7 Relationships between accuracies and numbers of augmented strokes obtained with morphing
technique. Results without using synthesized strokes have also been plotted as horizontal lines for
comparison.

Table 2 Difference between uses of manually made strokes and augmented strokes, where all four
body parts were used. Statistically significant improvements are in bold.

Image Manually made strokes Augmented strokes Improvement
feature Norg Nsyn Sum. Accuracy Norg Nsyn Sum. Accuracy

3 0 3 50.8 ± 3.3 3 27 30 53.2 ± 2.4 2.4 ± 3.2
PHOG 5 0 5 53.9 ± 2.5 5 25 30 55.6 ± 2.5 1.6 ± 3.2

10 0 10 56.2 ± 2.5 10 20 30 57.5 ± 2.1 1.4 ± 2.2
3 0 3 48.6 ± 2.7 3 27 30 51.0 ± 2.8 2.4 ± 1.5

PHOW 5 0 5 49.7 ± 2.2 5 25 30 50.9 ± 2.8 1.2 ± 1.4
(Original SIFT) 10 0 10 51.0 ± 2.3 10 20 30 51.6 ± 2.4 0.6 ± 1.6

3 0 3 56.1 ± 1.7 3 27 30 56.9 ± 1.7 0.8 ± 1.5
PHOW 5 0 5 56.7 ± 1.8 5 25 30 57.3 ± 2.7 0.6 ± 1.4

(Affine SIFT) 10 0 10 57.5 ± 2.0 10 20 30 58.0 ± 2.1 0.5 ± 0.8
3 0 3 58.8 ± 2.4 3 27 30 59.9 ± 2.4 1.1 ± 1.5

PHOW 5 0 5 60.3 ± 2.3 5 25 30 61.2 ± 2.6 0.9 ± 1.2
(Dense SIFT) 10 0 10 61.3 ± 1.8 10 20 30 61.7 ± 2.4 0.4 ± 1.0

Nsyn synthesized strokes were generated from Norg manually
made strokes. Three different cases, where Norg was set to 3,
5, and 10, were examined. Since the manually made strokes
were used together with the synthesized strokes for learning,
the number of training samples per image was Norg + Nsyn.
The results for three cases, where only 3, 5, and 10 manually
made strokes were used, have also been plotted as horizon-
tal lines to enable comparison. The results for the four kinds
of image features of PHOG and PHOW based on original,
affine, and dense SIFT are given in Figs. 7 (a)-(d).

Table 2 summarizes the magnitudes of improvements
for PHOG and PHOW in the experiments on integrated body
parts. As in Table 1, statistically significant improvements
are in bold face.

5.3 Discussion

5.3.1 Manually Made Strokes

When image features with spatial information, PHOG, and
PHOW were used, classification accuracies were improved
as the number of samples increased in most cases as shown
in Figs. 6 (a)-(e). The use of the feature vectors of inte-
grated body parts yielded particularly significant improve-
ments. PHOG achieved the best improvement of 12.9% on
average and three kinds of PHOWs also yielded apparent
improvements of 6.4%-6.9% on average. However, bags
of features could not obtain as many apparent benefits as
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Fig. 8 Quantitative evaluation for variations of feature vectors. (Left) three different strokes and
corresponding cells. (Right) probabilities of cases where points of interest were voted into different
histogram bins.

PHOG and PHOW. Rather, in many cases where only an in-
dividual body part was used, accuracies tended to decrease
as the number of training samples increased as shown in
Figs. 6 (b)-(e).

According to these observations, it can be deduced that
incorporating globally spatial information into image fea-
tures is intrinsically important in the learning of expanded
numbers of training samples. Here, a question may arise
– why is spatial information so important in improving ac-
curacies? We considered the reasons to be as follows. It
is preferable for elements in a feature vector to change
globally depending on the deformation of the stroke to ob-
tain higher classification accuracies. Therefore, we evalu-
ated the variations in feature vectors derived by deforma-
tion. Figure 8 (left) shows the voting process for creating
histogram-based features in PHOG and PHOW. Three dif-
ferent strokes are shown in this figure. For each stroke, the
white point is voted into a different histogram bin, because
this point belongs to different cells. Figure 8 (right) sum-
marizes the probabilities for where a point of interest (or
a pixel in PHOG) was voted into different histogram bins.
Interestingly, the probability increased as the pyramid level
increased. This means that a higher level for the pyramid
globally changes elements of feature vectors. The distri-
butions of feature vectors were expanded in feature space
in this way. In other respects, quantization errors in grid
partitioning were weakened by ensemble representations of
feature vectors in feature space. We believe that this is one
reason spatial information is so important.

In an exceptional case, Table 1 (a) lists slight improve-
ments of 2.7%-4.4% on average, even when bags of features
were used. However, these features are not true “bags of
features” representations, because rough spatial information
in the four body parts were incorporated into the integrated
feature vector by concatenating the four feature-vector com-
ponents. This rough spatial information was considered to
have had slightly positive effects on classification accura-
cies.

5.3.2 Synthesized Strokes

Augmenting training samples with synthesized strokes
brought about slight improvements in many cases, espe-

cially when the synthesized strokes were generated from
three manually made strokes. As can been seen from Ta-
ble 2, no negative effects were found. Therefore, if a limited
number of stroke data is available, the use of augmented
training samples by synthesizing new strokes is a good al-
ternative to improving classification accuracies.

The degree of improvement depends on the quality of
synthesized data. In this work, only two strokes were used
to interpolate new contours by using a morphing technique.
More sophisticated methods that resemble manually made
strokes would improve the accuracy of classification. This
is an interesting direction for future work.

The use of a large number of training images will be
very important to develop practical applications based on
generic object recognition in the future. As a related work, it
have been reported that 80 million training samples give im-
pressive improvement on classification accuracy [26]. The
way how to collect such a large number of training samples
is a significant issue. We could give one of the solutions to
the issue.

6. Conclusions

In this paper, we revisited the problem with generic object
recognition from the point of view of human-computer inter-
action. We attempted to improve the classification accuracy
by augmenting training samples and obtained the following
two conclusions.

1. In most cases, we could improve the classification ac-
curacies by using a large number of the manually made
strokes. Image features including spatial information
such as PHOG and PHOW tended to have greater ap-
parent positive effects than “bags of features” represen-
tations.

2. The use of synthesized segmentation datasets led to a
little improvement on the classification accuracies. Al-
though the magnitude of the improvement was a lit-
tle, this approach gave no negative effect on the clas-
sification accuracies even in worst case. If it is diffi-
cult to collect a sufficient number of manually made
strokes, synthesizing new strokes from them is worth
trying. On the other hand, if a large number of the man-
ually made strokes are available, the use of synthesized
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strokes will give no improvement.

We believe that it is becoming increasingly important
to revisit the problem with generic object recognition from
the perspective of human-computer interaction. The best
way of separating the recognition task between users and
computers should be carefully considered to design practi-
cal applications. We believe our work provided new contri-
butions in this direction.
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[5] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “From contours
to regions: An empirical evaluation,” Proc. CVPR, pp.2294–2301,
2009.

[6] C. Gu, J.J. Lim, P. Arbelaez, and J. Malik, “Recognition using re-
gions.,” Proc. CVPR, pp.1030–1037, 2009.

[7] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,”
Proc. CVPR, pp.2169–2178, 2006.

[8] H. Zhang, A.C. Berg, M. Maire, and J. Malik, “SVM-KNN: Dis-
criminative nearest neighbor classification for visual category recog-
nition,” Proc. CVPR, pp.2126–2136, 2006.

[9] A. Bosch, A. Zisserman, and X. Munoz, “Representing shape with
a spatial pyramid kernel,” Proc. International Conference on Image
and Video Retrieval, 2007.

[10] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using
random forests and ferns,” Proc. ICCV, pp.1–8, 2007.

[11] L. Fei-Fei, R. Fergus, and P. Perona, “A bayesian approach to
unsupervised one-shot learning of object categories,” Proc. ICCV,
p.1134, 2003.

[12] C. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect un-
seen object classes by between-class attribute transfer,” Proc. CVPR,
pp.951–958, 2009.

[13] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, “Efficient learn-
ing of sparse representations with an energy-based model,” Ad-
vances in Neural Information Processing Systems 19, pp.1137–
1144, 2007.

[14] F. Lauer, C. Suen, and G. Bloch, “A trainable feature extractor
for handwritten digit recognition,” Pattern Recognit., vol.40, no.6,
pp.1816–1824, 2007.

[15] Y. LeCun, and C. Cortes, “THE MNIST DATABASE of handwritten
digits.” http://yann.lecun.com/exdb/mnist/

[16] J. Zou and G. Nagy, “Visible models for interactive pattern recogni-
tion,” Pattern Recognit. Lett., vol.28, no.16, pp.2335–2342, 2007.

[17] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd
Edition), 2001.

[18] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A.
Zisserman, “The PASCAL Visual Object Classes Challenge 2009
(VOC2009) Results.” http://www.pascal-etwork.org/challenges/
VOC/voc2009/workshop/index.html.

[19] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol.28, pp.594–611, 2006.

[20] “Amazon Mechanical Turk.”

https://www.mturk.com/mturk/welcome.
[21] C. Scott and R. Nowak, “Robust contour matching via the order-

preserving assignment problem,” IEEE Trans. Image Process.,
vol.15, no.7, p.1831, 2006.

[22] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” Proc. Workshop on Statisti-
cal Learning in Computer Vision, ECCV, p.22, 2004.

[23] D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol.60, no.2, pp.91–110, 2004.

[24] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest
point detectors,” Int. J. Comput. Vis., vol.60, no.1, pp.63–86, 2004.

[25] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “LIBLINEAR:
A library for large linear classification,” J. Mach. Learn. Res., vol.9,
pp.1871–1874, 2008.

[26] A. Torralba, R. Fergus, and W.T. Freeman, “80 million tiny images:
A large data set for nonparametric object and scene recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol.30, no.11, pp.1958–
1970, 2008.

Mitsuru Ambai received his B.E., M.S.,
and Ph.D. in information and computer science
from Keio University in 2002, 2004 and 2007,
respectively. Currently, he is Senior Engineer
of research and development group at Denso IT
Laboratory, Inc., Tokyo, Japan. His research in-
terests include image processing and computer
vision.

Yuichi Yoshida received his B.E., M.S.
in engineering science from Osaka University
in 2001 and 2003, respectively. From 2003 to
2007, he was a researcher at NTT Corporation.
Currently, he is Senior Engineer of research
and development group at Denso IT Laboratory,
Inc., Tokyo, Japan. His research interests in-
clude computer vision and human-computer in-
teraction.


