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Enhancing Eigenspace-Based MLLR Speaker Adaptation
Using a Fuzzy Logic Learning Control Scheme

Ing-Jr DING†a), Member

SUMMARY This study develops a fuzzy logic control mechanism in
eigenspace-based MLLR speaker adaptation. Specifically, this mechanism
can determine hidden Markov model parameters to enhance overall recog-
nition performance despite ordinary or adverse conditions in both training
and operating stages. The proposed mechanism regulates the influence of
eigenspace-based MLLR adaptation given insufficient training data from a
new speaker. This mechanism accounts for the amount of adaptation data
available in transformation matrix parameter smoothing, and thus ensures
the robustness of eigenspace-based MLLR adaptation against data scarcity.
The proposed adaptive learning mechanism is computationally inexpen-
sive. Experimental results show that eigenspace-based MLLR adaptation
with fuzzy control outperforms conventional eigenspace-based MLLR, and
especially when the adaptation data acquired from a new speaker is insuffi-
cient.
key words: speech recognition, speaker adaptation, HMM, Eigen-MLLR,
fuzzy control

1. Introduction

Automatic speech recognition systems can generally be
classified as either speaker-independent (SI) or speaker-
dependent (SD) systems, depending on how speech sam-
ples are collected during system construction. An SI system
typically collects speech samples from as large a popula-
tion of speakers as possible, whereas a SD system collects
a large amount of sample data from one designated speaker.
A well-trained SD model can generally achieve better per-
formance than an SI model in recognizing the speech of a
specific speaker. However, without sufficient training data,
the SD model is no longer superior. This is where speaker-
adaptive (SA) techniques, sometimes called model-based
adaptation techniques, come into play. These techniques
convert a full SI model into an SD model, achieving SD-
like performance while requiring only a small fraction of
the speaker-specific training data. When a new speaker uses
this type of adaptive system, the system updates the param-
eters of hidden Markov models (HMMs) using speech data
from the new speaker. Speaker adaptation can significantly
improve recognition performance for non-native speakers or
those not well represented in the SI training set.

There are currently three main categories of speaker
adaptation [1]:

(1) Maximum a posteriori (MAP) adaptation, which is
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a type of Bayesian-based adaptation [2], [3].
(2) Maximum likelihood linear regression (MLLR)

adaptation, which is a type of transformation-based adap-
tation [4], [5].

(3) Eigenvoice-based adaptation [6].
Before the advent of the eigenvoice approach in 2000,

the MAP and MLLR adaptation techniques were the most
commonly used techniques for speaker adaptation, and cur-
rently appear in almost all speech recognition systems.
In [7], a combination scheme of MAP and MLLR was
proposed to combine the quick adaptation characteristics
of transformation-based methods with the nice asymptotic
properties of Bayesian-based methods. Eigenvoice-based
adaptation is a relatively new member in the speaker adap-
tation family. First appearing around 2000 [6], this tech-
nique is also known as speaker-clustering-based adaptation.
Subsequent studies introduced effective hybrids of MAP-
/MLLR-eigenvoice adaptation ([8] and [9], respectively).
The eigenvoice-based approach has received a lot of atten-
tion, and researchers have developed various extensions of
eigenvoice adaptation [8]–[13].

The MLLR speaker adaptation scheme proposed by
Leggetter et al. [4] is a major transformation-based adap-
tation technique that has proven to be quite popular in
many speech recognition applications due to its rapid adap-
tation. This MLLR speaker adaptation scheme adjusts
the SI model parameters according to shared linear trans-
formations. However, there must be enough adaptation
data to estimate the MLLR transformation. Researchers
have suggested various solutions for further reinforcement.
For instance, the maximum a posteriori method estimates
the transformation parameters by maximizing the posterior
density [14], [15] instead of using the maximum likelihood
(ML) estimate in the MLLR scheme. Other studies [16],
[17] suggest using a prior distribution to calculate the mean
transformation matrix parameters. This approach is gener-
ally called the MAPLR technique. Besides using a MAP-
style estimate to acquire transformation parameters, another
study [18] proposes the discounted likelihood estimation
method. This variant of the Expectation-Maximization (E-
M) algorithm [19] optimizes a discounted likelihood crite-
rion. These variants of the MLLR scheme attempt to ad-
dress the difficulty of estimating the transformation given
insufficient adaptation data.

Chen et al. proposed an Eigen-MLLR approach based
on the eigenspace-based technique that improves upon the
rapid adaptation performance of MLLR [9]. Instead of em-
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phasizing robust transformation, the Eigen-MLLR approach
applies a priori knowledge analysis to the training speakers.
However, the Eigen-MLLR approach achieves substandard
recognition performance given insufficient adaptation data.
To tackle the issue of unreliable Eigen-MLLR adaptation
given insufficient training data, this paper proposes a fuzzy
control mechanism that regulates Eigen-MLLR. Based on
the amount of adaptation utterances available, the fuzzy con-
trol mechanism exploits the rapidness and effectiveness of
MLLR adaptation as much as the training data allows, while
alleviating the undesired effect of poor adaptation. Fuzzy
approaches have been widely applied to the field of speech
recognition for many years, and play a role in data clus-
tering, logic reasoning, and neural network configuration
for speech recognition [20]–[22]. In addition, Ohkura et
al. applied the fuzzy k-nearest neighbor scheme to develop
the transfer vector field smoothing (VFS) speaker adapta-
tion technique, which in nature belongs to fuzzy classifica-
tion applications [23]. The Eigen-MLLR speaker adaptation
computations in this study are based on fuzzy logic control
(FLC) regulation [24]–[26].

The Eigen-MLLR adaptation framework essentially
belongs to the type of the linear interpolation of a prior
knowledge about training speakers and a speaker spe-
cific model. The linear interpolation technique is partic-
ularly useful to deal with the problem of sparse training
data. Many approaches for speaker adaptation also em-
ploy such linear interpolation techniques, such as MAP
of the Bayesian-based adaptation category and MAPLR
of the transformation-based adaptation category mentioned
above. For improving the performance of those adaptation
methods using linear interpolation, far more studies have
been proposed for the adaptation of Bayesian-based and
transformation-based categories than that of the eigenvoice-
based category [27], [28]. Eigen-MLLR is a typical repre-
sentative of eigenvoice-based adaptation that uses the linear
interpolation framework, and therefore, this paper presents a
fuzzy logic learning control scheme, specifically for Eigen-
MLLR, to enhance the interpolation of Eigen-MLLR.

The rest of the paper is organized as follows. Section 2
briefly describes the theoretical formulations of MLLR and
Eigen-MLLR. This section also introduces the fuzzy logic
control algorithm used to adjust the parameters of Eigen-
MLLR adaptation. Section 3 presents experimental results
that compare the effectiveness and performance of the pro-
posed approach to conventional MLLR, original eigenvoice-
based adaptation, and Eigen-MLLR. Finally, Sect. 4 pro-
vides a conclusion.

2. Eigenspace-Based MLLR under FLC Regulation

This section first briefly reviews the general MLLR method
and the Eigen-MLLR adaptation, and then introduces the
proposed Eigen-MLLR adaptation framework using FLC to
enhance the conventional Eigen-MLLR.

2.1 MLLR

Transformation-based model adaptation first derives appro-
priate transformations from a set of adaptation utterances ac-
quired from a new speaker, and then applies them to clusters
of HMM parameters. Adding a cepstral bias for model adap-
tation is the simplest form of transformation, and is easy
to estimate and perform [29]. Usually, adding a bias does
not take care of variations in test environments or differ-
ent speakers. An affine transformation (linear transforma-
tion) over HMM parameters is generally a more appropri-
ate model, and researchers have developed numerous adap-
tation schemes using affine transformations. Leggetter et
al. [4] first proposed MLLR adaptation under the framework
of affine transformation, and this method has become quite
popular and successful due to its rapid adaptation. How-
ever, sufficient adaptation data is required to ensure accurate
MLLR transformation estimation.

Transformation-based speaker adaptation generally
starts with a set of SI HMMs, Λ. A certain transformation
Fη with parameters η derived from observation data (adapta-
tion data), O, of a new speaker is then applied, allowing the
transformed model Fη(Λ) to recognize the incoming speech
better than Λ did. The transformation parameters η, called
linear regression parameters, are usually assumed to be fixed
and then estimated via statistical measures under specific
criteria such as ML or MAP, as in [4] and [16], respectively.

MLLR takes advantage of the simplicity of the ML cri-
terion, which states that the transformed model η̂ML should
maximize the likelihood of the adaptation data p(O|Λ, η),
i.e.,

η̂ML = arg max
η

p(O|Λ, η). (1)

For the Gaussian mean vector of the model at state s, μs, the
associated affine transformation action is as follows

μ̂s = As · μs + bs, (2)

which is sometimes written as

μ̂s = W MLLR
s · ξs, (3)

where ξs is the extended mean vector in the form

ξs = [ω, μs1 , . . . , μsn ]′, (4)

and ω is the offset term of the regression, usually set as 1,
and n denotes the number of states.

The transformation matrix W MLLR
s is estimated to max-

imize the likelihood of the adaptation data, for which [4] de-
rives a closed form solution. As mentioned above, the qual-
ity of the estimated transformation matrix W MLLR

s is in doubt
given insufficient adaptation data.

2.2 Eigenspace-Based MLLR (Eigen-MLLR)

Eigenspaced-based MLLR is the eigenvoice version of
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MLLR, and involves a hybrid of MLLR-eigenvoice adapta-
tion [9]. Speaker adaptive training (SAT) is a type of speaker
clustering methods and is very similar to Eigenspace-based
MLLR [30]. However, these two approaches are appar-
ently different. The goal of SAT is to reduce inter-speaker
variability within the training set, and that of Eigenspace-
based MLLR is to take advantage of prior knowledge about
the test speaker’s linear transforms. Doumpiotis and Deng
suggested a combination of SAT and Eigenspace-based
MLLR [31].

Before the adaptation phase, the Eigenspace-based
MLLR must establish a training phase to acquire a priori
knowledge of the transformation parameters. The training
phase must take care of two things: eigenvoice construc-
tion and coefficient estimation. Eigenvoice construction first
derives the conventional MLLR full regression matrices for
each of the T training speakers based on the SI model pa-
rameters and new speaker training data. For each training
speaker, the MLLR regression matrix functions as a sin-
gle speaker-specific matrix. Secondly, the principal compo-
nent analysis (PCA) technique is performed on T speaker-
specific regression matrices to extract T principal compo-
nents. These T principal components, called eigen-matrices,
represent the key information regarding the speaker char-
acteristics and the inter-speaker variation for the training
speakers. As such, they can be regarded as the bases of
the speaker space. Only the first K(K ≤ T ) eigen-matrices
are kept because they possess most of the information from
speech data and therefore are capable of representing all
the variations under consideration. Physical interpretations
for the first few principal components generated by PCA
were discussed in [6]. According to [6], the first eigen-
matrix is closely correlated with sex, and it also more or
less correlated with pitch. The second eigen-matrix corre-
lates strongly with amplitude that a negative weight indi-
cates loudness, and a positive weight shows softness. These
K eigen-matrices are chosen to span an accurate speaker
space, called the “K−space.” The coefficient estimation pro-
cedure is performed after eigenvoice construction. This pro-
cedure assumes a priori of the full regression matrices for
each outside speaker is located in the speaker space. The
coefficient estimation procedure estimates a set of weights
to find a weighted combination of eigen-matrices:

ŵ = arg max
w

log L

⎡⎢⎢⎢⎢⎢⎣O|μ̂s =

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

w(k)Ek

⎞⎟⎟⎟⎟⎟⎠ μs

⎤⎥⎥⎥⎥⎥⎦ , (5)

where w is the coordinate vector, O represents the observa-
tion data, L(·) denotes the likelihood function, and Ek indi-
cates the k−th eigen-matrix.

Then, the eigen-matrix for the new speaker can be rep-
resented as a weighted combination of Ek’s by the derived
ŵ:

WEIGEN
s =

K∑

k=1

ŵ(k)Ek. (6)

Finally, a parameter smoothing procedure for the trans-

formation matrices WEIGEN
s and W MLLR

s is carried out
(Eq. (7)), where γs(t) denotes the state occupation probabil-
ity at time t for observation data O = o1o2 . . . ot . . . oN and τ
represents an empirically determined parameter.

W̃s =
τ ·WEIGEN

s +
∑N

t=1 γs(t)W MLLR
s

τ +
∑N

t=1 γs(t)
. (7)

The initial model is then adjusted by W̃s to yield the follow-
ing transformation

μ̃s = W̃s · ξs. (8)

Note that the transformation matrix W̃s is essentially a
weighted average of the a priori knowledge of the transfor-
mation parameters, WEIGEN

s , and the MLLR-derived trans-
formation matrix, W MLLR

s . Assuming that τ is fixed, the
weights are functions of the number of adaptation sam-
ples. When N equals zero (i.e., no additional training data
are available for adaptation), the adaptation is simply per-
formed by the transformation of the prior transformation
matrix WEIGEN

s alone. Conversely, when a large number
of training samples are used (N → ∞, to exaggerate), the
adaptation in Eq. (7) converges asymptotically to the MLLR
adaptation. Conversely, when N is fixed, the parameter τ
controls the interpolation between the WEIGEN

s −term and the
W MLLR

s −term. The recognition performance of adaptation,
regardless of the adaptation scheme under consideration, is
not as good as desired given insufficient training samples N.
The robustness of Eigen-MLLR adaptation against a rela-
tively small N should not be overlooked either, and as yet in
conventional schemes for Eigen-MLLR adaptation, a com-
mon value of τ was used for all the Gaussians of a given
state, or for all states of an HMM, or even for all HMMs.

The discussion above and the results of Eq. (7) nat-
urally suggest that W̃s should remain in the vicinity of
WEIGEN

s when N is somewhat small (by choosing a large
τ) to avoid the performance degradation caused by a poten-
tially poor estimate of W MLLR

s . On the other hand, when
N is large enough, an accurate estimate of W MLLR

s will be
ensured, and the adaptation should quickly move toward
MLLR adaptation. The discussion above implies the fol-
lowing rules:

(1)When N is small, τ should be large such that W̃s

sticks more to WEIGEN
s .

(2)When N is medium, τ should be medium such that
W̃s is located between WEIGEN

s and W MLLR
s .

(3)When N is large, τ should be small such that W̃s

moves toward W MLLR
s .

The following subsection explains how the statements
of linguistic terms with some degree of uncertainty can be
formulated in quantized forms for subsequent computations.
Note that in this work, both MLLR and Eigen-MLLR adap-
tation methods adopt the global MLLR scheme where only
a global regression matrix is considered [4].

2.3 Proposed FLC Approach to Eigen-MLLR

Within the framework of the fuzzy process, the formulation
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Fig. 1 Membership functions of fuzzy controllers for FLC-regulated
Eigen-MLLR adaptation.

of the problem at hand can be written as a set of five fuzzy
IF-THEN rules and the system output τ(·) [24]–[26].

Rule 1: If N is M1(N), then τ = f1(N),
Rule 2: If N is M2(N), then τ = f2(N),
Rule 3: If N is M3(N), then τ = f3(N),
Rule 4: If N is M4(N), then τ = f4(N),
Rule 5: If N is M5(N), then τ = f5(N),

where M1(N),M2(N),M3(N),M4(N) and M5(N) are mem-
bership functions representing the degree to which N is in-
volved in the classes of linguistically “small,” “rather small,”
“medium,” “rather large,” and “large,” respectively (Fig. 1).
These membership functions are defined as

M1(N) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 N ≤ N1,
N2−N
N2−N1

N1 ≤ N ≤ N2,

0 N ≥ N2,

M2(N) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 N ≤ N1,
N−N1
N2−N1

N1 < N ≤ N2,

N3−N
N3−N2

N2 ≤ N < N3,

0 N ≥ N3,

M3(N) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 N ≤ N2,
N−N2
N3−N2

N2 < N ≤ N3,

N4−N
N4−N3

N3 ≤ N < N4,

0 N ≥ N4,

M4(N) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 N ≤ N3,
N−N3
N4−N3

N3 < N ≤ N4,

N5−N
N5−N4

N4 ≤ N < N5,

0 N ≥ N5,

M5(N) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 N ≤ N4,
N−N4
N5−N4

N4 < N < N5,

1 N ≥ N5.

(9)

Note that fi(N), i = 1, 2, 3, 4, 5 are output functions in each
rule for regulating the τ value, and are defined as

f1(N) = a1 · N + b1, f2(N) = a2 · N + b2,

f3(N) = a3 · N + b3, f4(N) = a4 · N + b4,

f5(N) = a5 · N + b5. (10)

For the system output, τ is defined as [24]–[26]

τ =

∑5
i=1 Mi(N) fi(N)
∑5

i=1 Mi(N)
. (11)

By the formulation, the system now has fifteen hyper-
parameters (a1, b1, a2, b2, a3, b3, a4, b4, a5, b5,N1,N2,N3,N4

and N5) to be fixed, for which an iterative process is devel-
oped as follows:
STEP 1: Let N1 : N2 : N3 : N4 : N5 = 1 : 2 : 3 : 4 : 5,
and initialize N1. In this work, a dataset with fewer than
2 utterances, a dataset with approximately 4 utterances, a
dataset with approximately 6 utterances, a dataset with ap-
proximately 8 utterances, and a dataset with more than 10
adaptation utterances, are empirically regarded as SMALL,
RATHER SMALL, MEDIUM, RATHER LARGE, and
LARGE, respectively. As two adaptation utterances take ap-
proximately 500 frames, the initiation starts with N1 = 500
and N1 : N2 : N3 : N4 : N5 = 1 : 2 : 3 : 4 : 5.

a1 = initial value; b1 = initial value; k = 0;
/* k is the iterative index while fixing a1 and b1. */
F0 = baseline recognition rate;

STEP 2: Estimate the parameters a1 and b1 under the con-
dition N < N1, wherein

M1(N) = 1,
M2(N) = M3(N) = M4(N) = M5(N) = 0, and

τ =
M1(N) f1(N)

M1(N)
= f1(N) = a1 · N + b1.

The procedure for fixing a1 and b1 is explained in the fol-
lowing pseudo-code sequence:

a1+ = Δa1; k++;
Fk = SpeechRecognition(a1 · N + b1, test utterances);
/∗ The function mathitS peechRecognition(·) is used to re-
turn the recognition performance of FLC-regulated Eigen-
MLLR adaptation with the parameter τ controlled by select-
ing a1 and b1 for the testing data set test utterances, and the
symbol Fk denotes the recognition rate of the kth iterative
training. ∗/
if (Fk > Fk−1)

repeat {
a1+ = Δa1; k++;
Fk = SpeechRecognition(a1 · N + b1, test utterances);
}while (Fk > Fk−1 );

else
repeat {
a1− = Δa1; k++;
Fk = SpeechRecognition(a1 · N + b1, test utterances);
}while (Fk > Fk−1 );
b1+ = Δb1; k++;
Fk = SpeechRecognition(a1 · N + b1, test utterances);

if (Fk > Fk−1)
repeat {
b1+ = Δb1; k++;
Fk = SpeechRecognition(a1 · N + b1, test utterances);
}while (Fk > Fk−1 );

else
repeat {
b1− = Δb1; k++;
Fk = SpeechRecognition(a1 · N + b1, test utterances);
}while (Fk > Fk−1 );

return Fk;
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STEP 3: Estimate the parameters a5 and b5 under the con-
dition N > N5, wherein

M1(N) = M2(N) = M3(N) = M4(N) = 0,M5(N) = 1,

and

τ =
M5(N) f5(N)

M5(N)
= f5(N) = a5 · N + b5.

The determination of a5 and b5 is done by the same process
as for a1 and b1 with the initial condition F0 = Fk from
STEP 2.
STEP 4: Estimate the parameters a2 and b2 under the con-
dition N1 < N < N2, wherein

M1(N) =
N2 − N
N2 − N1

,M2(N) =
N − N1

N2 − N1
,

M3(N) = M4(N) = M5(N) = 0, and

τ =
M1(N) f1(N) + M2(N) f2(N)

M1(N) + M2(N)

=
(N2 − N)(a1 · N + b1) + (N − N1)(a2 · N + b2)

N2 − N1
.

With a1 and b1 already obtained at STEP 2 and the initial
condition F0 = Fk from STEP 3, the parameters a2 and b2

are determined through the same tuning process as in STEP
2 for best recognition rate too.
STEP 5: Estimate the parameters a3 and b3 under the con-
dition N2 < N < N3, wherein

M2(N) =
N3 − N
N3 − N2

,M3(N) =
N − N2

N3 − N2
,

M1(N) = M4(N) = M5(N) = 0, and

τ =
M2(N) f2(N) + M3(N) f3(N)

M2(N) + M3(N)

=
(N3 − N)(a2 · N + b2) + (N − N2)(a3 · N + b3)

N3 − N2
.

With a2 and b2 already obtained at STEP 4 and the initial
condition F0 = Fk from STEP 4, the parameters a3 and b3

are determined through the same tuning process as in STEP
2 for best recognition rate too.
STEP 6: Estimate the parameters a4 and b4 under the con-
dition N3 < N < N4, wherein

M3(N) =
N4 − N
N4 − N3

,M4(N) =
N − N3

N4 − N3
,

M1(N) = M2(N) = M5(N) = 0, and

τ =
M3(N) f3(N) + M4(N) f4(N)

M3(N) + M4(N)

=
(N4 − N)(a3 · N + b3) + (N − N3)(a4 · N + b4)

N4 − N3
.

With a3 and b3 already obtained at STEP 5 and the initial
condition F0 = Fk from STEP 5, the parameters a4 and b4

are determined through the same tuning process as in STEP

2 for best recognition rate too.
STEP 7: Re-estimate the parameter N5 under the condition
N4 < N < N5, wherein

M1(N) = M2(N) = M3(N) = 0,M4(N) =
N5 − N
N5 − N4

,

M5(N) =
N − N4

N5 − N4
, and

τ =
M4(N) f4(N) + M5(N) f5(N)

M4(N) + M5(N)

=
(N5 − N)(a4 · N + b4) + (N − N4)(a5 · N + b5)

N5 − N4
.

With a4 and b4 together with a5 and b5 already obtained at
STEP 6 and STEP 3 respectively, a new value for N5 can
now be obtained by tuning for a higher Fk value than in
STEP 6.
STEP 8: Given the new estimate of N5 from STEP 7, update
N1, N2, N3 and N4 such that

N1 : N2 : N3 : N4 : N5 = 1 : 2 : 3 : 4 : 5,

δ =

∣∣∣Fk − F∗
∣∣∣

F∗
, /* F∗: desired recognition rate */

F0 = Fk.

Repeat from STEP 2 until the settings of a1, a2, a3, a4, a5,
b1, b2, b3, b4, b5, N1, N2, N3, N4 and N5 make δ less than a
predefined threshold.

Note that while fixing a1 and b1 in STEP 2, the process
is designed in such way that if a better recognition rate can
be attained by increasing a1, then a1 will keep increasing
until the recognition rate reaches a local peak, otherwise a1

will keep decreasing until a local peak of the recognition
rate is reached. Thus a1 can only be increasing or decreasing
monotonically in STEP 2, allowing no chance of oscillation;
b1 is treated in the same way afterward. Likewise, a2 and b2

in STEP 4, a3 and b3 in STEP 5, a4 and b4 in STEP 6, a5

and b5 in STEP 3, are taken care of.

3. Experimental Results

Experiments with the proposed FLC-regulated Eigen-
MLLR adaptation were conducted to compare the recog-
nition performance with Eigen-MLLR adaptation when en-
countering different amounts of adaptation data, from scarce
to ample. MLLR adaptation and original eigenvoice adap-
tation were also carried out in the comparative experiment
to serve as baselines for Eigen-MLLR and FLC-regulated
Eigen-MLLR adaptations.

3.1 Database and Experimental Design

The experiments in this study involved (1) establishing the
initial SI models and the eigenspace, (2) the training phase
for fixing FLC hyperparameters, and (3) the recognition
phase to evaluate the performance of tuning the τ parameter
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by the FLC in Sect. 2.3.
An 8 kHz sampling rate was used for speech signal ac-

quisition. The analysis frames were 30-ms wide with a 15-
ms overlap. A 24-dimensional feature vector, consisting of
a 12-dimensional mel-cepstral vector and a 12-dimensional
delta-mel-cepstral vector, was extracted for each frame.

The MAT400 sub-database DB3 [32] was used to train
the initial SI models as a set of HMM parameters. This
study adopts the Initial/Final HMMs. A syllable in Man-
darin comprises two parts of sub-syllables, an initial part
and a final part. The modeling of Mandarin syllables as-
sumes that the initial part is right dependent on the begin-
ning phone of the following final part and the final part is
context independent [33]. A Mandarin utterance consists of
one to several syllables. The HMM of a syllable comprises
an HMM with 3 states for the initial part, and an HMM with
6 states for the final part. The HMM of an utterance includes
all HMMs of the constituent syllables. In this study, the
number of sub-syllables was 150. The number of Gaussian
mixture components for each state was 4. The SD model
was generated for each training speaker in the database by
adjusting the SI model. The resulting SD models were then
used to construct eigenspace bases.

The training phase collected training data from 15
speakers to tune the FLC hyperparameters. Each of the
15 speakers was asked to make 10 utterances of city names
as the adaptation data, and then 60 utterances for all cities
(two utterances for each) for FLC parameter tuning data (to
be used in following-up observations). All utterances were
recorded by an ordinary microphone. A set of FLC hyper-
parameters {a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, N1, N2,
N3, N4 and N5 } was finally determined using the iterative
process described in Sect. 2.3 to maximize the recognition
performance over the training database.

The recognition phase involved a new group of 15
speakers, who were asked for one utterance for each city to
be used for MLLR adaptation alone, and 5 SAMLLR mod-
els were built with 2, 4, 6, 8, and 10 adaptation utter-
ances, respectively. For performance comparison, the orig-
inal eigenvoice adaptation experiments were also done, and
5 SAEigenvoice adapted models by 2, 4, 6, 8, and 10 utter-
ances were established. For the recognition experiment with
FLC-regulated Eigen-MLLR adaptation, five adapted mod-
els were constructed using 2, 4, 6, 8, and 10 adaptation utter-
ances from each of the 15 speakers, and the τ for each of the
5 adaptation were calculated by Eq. (11) with Nutterances = 2,
4, 6, 8, or 10. The FLC hyperparameters were previously
determined in the training phase. 5 Eigen-MLLR adapted
models using 2, 4, 6, 8, and 10 adaptation utterances were
also constructed for performance comparison. Each of the
30 subjects then provided two more utterances for each city
to generate testing data to compare the recognition perfor-
mance of the four adaptation schemes

• MLLR with 5 SAMLLR models
• eigenvoice adaptation with 5 SAEigenvoice models
• Eigen-MLLR with 5 SAEigen−MLLR models

Table 1 Average recognition rates (%) of conventional Eigen-MLLR
with various values of τ.

τ
Average recognition rates (%)

Numbers of utterances for adaptation

0 2 4 6 8 10

5 93.3 92.5 94.3 96.2 97.4 97.8
10 93.3 92.5 94.2 96.2 97.4 97.9
15 93.3 92.6 94.3 96.3 97.6 97.9
20 93.3 92.6 94.3 96.4 97.5 98.0
25 93.3 92.6 94.4 96.3 97.7 98.1
30 93.3 92.6 94.6 96.7 97.7 98.5
35 93.3 92.3 94.2 96.1 97.0 98.3
40 93.3 92.2 94.3 95.9 96.9 98.3
45 93.3 92.4 94.1 96.0 96.9 98.2
50 93.3 92.4 94.1 95.6 96.8 98.0

Fig. 2 Average recognition rate curves for 15 speakers using FLC-
regulated Eigen-MLLR, Eigen-MLLR, original eigenvoice, and conven-
tional MLLR adaptations.

• FLC-regulated Eigen-MLLR with 5 SAFLC models

3.2 Experimental Results

Table 1 presents the average recognition performance for 15
speakers using the conventional Eigen-MLLR with various
settings of τ. Results show that the conventional Eigen-
MLLR achieved better results when τ was fixed to 30.
Thus, this value of τ was chosen in the conventional Eigen-
MLLR for performance comparison. FLC-regulated Eigen-
MLLR adaptation experiments were carried out for each of
the 15 speakers, using the five associated SAFLC models.
Figure 2 shows the recognition experiment results, which
compare the average recognition rate of the proposed FLC-
regulated Eigen-MLLR with an adaptive τ with the con-
ventional Eigen-MLLR with a fixed τ. This figure clearly
shows that the proposed FLC-regulated Eigen-MLLR and
conventional Eigen-MLLR exhibited an adaptive learning
curve. For the conventional Eigen-MLLR, the recognition
rate was even lower than the baseline when the amount of
training data was insufficient. In contrast, the recognition
rate of the FLC-regulated Eigen-MLLR was high or higher
than the baseline when the amount of training data was in-
sufficient. Furthermore, as the amount of training data in-
creased, the recognition performance of the conventional
Eigen-MLLR became better than the baseline, but still a lit-
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Fig. 3 Number of adaptation utterances = 2 (Eigen-MLLR testing exper-
iments).

Fig. 4 Number of adaptation utterances = 10 (Eigen-MLLR testing ex-
periments).

tle worse than that of the FLC-regulated Eigen-MLLR. This
implies that the FLC-regulated Eigen-MLLR performs bet-
ter than the conventional Eigen-MLLR. Note that in all test-
ing cases, the proposed FLC-regulated Eigen-MLLR adap-
tation achieved the best recognition performance, followed
by Eigen-MLLR adaptation, original eigenvoice adaptation
and then MLLR adaptation. FLC-regulated Eigen-MLLR
performed better than Eigen-MLLR, and especially when
the amount of adaptation data was limited.

This study also investigates the effects of τ variation
on the recognition performance of Eigen-MLLR under ex-
treme cases of adaptation data availability. Figure 3 shows
the performance of Eigen-MLLR adaptation with various τ
values when using a small number of utterances, say two ut-
terances, for adaptation. Increasing τ tends to improve per-
formance. Figure 4 shows the performance of Eigen-MLLR
adaptation with various τ values for a large number of adap-
tation utterances (ten utterances). Increasing the value of τ
caused a decline in the recognition rate. These results con-
firm the rationale behind the design of FLC-regulated Eigen-
MLLR adaptation.

The computation overhead of FLC-regulated Eigen-
MLLR adaptation for calculating τ compared to conven-
tional Eigen-MLLR is negligible, considering that at most 4
extra multiplications are required. The overhead of finding
τ in terms of the number of multiplications can be analyzed
using Eq. (11).
For N1 < N < N2,

τ =
M1(N) f1(N) + M2(N) f2(N)

M1(N) + M2(N)

=
N2(a2−a1)+N(a1N2−a2N1+b2−b1)+b1N2−b2N1

N2−N1

= p · (c1N2 + c2N + c3),

this computation involves 4 multiplications, as is for the case
when N2 < N < N3,

τ =
M2(N) f2(N) + M3(N) f3(N)

M2(N) + M3(N)

=
N2(a3−a2)+N(a2N3−a3N2+b3−b2)+b2N3−b3N2

N3−N2

= q · (d1N2 + d2N + d3),

and for the case when N3 < N < N4,

τ =
M3(N) f3(N) + M4(N) f4(N)

M3(N) + M4(N)

=
N2(a4−a3)+N(a3N4−a4N3+b4−b3)+b3N4−b4N3

N4−N3

= r · (e1N2 + e2N + e3),

and for the case when N4 < N < N5,

τ =
M4(N) f4(N) + M5(N) f5(N)

M4(N) + M5(N)

=
N2(a5−a4)+N(a4N5−a5N4+b5−b4)+b4N5−b5N4

N5−N4

= s · ( f1N2 + f2N + f3).

For N < N1, τ = a1 ·N + b1 which requires 1 multiplication,
as is for the case when N > N5, τ = a5 · N + b5.

Thus, the computation of FLC-regulated Eigen-MLLR
adaptation is of the same order as that of conventional
Eigen-MLLR adaptation.

4. Conclusions

This study proposes an FLC-regulated Eigen-MLLR meth-
od with an adaptive control parameter τ determined by the
fuzzy logic controller for speaker adaptation. The fuzzy
mechanism properly regulates τ according to the amount of
adaptation data available. Experimental results demonstrate
that using an adaptive τ achieves better performance than
using a common τ. Compared with conventional Eigen-
MLLR, the proposed adaptation mechanism is more robust
against data insufficiency, with only a small increase in com-
putation cost.
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