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Statistical Mechanics of Adaptive Weight Perturbation Learning

Ryosuke MIYOSHI†a), Nonmember, Yutaka MAEDA††b), Member, and Seiji MIYOSHI††c), Senior Member

SUMMARY Weight perturbation learning was proposed as a learning
rule in which perturbation is added to the variable parameters of learning
machines. The generalization performance of weight perturbation learn-
ing was analyzed by statistical mechanical methods and was found to have
the same asymptotic generalization property as perceptron learning. In this
paper we consider the difference between perceptron learning and Ada-
Tron learning, both of which are well-known learning rules. By applying
this difference to weight perturbation learning, we propose adaptive weight
perturbation learning. The generalization performance of the proposed rule
is analyzed by statistical mechanical methods, and it is shown that the pro-
posed learning rule has an outstanding asymptotic property equivalent to
that of AdaTron learning.
key words: on-line learning, weight perturbation, simultaneous perturba-
tion, generalization error, statistical mechanics

1. Introduction

Learning is the inference of underlying rules that dominate
data generation using observed data, where the observed
data are input-output pairs from a teacher and are called ex-
amples. Learning can be roughly classified into batch learn-
ing and on-line learning [1]. In batch learning, some given
examples are used repeatedly. In this paradigm, a student
starts to give correct answers after training if the student has
an adequate degree of freedom. However, a long time and a
large memory, in which many examples may be stored, are
necessary. In contrast, examples are used once and then dis-
carded in on-line learning. In this case, a student cannot give
correct answers to all the examples used in training. How-
ever, on-line learning has some merits, for example, a large
memory for storing many examples is not necessary and it
is possible to follow a time-variant teacher [2].

Problems exist in which it is necessary to find an ad-
justable parameter that maximizes or minimizes cost func-
tions. Such problems are widely treated as optimization
problems [3]. In this paradigm, the general approach used
as a sequential method is the gradient method. In many
fields including control theory, methods based on the gra-
dient method are usually used; these methods provide us
with an appropriate rule that corrects parameters. However,
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in cases in which the gradient cannot be used, such meth-
ods cannot be used. In this case, if the value of the func-
tion can be found, we can consider a method in which the
gradient is approximated by using perturbations. However,
when the number of adjustable parameters is large, this sim-
ple method of calculating the gradient is difficult to apply
in most situations since the number of functional values to
be calculated is large. To overcome this problem, a simul-
taneous perturbation optimization method in which pertur-
bations are added to all adjustable parameters was proposed
independently by Spall, Alespector et al., Cauwenberghs,
and Maeda et al. [4]–[7]. On the other hand, in the machine
learning field, methods using perturbations to adjust the con-
nection weights, i.e., the parameters of learning machines,
have been proposed. Such methods are known as weight
perturbation learning [8]. Applying the simultaneous per-
turbation optimization method to learning is equivalent to
weight perturbation learning.

In the paradigm of analyzing on-line learning by sta-
tistical mechanical methods, we consider that inputs with
small norms are independently generated at each time step
to assume self-averaging [2], [9]. If we use each input as
a perturbation, we can directly apply methods for analyz-
ing on-line learning to the analysis of weight perturbation
learning [10]. Using this method of analysis, it was shown
that weight perturbation learning has the same asymptotic
property as perceptron learning.

In this paper, we consider the difference between per-
ceptron learning and AdaTron learning, which are well-
known learning rules [11]. By applying this difference to
weight perturbation learning, we propose adaptive weight
perturbation learning with an improved asymptotic prop-
erty. We analyze the generalization performance by sta-
tistical mechanical methods. Here, for brevity, we refer to
weight perturbation and adaptive weight perturbation as WP
and AWP, respectively.

2. Model

Two simple perceptrons are considered in this paper: a
teacher and a student [2]. Their connection weights are B
and J, respectively. The same input x is applied to both
perceptrons. The teacher B = (B1, . . . BN), the student
Jm = (Jm

1 , . . . J
m
N ), and the input xm = (xm

1 , . . . x
m
N) are N-

dimensional vectors, and each component Bi of B is in-
dependently drawn from N(0, 1) and fixed, where N(0, 1)
denotes a Gaussian distribution with a mean of zero and
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a variance of unity. Here, m denotes the time step. Each
component J0

i of the initial value J0 of Jm is also indepen-
dently drawn from N(0, 1). The norm ‖Jm‖ of the student
changes as the time step proceeds. Therefore, the ratio lm

of the norm to
√

N is introduced and is called the length
of the student. That is, ‖Jm‖ = lm

√
N. The direction co-

sine between Jm and B is Rm. Each component xm
i of xm

is drawn from N(0, 1/N) independently. Here, vm = B · xm

and umlm = Jm · xm. In this paper, as we assume the thermo-
dynamic limit N → ∞, um and vm obey a two-dimensional
Gaussian distribution,

P(um, vm) =
1

2π | Σ | 12 exp

(
− (um, vm)Σ−1(um, vm)T

2

)
,

(1)

Σ =

(
1 Rm

Rm 1

)
. (2)

Here, we define the error between the teacher B and the stu-
dent Jm by εm ≡ Θ(−umvm), where Θ(·) is a step function.
The student Jm is updated by the input xm and the output of
the teacher B for the input. That is,

Jm+1 = Jm + f mxm, (3)

where f m is a function determined by the learning rule. Heb-
bian learning, perceptron learning, and AdaTron learning
are well-known learning algorithms with f m of

f m = ηsgn(vm), (4)

f m = ηΘ(−umvm)sgn(vm), (5)

f m = η |um|Θ(−umvm)sgn(vm), (6)

respectively [2]. Here, η denotes the learning rate of the stu-
dent and is a positive constant.

3. Statistical Mechanical Analysis of On-Line Learning

One of the goals of statistical learning theory is to obtain
generalization errors theoretically. The generalization error
εmg is the mean of the error εm over the input x. In the case
of the models considered in this paper,

εmg =
1
π

cos−1Rm (7)

[9]. In the following, we suitably omit the time step m. As
shown by Eq. (7), εg is a function of the direction cosine R.
Simultaneous differential equations in deterministic forms
that describe the dynamical behavior of R can be derived
based on self-averaging at the thermodynamic limit as fol-
lows [2]:

dl
dt
= 〈 f u〉 + 〈 f

2〉
2l
,

dr
dt
= 〈 f v〉, (8)

where

r = Rl. (9)

Equation (8) includes three sample means: 〈 f u〉, 〈 f 2〉, and
〈 f v〉. In the cases of Hebbian learning, perceptron learn-
ing, and AdaTron learning, these are obtained analytically
as follows [2]:

Hebbian learning

〈 f u〉 = 2ηR√
2π
, 〈 f v〉 = η

√
2
π
, 〈 f 2〉 = η2. (10)

Perceptron learning

〈 f u〉 = −〈 f v〉 = ηR − 1√
2π
, 〈 f 2〉 = η

2

π
cos−1R. (11)

AdaTron learning

〈 f u〉 = η
π

(R
√

1 − R2 − cos−1R), (12)

〈 f v〉 = η
π

(1 − R2)3/2 + R〈 f u〉, 〈 f 2〉 = −η〈 f u〉. (13)

Here, in the case of Hebbian learning, the simultaneous
differential equations obtained by substituting Eq. (10) into
Eq. (8) can be solved analytically to obtain [2], [12]

r = η

√
2
π

t, l2 =
2η2

π
t2 + η2t + 1. (14)

4. Weight Perturbation Learning

A method that uses perturbations to correct the connection
weights of a learning machine is called WP learning [8]. As
stated in the preceding section, in the case of analyzing on-
line learning by statistical mechanical methods, we consider
that inputs with small norms are generated independently at
each time step. If we use these inputs as perturbations, we
can directly apply the analysis method to WP learning [10].
An updating function of WP learning is

f m = − η
2c
gm, (15)

gm = Θ(−vm(Jm+ cxm) · xm) − Θ(−vm(Jm− cxm) · xm).
(16)

Here, c denotes a positive constant. The sample averages
are

〈 f u〉 = − η√
2πc

(
exp

(
− c2

2l2

) (
1 − 2H

(
Rc

l
√

1 − R2

))

− R

(
1 − 2H

(
c

l
√

1 − R2

)))
, (17)

〈 f v〉 = η√
2πc

(
1 − 2H

(
c

l
√

1 − R2

)

− Rexp

(
− c2

2l2

) (
1 − 2H

(
Rc

l
√

1 − R2

)))
, (18)

〈 f 2〉 = η
2

2c2

∫ c
l

− c
l

DuH

(
− Ru√

1 − R2

)
. (19)

Here, H(u) ≡ ∫ ∞
u

Dx, Dx ≡ dx√
2π

exp
(
− x2

2

)
. Equations (17)

and (18) are new results obtained in this paper.
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5. Adaptive Weight Perturbation Learning

The asymptotic property of AdaTron learning is εg ∼
O(t−1) [13], which is a superior property. In AdaTron learn-
ing, the length l of a student decreases monotonically. Ada-
Tron learning can be considered as an adaptive version of
perceptron learning. In this section, we propose AWP learn-
ing by considering the difference between perceptron learn-
ing and AdaTron learning. In addition, we analyze the gen-
eralization performance of the proposed learning rule by sta-
tistical mechanical methods. From Eqs. (5) and (6), in per-
ceptron learning and AdaTron learning, an update occurs
when the outputs of the teacher and the student are different.
In the case of perceptron learning, the norm of the update
vector is constant regardless of whether the update direction
is that causing the student to become longer or shorter. On
the other hand, in the case of AdaTron learning, the norm
of the update vector is shorter in the direction in which the
length of the student increases, and longer in the direction
in which the length of the student decreases since |um| is in-
cluded as a multiplier in Eq. (6). This difference between
perceptron learning and AdaTron learning is the reason why
the asymptotic properties of the generalization errors are dif-
ferent. To correct WP learning and to obtain a learning rule
that greatly updates the student in the direction that the stu-
dent length decreases, we should set the update function to

f m = − η
2c
|um| gm Θ(umgm), (20)

gm = Θ(−vm(Jm+ cxm) · xm) − Θ(−vm(Jm− cxm) · xm).
(21)

Here, Θ(umgm) in Eq. (20) means that this rule updates in the
direction in which the update vector of the student becomes
shorter, and it does not update in the direction in which the
update vector of the student becomes longer.

6. Results and Discussion

Figure 1 shows the dynamical behaviors of the general-
ization error εg obtained theoretically using Eqs. (7)–(14),
(17)–(19), and the corresponding simulation results. Here,
η = 1 and c = 1. In this figure, the curves represent the
theoretical results and the symbols represent simulation re-
sults. For Hebbian learning, theoretical calculations were
performed using Eqs. (7), (9), and (14) to obtain the analyt-
ical solutions. For perceptron learning and AdaTron learn-
ing, we numerically solved Eqs. (7)–(9) and (11)–(13) by the
Runge-Kutta method. For WP learning, we numerically cal-
culated the sample average given by Eq. (19) by Simpson’s
method [14]. For AWP learning, we calculated the sample
averages

〈 f u〉 =
∫ ∞

−∞

∫ ∞

−∞
f uP(u, v)dudv, (22)

〈 f v〉 =
∫ ∞

−∞

∫ ∞

−∞
f vP(u, v)dudv, (23)

Fig. 1 Dynamical behaviors of generalization error εg obtained
theoretically and by simulation.

Fig. 2 Dynamical behaviors of generalization error εg for various η
obtained theoretically and by simulation.

〈 f 2〉 =
∫ ∞

−∞

∫ ∞

−∞
f 2P(u, v)dudv (24)

numerically by Simpson’s method [14].
The simulations were performed with N = 104. The

generalization error εg was obtained through tests using 104

random inputs at each time step when the outputs of the
teacher and the student were different. Figures 1–3 show
that the theoretical results are in good agreement with the
simulation results and support the theoretical analysis in
this paper. Figure 1 shows that the asymptotic property of
AWP learning is εg ∼ O(t−1), while that of WP learning is
εg ∼ O(t−

1
3 ). It can be observed that AWP learning has an

outstanding asymptotic property equivalent to that of Ada-
Tron learning. Figures 2 and 3 show the dynamical behav-
iors of εg for various η and c in AWP learning. It is clear
from Fig. 2 that η has an optimum value, which is approxi-
mately η = 2.2. Figure 3 shows that εg exhibits strange be-
havior when c < 1.0. On the basis of the concept of weight
perturbation, it appears that the approximation for the gra-
dient is improved as c decreases. However, from Eq. (21),
this causes a decrease in the update probability. Owing to
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Fig. 3 Dynamical behaviors of generalization error εg for various c
obtained theoretically and by simulation.

the trade-off between these two factors, it does not follow
inevitably that the asymptotic property is improved as c de-
creases. This explains why c has an optimum value in Fig. 3.

7. Conclusion

In this paper, we first proposed AWP learning, which is an
adaptive version of WP learning, by considering the dif-
ference between perceptron learning and AdaTron learning.
As a result of statistical mechanical analysis, it was shown
that the asymptotic property of the generalization error is
εg ∼ O(t−1), which is an outstanding asymptotic property
equivalent to that of AdaTron learning. Moreover, it was
observed that the learning rate η has an optimum value of
approximately 2.2 and that the dynamical behavior exhibits
strange behavior when c < 1.0.
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