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SUMMARY We consider a model composed of nonlinear perceptrons
and analytically investigate its generalization performance using correlated
examples in the framework of on-line learning by a statistical mechanical
method. In Hebbian and AdaTron learning, the larger the number of ex-
amples used in an update, the slower the learning. In contrast, Perceptron
learning does not exhibit such behaviors, and the learning becomes fast in
some time region.
key words: nonlinear perceptron, on-line learning, generalization error,
correlated examples

1. Introduction

Learning is the inference of underlying rules that domi-
nate data generation using observed data, where the ob-
served data are pairs of inputs and outputs from a teacher
and are called examples. Learning can be roughly classi-
fied into batch learning and on-line learning [1]. In batch
learning, the given examples are used more than once. In
this paradigm, a student gives correct answers after training
if the student has adequate freedom. However, a long time
and a large memory to store many examples are required.
In contrast, in on-line learning, examples are used once and
then discarded. In this case, a student cannot give correct
answers to all the examples used in training. However, on-
line learning has merits, for example, a large memory for
storing many examples is not necessary and it is possible to
follow a time-variant teacher [2].

Recently, some interesting models have been analyzed
with the framework of on-line learning from temporal or
spatial viewpoints. However, they have treated cases in
which inputs are independently generated [2]. In practical
applications, inputs are considered to be mutually corre-
lated in many cases. The treatment of correlated inputs by
a model composed of linear perceptrons has already been
analyzed [3]. Considering the applications of pattern recog-
nition, it is important to theoretically investigate the gener-
alization performance of a nonlinear learning machine us-
ing correlated inputs. In this paper we consider a model
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composed of simple perceptrons and analytically investigate
its generalization performance using correlated inputs in the
framework of on-line learning by a statistical mechanical
method.

2. Model

In this paper we consider a teacher machine and a student
machine as simple perceptrons with connection weights B
and Jm, respectively. The teacher B = (B1, . . . , BN)T , the
student Jm = (Jm

1 , . . . , J
m
N )T and the input xm

k = (xm
k1, . . . ,

xm
kN)T , k = 1, . . . ,K, are N-dimensional vectors. Each com-

ponent Bi of B is independently drawn from N(0, 1) and
fixed, where N(0, 1) denotes a Gaussian distribution with
a mean of zero and a variance of unity. Each component
J0

i of the initial student J0 is also independently drawn from
N(0, 1). The direction cosine between B and Jm is Rm. Each
component xm

ki of xm
k is generated as follows:

ξm = (ξm1 , . . . , ξ
m
N )T , ξmi ∼ N(0, 1) (1)

P
(
xm

ki = ±
ξmi√

N

)
=

1 ± a
2
, (2)

where −1 ≤ a ≤ 1. m, T and P(·) denote the time step, the
transposition and the probability, respectively. Equations (1)
and (2) imply that the component ξmi of ξm is independently
generated and that K inputs xm

k , k = 1, . . . ,K, are generated
at each time step m. In this manner, K inputs that have di-
rection cosine a with parent vector ξm are generated. In this
case, xm

k · xm
k′ = a2, k � k′. The K inputs are used as a set in

learning. Note that there is no correlation between J0 and
Bm, Jm and xm

k , nor Bm and xm
k , although there is a correla-

tion between inputs. Considering the practical applications,
temporally uniform correlation is also interesting. However,
such correlation is difficult to treat analytically. Therefore,
in this paper we treat the correlation considered in [3].

In this paper, the thermodynamic limit is also treated.
Therefore, ||B|| = √N, ||J0|| = √N and ||xm

k || = 1. Gen-
erally, since the norm Jm of the student changes with time,
the ratio lm of the norm to ||J0|| is introduced and is called
the length of the student. That is, ||Jm|| = lm

√
N. In the case

of simple perceptrons, the outputs of the teacher and student
are sgn(vmk ) and sgn(um

k lm), respectively. Here, vmk = B · xm
k

and um
k lm = Jm · xm

k . Thus, vmk and um
k obey Gaussian distri-

butions with a mean of zero and a variance of unity, and the
covariance between vmk and um

k is Rm.
The update rule for student J is given by
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Jm+1 = Jm +

K∑
k=1

f m
k xm

k , (3)

where f m
k is a function determined by the learning rule.

Hebbian, Perceptron and AdaTron learning are well-known
learning rules for simple perceptrons.

3. Theory

3.1 Generalization Error

One purpose of statistical learning theory is to theoretically
obtain the generalization error εg, which is the mean of er-
rors over the distribution of a new input. We define the error
ε to be 0 if the outputs of the teacher and student agree, and
ε to be 1 if the outputs disagree. Thus, εg is the probability
that the outputs of the teacher and student disagree. εg can
be calculated as follows [2], [4]:

εg= 〈ε〉=
∫

dxP(x)ε=
∫

dudvP(u, v)ε=
1
π

cos−1 R.

(4)

Here,

P(u, v) =
1

2π|Σ2| 12
exp

⎛⎜⎜⎜⎜⎝− (u, v)Σ−1
2 (u, v)T

2

⎞⎟⎟⎟⎟⎠ , (5)

Σ2 =

(
1 R
R 1

)
. (6)

3.2 Simultaneous Differential Equations for Dynamical
Behaviors of Order Parameters

Equation (4) shows that εg is calculated using the direction
cosine R. Therefore, it is desirable to determine the order
parameter R. Simultaneous differential equations with de-
terministic forms that describe the dynamical behaviors of
order parameters are obtained by self-averaging in the ther-
modynamic limit as follows [2]–[4]:

dl2

dt
=

〈
f 2
k

〉
+ (K − 1) 〈 fk fk′ 〉 a2 + 2l 〈 fkuk〉 , (7)

dr
dt
= 〈 fkvk〉 , (8)

where 〈·〉 denotes the sample average and t = Km/N. Here,
to simplify the analysis, the auxiliary order parameter r ≡ Rl
has been introduced. 〈 fk fk′ 〉 denotes the sample average of
the product of the two f for xk and xk′ . On the other hand,〈

f 2
k

〉
, 〈 fkuk〉 and 〈 fkvk〉 do not depend on k since the xk are

generated from identical distributions, although we include
the subscript k to match the notation with 〈 fk fk′ 〉. Therefore,
r and l do not depend on k. It is necessary to calculate four
sample averages for the specific learning rule.

3.3 Hebbian Learning

In the case of Hebbian learning, the update function is f m
k =

ηsgn(vmk ), where η denotes the learning rate of the student
and is a constant positive number. The four sample averages
can be analytically calculated as follows:

〈 fkuk〉 = 2ηR√
2π
, 〈 fkvk〉 = η

√
2
π
,

〈
f 2
k

〉
= η2, (9)

〈 fk fk′ 〉 = η2

(
1 − 2
π

cos−1 a2

)
. (10)

Substituting Eqs. (9) and (10) into Eqs. (7) and (8) and us-
ing R(0) = 0 and l(0) = 1 as initial conditions, we can
analytically solve the simultaneous differential equations as
follows:

l = η

√
2
π

t

(
1 +

π

2η2
t−2

+
π

2

(
1 + a2(K − 1)

(
1 − 2
π

cos−1 a2

))
t−1

) 1
2

, (11)

R =

(
1 +

π

2η2
t−2

+
π

2

(
1 + a2(K − 1)

(
1 − 2
π

cos−1 a2

))
t−1

)− 1
2

. (12)

From Eqs. (4) and (12), εg can be analytically obtained. If
we substitute a sufficiently large t into these equations, then
we obtain

εg 

√

1
2π

(
1+a2(K−1)

(
1− 2
π

cos−1 a2

))
t−

1
2 . (13)

If we substitute a sufficiently large K into Eq. (13), then we
obtain

εg 
 a

√
1

2π

(
1 − 2
π

cos−1 a2

) (
K−1t

)− 1
2 . (14)

Equation (14) implies that the learning speed is proportional
to K−1. Meanwhile, if we substitute a = 0 into Eqs. (4) and
(12), then we obtain

εg =
1
π

cos−1

(
1 +
π

2
t−1 +

π

2η
t−2

)− 1
2

. (15)

From Eq. (15), εg does not depend on K in the case of un-
correlated inputs.

3.4 Perceptron Learning

In the case of Perceptron learning, the update function is
f m
k = ηΘ(−um

k v
m
k )sgn(vmk ), where Θ(·) denotes a step func-

tion. The four sample averages can be calculated as fol-
lows:
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〈 fkuk〉 = − 〈 fkvk〉 = ηR − 1√
2π
,

〈
f 2
k

〉
=
η2

π
cos−1 R, (16)

〈 fk fk′ 〉 = η2
∫

dvkdukdvk′duk′P(vk, uk, vk′ , uk′ )

× Θ(−ukvk)sgn(vk)Θ(−uk′vk′ )sgn(vk′). (17)

Here,

P(uk, vk, uk′ , vk′ ) =
1

(2π)2|Σ4| 12

× exp

⎛⎜⎜⎜⎜⎝− (uk, vk, uk′ , vk′ )Σ−1
4 (uk, vk, uk′ , vk′ )T

2

⎞⎟⎟⎟⎟⎠ , (18)

Σ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 R a2 a2R
R 1 a2R a2

a2 a2R 1 R
a2R a2 R 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (19)

Since the integral in Eq. (17) cannot be analytically exe-
cuted, it must be numerically executed.

3.5 AdaTron Learning

In the case of AdaTron learning, the update function is f m
k =−ηum

k Θ(−um
k v

m
k ). The four sample averages can be calculated

as follows:

〈
f 2
k

〉
= −η 〈 fkuk〉 = −η2 R

√
1 − R − cos−1 R

π
, (20)

〈 fkvk〉 = η (1 − R2)
3
2

π
+ R 〈 fkuk〉 , (21)

〈 fk fk′ 〉 = η2
∫

dvkdukdvk′duk′P(vk, uk, vk′ , uk′ )

× ukΘ(−ukvk)sgn(vk)uk′Θ(−uk′vk′ )sgn(vk′). (22)

Here, P(uk, vk, uk′ , vk′ ) is given by Eq. (18). Since the inte-
gral in Eq. (22) cannot be analytically executed, it must be
numerically executed.

4. Results and Discussion

The dynamical behaviors of εg were obtained by solving
Eqs. (4), (7) and (8), and obtaining the sample averages for
each learning rule. Figures 1–4 show the theoretical results
and the corresponding simulation results when η = 1. In
the computer simulations, N = 104 and εg was measured
through tests using 106 random inputs at each time step.
To illustrate the theoretical results for Hebbian learning, we
plotted Eqs. (4) and (12). For Perceptron learning, we nu-
merically solved the simultaneous differential equations ob-
tained by substituting Eqs. (16) and (17) into Eqs. (7) and (8)
by the Runge-Kutta method. The integration of Eq. (17) was
numerically executed by Simpson’s method for K = 1, 10
and 102 and also K = 103 with a = 0.0, and by the Monte
Carlo method [5] for a = 0.6 and K = 103. For AdaTron
learning, we numerically solved the simultaneous differen-
tial equations obtained by substituting Eqs. (20)–(22) into
Eqs. (7) and (8) by the Runge-Kutta method. The integration

of Eq. (22) was numerically executed by Simpson’s method.
Figures 1–4 show that the theoretical results and simulation
results agree well. This means that the theory is obtained
correctly.

Figure 1 shows the results when uncorrelated inputs are
used. In this case, εg does not depend on K for all three
learning rules, which is also implied by Eqs. (4), (7) and (8).

Figures 2–4 show the results when correlated inputs are
used. Figures 2 and 4 show that, in Hebbian and AdaTron
learning, the learning speed with K = 1000 is ten times
lower than that with K = 100. That is, in the case of a large
K, the learning speed is in proportion to K−1. In contrast,
Figure 3 shows that εg in the asymptotic region does not
depend on K in Perceptron learning. These results illustrate
the qualitative differences between Perceptron learning and
the other two types of learning. These are very interesting
properties. Furthermore, εg with K = 100 and 1000 are
smaller than that with K = 1 in some time region. This
means the generalization capability is better for correlated
inputs than for uncorrelated inputs. This is a very interesting
phenomenon.

In the case of linear perceptrons, the learning be-

Fig. 1 Dynamical behaviors of generalization error εg. (Hebbian, Per-
ceptron and AdaTron learning, a = 0.0)

Fig. 2 Dynamical behaviors of generalization error εg. (Hebbian learn-
ing, a = 0.6)
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Fig. 3 Dynamical behaviors of generalization error εg. (Perceptron
learning, a = 0.6)

Fig. 4 Dynamical behaviors of generalization error εg. (AdaTron learn-
ing, a = 0.6)

comes slower when the inputs are correlated. Therefore,
the block orthogonal projection learning was proposed as
a learning rule whose learning speed is not affected by the

correlation [3]. In the case of nonlinear perceptrons, the dif-
ferent behaviors described in this section are exhibited by
different learning rules. In Hebbian and AdaTron learning,
the greater the correlation between the inputs, the slower
the learning. On the other hand, in Perceptron learning, the
learning becomes fast in some time region.

5. Conclusion

In this paper we considered a model composed of simple
perceptrons and analytically investigated its generalization
performance using correlated inputs in the framework of on-
line learning by a statistical mechanical method. In Hebbian
and AdaTron learning, the learning speed is in proportion
to K−1 when K is large. In contrast, the learning speed of
Perceptron learning becomes fast in some time region.
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