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SUMMARY The firefighter problem is used to model the spread of fire,
infectious diseases, and computer viruses. This paper deals with firefighter
problem on rooted trees. It is known that the firefighter problem is NP-
hard even for rooted trees of maximum degree 3. We propose techniques to
improve a given approximation algorithm. First, we introduce an implicit
enumeration technique. By applying the technique to existing (1 − 1

e )-
approximation algorithm, we obtain (1− k−1

(k−1)e+1 )-approximation algorithm
when a root has k children. In case of ternary trees, k = 3 and thus the
approximation ratio satisfies (1 − k−1

(k−1)e+1 ) ≥ 0.6892, which improves the

existing result 1 − 1
e ≥ 0.6321. Second technique is based on backward

induction and improves an approximation algorithm for firefighter problem
on ternary trees. If we apply the technique to existing (1− 1

e )-approximation
algorithm, we obtain 0.6976-approximation algorithm. Lastly, we combine
the above two techniques and obtain 0.7144-approximation algorithm for
firefighter problem on ternary trees.
key words: firefighter problem, approximation algorithm, rooted tree

1. Introduction

The firefighter problem was introduced by Hartnell [4] and
can be used to model the spread of fire, infectious diseases,
and computer viruses. The firefighter problem is defined as
follows. We are given a graph, a specified vertex called root,
and nonnegative vertex weights. At time 0, a fire breaks
out at the root. At each subsequent time step, a firefighter
deploys a vertex which is not yet on fire and defends it, and
then the fire spreads to all unprotected adjacent vertices of
each burned vertex. The process ends when the fire can no
longer spread, and all the vertices which are not burning are
considered saved. The objective of the firefighter problem
is to determine posture of firefighters so as to maximize the
sum of weights of saved vertices.

This paper deals with the firefighter problem on a
rooted tree. We propose two techniques to improve a given
approximation algorithm. First, we introduce an implicit
enumeration technique. By applying the technique to exist-
ing α-approximation algorithm, we obtain (1 − (k−1)(1−α)

(k−1)+(1−α) )-
approximation algorithm when the root has k children. If
we employ (1 − 1

e )-approximation algorithm proposed in
[2], the technique gives (1 − k−1

(k−1)e+1 )-approximation al-
gorithm. Second technique is based on backward induc-
tion and improves an approximation algorithm for fire-
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fighter problem on ternary trees. If we apply the tech-
nique to existing α-approximation algorithm, an approxi-
mation ratio of obtained algorithm is greater than or equal
to (α +

√
(1 − α)2 + 1 − 1). By combining the above two

techniques, we propose 0.7144-approximation algorithm for
firefighter problem on ternary trees.

It is known [3] that the firefighter problem is NP-hard
even for rooted trees of maximum degree 3. Hartnell and
Li [5] have proved that a simple greedy method gives a 0.5-
approximation algorithm. Cai, Verbin and Yang [2] pro-
posed a randomized (1 − 1

e )-approximation algorithm (note
1 − 1

e ≈ 0.6321). Recently, Anshelevich, Chakrabarty, Hate
and Swamy [1] showed that this result can be also derived
from a reduction to the submodular function maximization
problem.

2. Implicit Enumeration Technique

Let T be a given rooted tree and w(v) be a vertex weight of
vertex v in T . For any subtree T ′ of the given tree T , we
introduce the following notations. The vertex set of T ′ is
also denoted by T ′ when there is no ambiguity. We denote a
firefighter problem defined on T ′ by FF(T ′) where a weight
of a vertex in T ′ is equal to that in T . For any vertex v of
T , a subtree rooted at v is a subtree of T induced by set of
descendants of v (including v). Given a vertex subset T ′ of
T , we use the notation w(T ′) =

∑
v∈T ′ w(v).

In this section, we propose an approximation algorithm
based on implicit enumeration technique. It is easy to see
that every firefighter problem has an optimal solution satis-
fying that we put a firefighter to a child of the root. Thus,
we can improve a solution by considering all the cases that
exactly one child of the root has a firefighter. In our first
algorithm, we solve (small) firefighter problems by a given
α-approximation algorithm, where 0 ≤ α ≤ 1.

Algorithm IE (α)

Step 1: Let C be a set of children of the root of T . For each
vertex i ∈ C, Ti denotes a subtree of T rooted at i.

Step 2: For each vertex i ∈ C, we execute the following.

1. Construct a tree T i by contracting the roots of |C|−
1 trees in {T j | j ∈ C} \ {Ti} to a single vertex (see
Fig. 1).

2. Apply an α-approximation algorithm to problem
FF(T i). We denote an obtained solution (set of
vertices with firefighters) by Fi and set of saved
vertices by S i.
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(a)

(b)

Fig. 1 (a) Subtree Ti. (b) Tree T i.

Step 3: Find i∗ ∈ C which attains max{w(T j ∪ S j) | j ∈ C}.
Output set {i∗} ∪ Fi∗ of vertices with firefighters and set
of saved vertices Ti∗ ∪ S i∗ .

Let us discuss the approximation ratio of Algo-
rithm IE(α). In the following, we assume that the root has
k children, i.e., |C| = k. For any subtree T ′, we denote the
optimal value of FF(T ′) by z(T ′).

Lemma 1: For any vertex j ∈ C, we have the followings.

(1)
∑

i∈C\{ j}
w(Ti) ≥ z(T j),

(2)
∑

i∈C\{ j}
z(T i) ≥ (k − 2) z(T j).

Proof. (1) A set of saved vertices by an optimal solution of
problem FF(T j) is a subset of non-root vertices in T j. A set
of non-root vertices of T j is a subset of ∪i∈C\{ j}Ti, and thus
the inequality is obvious.
(2) Let S

∗
j be a set of saved vertices by an optimal solution

(set of vertices with firefighters) F
∗
j of problem FF(T j). For

any i ∈ C\{ j}, vertex set F
∗
j \Ti is feasible to problem FF(T i)

and corresponding objective value is equal to w(S
∗
j \ Ti).

Thus, inequality z(T i) ≥ w(S
∗
j \ Ti) holds and accordingly

we have that∑
i∈C\{ j}

z(T i) ≥
∑

i∈C\{ j}
w(S

∗
j \ Ti)

=
∑

i∈C\{ j}

(
w(S

∗
j) − w(S

∗
j ∩ Ti)

)
= (k − 1)w(S

∗
j) −

∑
i∈C\{ j}

w(S
∗
j ∩ Ti)

= (k − 1)w(S
∗
j) − w(S

∗
j)

= (k − 2)w(S
∗
j) = (k − 2)z(T j).

This completes the proof. �

We are now ready to prove the main theorem in this
section.

Theorem 1: Algorithm IE(α) is (1 − (k−1)(1−α)
(k−1)+(1−α) )-approxi-

mation algorithm.

Proof. Due to the definition of S i obtained in Step 2, in-
equality w(S i) ≥ αz(T i) holds for any i ∈ C. For any vertex

j ∈ C and θ such that 0 ≤ θ ≤ 1, we have that

w(Ti∗) + w(S i∗ )

=max
i∈C

(w(Ti) + w(S i))

≥ (1 − θ)
(
w(T j) + w(S j)

)
+

∑
i∈C\{ j}

θ

k − 1

(
w(Ti) + w(S i)

)
= (1 − θ)

(
w(T j) + w(S j)

)
+
θ

k − 1

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
i∈C\{ j}

w(Ti) +
∑

i∈C\{ j}
w(S i)

⎞⎟⎟⎟⎟⎟⎟⎠
≥ (1 − θ)

(
w(T j) + αz(T j)

)
+
θ

k − 1

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
i∈C\{ j}

w(Ti) +
∑

i∈C\{ j}
αz(T i)

⎞⎟⎟⎟⎟⎟⎟⎠
≥ (1 − θ)

(
w(T j) + αz(T j)

)
+
θ

k − 1

(
z(T j) + α(k − 2)z(T j)

)
= (1 − θ)

(
w(T j) + αz(T j)

)
+θ

1 + α(k − 2)
k − 1

z(T j). (1)

By setting θ′ = (k−1)(1−α)
(k−α) , following inequality and equality

w(Ti∗) + w(S i∗ ) ≥ (1 − θ′)
(
w(T j) + αz(T j)

)
+θ′

1 + α(k − 2)
k − 1

z(T j)

=

(
1 − (k − 1)(1 − α)

k − α
)

(w(T j) + z(T j))

hold for any j ∈ C. Since the optimal value z(T ) of original
problem FF(T ) satisfies z(T ) = max j∈C(w(T j) + z(T j)), we
have the desired result that

w(Ti∗) + w(S i∗ )

≥
(
1 − (k − 1)(1 − α)

(k − 1) + (1 − α)

)
max

j∈C
(w(T j) + z(T j))

=

(
1 − (k − 1)(1 − α)

(k − 1) + (1 − α)

)
z(T ).

This completes the proof. �

By applying the above to (1 − 1
e )-approximation algo-

rithm proposed in [2], we have the following result easily.

Corollary 1: If we employ (1 − 1
e )-approximation algo-

rithm, the approximation ratio of algorithm IE(1 − 1
e ) be-

comes 1 − k−1
(k−1)e+1 when the root has k children.

In the rest of this section, we deal with k-ary trees. If
we apply algorithm IE recursively, we can improve the ap-
proximation ratio. Let A0 be (1 − 1

e )-approximation algo-
rithm proposed in [2], and Am be algorithm IE(·) which em-
ploy Algorithm Am−1 at Step 2. If we apply algorithm Am
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Table 1 Approximation ratios of Algorithms A0, . . . , A3 for k-ary Tree.

algorithm ternary tree 4-ary tree 5-ary tree
A0 0.6321205 0.6321205 0.6321205
A1 0.6892751 0.6723046 0.6631047
A2 0.7074553 0.6817844 0.6689742
A3 0.7134432 0.6841220 0.6701359

to k-ary trees, the total number of execution of algorithm
A0 is kO(m2). Table 1 shows approximation ratios of Algo-
rithms A0, . . . , A3 when we applied to k-ary trees where
k ∈ {3, 4, 5}.

3. Backward Induction Technique for Ternary Trees

In this section, we propose an approximation algorithm
based on backward induction for ternary trees. Through-
out this section, we assume that a given original tree T is
ternary. We assume that the vertices of T are indexed by
{1, 2, . . . , n} satisfying that if vertex i is a child of vertex j,
then i < j. Obviously, n is the root of T .
Algorithm BI (α)

For i = 1 to n, do {
If vertex i is a leaf of T , then set ẑ(i) := 0, Fi := ∅,

and S i := ∅.
Else {

Let T ′ be a subtree rooted at i.
Apply algorithm IE(α) to FF(T ′) and obtain

a solution F′ and set of saved vertices S ′.
Find an ordered pair of distinct children (u∗, v∗)

of i which maximizes the value w(Tu∗) + ẑ(v∗)
where Tu∗ denotes a vertex set of a subtree
rooted at u∗.

If w(S ′) > w(Tu∗) + ẑ(v∗), then set ẑ(i) = w(S ′),
Fi = F′ and S i = S ′.

Else, set ẑ(i) = w(Tu∗) + ẑ(v∗), Fi = {u∗} ∪ Fv∗ and
S i = Tu∗ ∪ S v∗ .

}
}

Let us discuss the approximation ratio of our algorithm.

Theorem 2: Algorithm BI(α) is (α +
√

(1 − α)2 + 1 − 1)-
approximation algorithm when a given tree is ternary.

Proof. In the following, we abbreviate α+
√

(1 − α)2 + 1−1
by β for simplicity. From the description of the algorithm,
it is obvious that for any vertex v of T , the equality ẑ(v) =
w(S v) holds. We show that ẑ(v) ≥ βz(Tv) for any vertex v of
T by induction on the index of vertices, where z(Tv) denotes
the optimal value of FF(Tv).

When i = 1, vertex i is a leaf of original tree T and thus
0 = ẑ(i) ≥ βz(Ti) = 0, where S 1 = ∅ and T1 includes only
one vertex.

Assuming that the inequality ẑ(v) ≥ βz(Tv) holds for
any vertex v ∈ {1, 2, . . . , i − 1}, we consider vertex i. If i is
a leaf vertex, we can show the inequality easily. Consider
the case that i has three children { f , g, h}. Without loss of

generality, we can assume that there exists an optimal so-
lution of FF(Ti) which puts a firefighter on vertex f . Let
T f be a tree obtained by merging roots of Tg and Th. Then
z(Ti) = w(T f ) + z(T f ).

Since algorithm BI(α) executes IE(α), an inequality
ẑ(i) ≥ w(T f ) + αz(T f ) holds. The backward induction step
and induction hypothesis imply that

ẑ(i) ≥ max{w(Tg) + ẑ(h), w(Th) + ẑ(g)}
≥ max{w(Tg) + βz(Th), w(Th) + βz(Tg)}.

Clearly from the definition of T f , z(Tg) + z(Th) ≥ z(T f )
holds.

From the above, for any real θ satisfying 0 ≤ θ ≤ 1, we
have that

ẑ(i) ≥ max{w(T f ) + αz(T f ),

w(Tg) + βz(Th), w(Th) + βz(Tg)}
≥ (1 − θ)(w(T f ) + αz(T f ))

+
θ

2
(w(Tg) + βz(Th) + w(Th) + βz(Tg))

≥ (1 − θ)(w(T f ) + αz(T f ))

+
θ

2
(z(Tg) + βz(Th) + z(Th) + βz(Tg))

= (1 − θ)(w(T f ) + αz(T f ))

+
θ

2
(1 + β)(z(Tg) + z(Th))

≥ (1 − θ)(w(T f ) + αz(T f )) +
θ

2
(1 + β)z(T f ).

By setting θ′ = 1 − β, it is easy to show that 0 ≤ θ′ ≤ 1 and

ẑ(i) ≥ (1 − θ′)(w(T f ) + αz(T f )) + θ
′ 1 + β

2
z(T f )

= (1 − θ′)w(T f ) +
2(1 − θ′)α + θ′(1 + β)

2
z(T f )

= βw(T f ) +
2αβ + 1 − β2

2
z(T f )

= βw(T f ) +
(β − 2α + 2)(−β) + 2β + 1

2
z(T f )

= βw(T f )

+
(1 − α)2 − (β − α + 1)2 + 2β + 1

2
z(T f )

= βw(T f )

+
(1 − α)2 − ((1 − α)2 + 1) + 2β + 1

2
z(T f )

= β(w(T f ) + z(T f )) = βz(Ti).

Thus, we have a desired inequality ẑ(i) ≥ βz(Ti). �

When we employ (1− 1
e )-approximation algorithm pro-

posed in [2], and then we obtain the algorithm BI(1 − 1
e ),

whose approximation ratio becomes√
1 +

(
1
e

)2

− 1
e
≥ 0.6976416.
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Lastly, we consider the case that we solve FF(T ′) in
algorithm BI(·) by algorithm A1, i.e., algorithm IE(1 − 1

e )
proposed in the previous section. Corollary 1 says that the
approximation ratio of IE(1− 1

e ) is (1− 5
5e+1 ), since the root of

T f in the proof of Theorem 2 has 6 children. From the above
theorem, the approximation ratio of the obtained algorithm
BI(1 − 5

5e+1 ) becomes√
(5e + 1)2 + 25 − 5

5e + 1
≥ 0.7144139.

4. Conclusion

In this paper, we proposed two techniques which improve
existing approximation algorithms. If we apply the im-
plicit enumeration technique to an α-approximation algo-
rithm, the approximation ratio increases to (1 − (k−1)(1−α)

(k−1)+(1−α) )
where k denotes the number of children of the root. Here we
note that limk→∞(1 − (k−1)(1−α)

(k−1)+(1−α) ) = α. If we employ a poly-
nomial time α-approximation algorithm, Algorithm IE(α) is
also a polynomial time algorithm. By applying the implicit
enumeration technique recursively, the approximation ratio
tends to 1 and the computational time grows exponentially.

The backward induction technique improves an ap-
proximation algorithm, if a given tree is ternary. By ap-
plying to a polynomial time approximation algorithm, the
backward induction technique also gives a polynomial time
approximation algorithm. When a given tree is k-ary and
k ≥ 4, the backward induction technique does not improve
the approximation ratio. Even if a given tree is 4-ary, recur-
sive application of the backward induction technique does
not improve the approximation ratio, since subtrees dealt in
the backward induction technique are not 4-ary any longer.
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