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Voting-Based Ensemble Classifiers to Detect Hedges and Their
Scopes in Biomedical Texts

Huiwei ZHOU†a), Xiaoyan LI†b), Degen HUANG†c), Yuansheng YANG†d), Nonmembers, and Fuji REN††, Member

SUMMARY Previous studies of pattern recognition have shown that
classifiers ensemble approaches can lead to better recognition results. In
this paper, we apply the voting technique for the CoNLL-2010 shared
task on detecting hedge cues and their scope in biomedical texts. Six ma-
chine learning-based systems are combined through three different voting
schemes. We demonstrate the effectiveness of classifiers ensemble ap-
proaches and compare the performance of three different voting schemes
for hedge cue and their scope detection. Experiments on the CoNLL-2010
evaluation data show that our best system achieves an F-score of 87.49% on
hedge detection task and 60.87% on scope finding task respectively, which
are significantly better than those of the previous systems.
key words: hedges, voting, classification, machine learning

1. Introduction

Speculative language, also known as hedging, is usually
used in science text, especially in the biomedical domain.
When researchers are not completely certain about the con-
clusions, they use speculative language to express this un-
certainty. Hedged information is necessary for biomedical
researchers to express impressions or hypothesized expla-
nations of experimental results.

The term hedging is originally introduced by Lak-
off [1]. However, researches on hedge detection from Nat-
ural Language Processing (NLP) perspective are just pro-
posed in recent years. Vincze et al. [2] construct a cor-
pus annotated for negations, speculations and their linguistic
scopes. It provides a common resource for the training, the
evaluation and the comparison of biomedical NLP systems.

Vincze et al. [2] report that 17.69% of the sentences in
the abstracts section of the BioScope corpus and 22.29% of
the sentences in the full papers section contain hedge cues.
Light et al. [3] estimate that 11% of sentences in MEDLINE
abstracts contain speculative fragments. Szarvas [4] reports
that 32.41% of gene names mentioned in the hedge classifi-
cation dataset [5] appear in the speculative sentences. This
means that quite a few false positives of the gene interaction
extraction system could be due to hedging if hedge detection
had been neglected.
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An example sentence containing hedged information is
shown as follows:

(a) It will be important to explore this connection
further, since recent studies <xcope><cue>suggest</cue>
an interaction between adenosine signaling and the NF-
kappaB signaling pathway, which is the mammalian coun-
terpart of the Toll pathway</xcope>.

The word “suggest” indicates that the following state-
ments are not supported by fact. The scope of the hedge cue
“suggest” is the statement “an interaction between adeno-
sine signaling and the NF-kappaB signaling pathway, which
is the mammalian counterpart of the Toll pathway”. But
the statement “It will be important to explore this connec-
tion further” is factual information. Therefore, detections of
hedge cues and their linguistic scope are both important in
biomedical text mining.

The CoNLL-2010 Shared Task [6] formulates specu-
lative language detection as two subtasks. Task 1 aims to
identify sentences containing uncertainty and Task 2 aims
to resolve the in-sentence scope of hedge cues. This pa-
per aims to solve the two subtasks. As for task 1, Med-
lock and Briscoe [5] propose an automatic classification of
hedging in biomedical texts using weakly supervised ma-
chine learning. Further, Medlock [7] illuminates the hedge
identification task including annotation guidelines, theoret-
ical analysis and discussion. He argues for separation of
the acquisition and classification phases in semi-supervised
machining learning method and presents a probabilistic ac-
quisition model. Tang et al. [8] build a cascade subsystem to
detect hedges in the CoNLL-2010 Shared Task. They first
train a Conditional Random Field (CRF) model and a large
margin-based model respectively. And then they train an-
other CRF model using the result of the first phase. Their
system achieves 86.36% F-score on biological corpus for
hedge detection. It is the best result on Task 1. Zhou et
al. [9] integrate a keyword-based system with a CRF-based
system by introducing keyword features to the CRF-based
system. Their system achieves a state-of-the-art F-score
86.32% in Task 1.

As for Task 2, Morante and Daelemans [10] present
a meta-learning system that finds the scope of hedge cues
in biomedical texts. They use three classifiers and a meta-
learner that uses the predictions of the three classifiers to
predict the scope classes. Morante et al. [11] develop a
scope detector by using only one memory-based system that
relies on information from syntactic dependencies. Their
system scores the highest F-score (57.32%) of Task 2.
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Recently, the combination of classifiers is used to
achieve better performance [12], [13]. Jung et al. [12] pro-
pose an efficient matching scheme with a gradual vot-
ing strategy. Fishel and Nivre [13] study two techniques
for combining data-driven dependency parser: voting and
stacking. Their experimental results show that both methods
lead to significant improvements over the best component
system, while voting works better than stacking. A combi-
nation aggregates the results of many classifiers, overcom-
ing the possible local weakness of the individual classifier,
producing a more robust recognition. Stacking for hedge
detection is adopted in detail in Tang et al. [8] and stacking
for hedge scope detection is used in Morante and Daele-
mans [10] as mentioned above.

Aiming to further improve the performance of the un-
certain information detection, we focus on the voting tech-
nique, which combines many individual classifiers to ex-
ploit the unique advantage of each classifier. First, we
construct six basic classifiers based on three learning al-
gorithms: Conditional Random Field (CRF) [14], Support
Vector Machine (SVM) [15] and Max-Margin Markov Net-
work (M3-Net) [16] times two directions (forward and back-
ward) for each task. Then three different voting schemes for
system combination in hedge detection and hedge scope de-
tection are compared.

2. Methods

2.1 Preprocessing

To extract features for the machine learners, we convert the
XML training data to a token-per-token representation, in
which a sentence consists of a sequence of tokens and each
token starts on a new line.

In our preprocessing, GENIA Tagger† [17] is applied to
get stems, Part-of-Speech (POS) tags, and BIO chunk tags.
Dependency features are extracted by GDep parser†† [18].
Table 1 shows a preprocessed sentence with the information
per token: word, stem, POS tag, chunk tag, dependency la-
bel, cue tag, and scope tag. Hedge cues are given IOB2 rep-
resentation. Scope tags representation follows the way of
Morante and Daelemans [10], where F-scope indicates the

Table 1 Preprocessed sentence.

token Stem POS Chunk Label C S
This This DT B-NP SUB O N
indicates indicates VBZ B-VP ROOT B F
that that IN B-SBAR VMOD I N
D-mib D-mib NN B-NP SUB O N
acts acts VBZ B-BP SBAR O N
at at IN B-PP VMOD O N
a a DT B-NP NMOD O N
step step NN I-NP PMOD O N
upstream upstream RB B-ADVP NMOD O N
of of IN B-PP AMOD O N
N N DT B-NP NMOD O N
activation activation NN I-NP PMOD O L
. . . O P O N
B:B-cue, I:I-cue, F:F-scope, L:L-scope, N:NONE

first token of a scope sequence, L-scope indicates the last
token of a scope sequence, and NONE indicates others.

2.2 Task 1: Hedge Detection

We treat the detection of sentences containing uncertain in-
formation as token classification task in which we learn clas-
sifiers to predict whether a token is a cue or not.

2.2.1 Hedge Detection Classifiers

An important issue of classifiers combination is that each
individual classifier should be complementary. This can be
achieved by employing heterogeneous learning algorithms,
as well as using different sets of the features. This paper
investigates the heterogeneous classifiers ensemble strategy
by using three machine learning algorithms: CRF, SVM and
M3-Net.

CRF: Conditional random field (CRF) is undirected
graphical models trained to maximize a conditional prob-
ability [14]. The use of graphical models allows the struc-
ture of the labels to be exploited very effectively. CRF is
discriminative model and can thus capture many correlated
features of the inputs. This allows flexible feature designs
for hierarchical tag sets. However, they do not have the
generalization guarantees of SVM and the possibility to use
the Kernel function. Moreover, they cannot give theoretical
bound on the generalization error compared with those of
margin-based classifiers.

SVM: Support Vector machine (SVM) takes a strat-
egy that maximizes the margin between critical examples
and the separating hyperplane [15]. The margin-maximizing
properties of the learning algorithm ensure the high gen-
eralization of SVM even with training data of a very high
dimension. Furthermore, by introducing the Kernel princi-
ple, SVM can handle non-linear feature spaces, and carry
out the training in high-dimensional spaces with consider-
ing combinations of more than one feature. However, SVM
doesn’t handle interactions between the labels in the multi-
label case. In sequence labeling, SVM ignores structure in
the problem, assigning labels independently to each object,
losing much useful information.

M3-Net: Max-Margin Markov Networks (M3-Net) is a
new framework which unifies CRF and SVM, and combines
the advantages of both [16]. The approach defines a log-
linear Markov network over a set of label variables which
allows us to capture correlations in structured data. Also, the
margin-based optimization approach gives theoretical gen-
eralization guarantees. Taskar et al. [16] adapts structured
sequential minimal optimization (SMO) algorithm for solv-
ing quadratic programming (QP) problems to train M3-Net.
However, the polynomial number of constraints in the QP
problem associated with the M3-Net can still be very large,
making the structured SMO algorithm slow to converge over

†Available at http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
tagger/
††Available at http://people.ict.usc.edu/ sagae/parser/gdep/
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the training data. This currently limits the scalability and ap-
plicability of M3-Net to real-world structured data. Among
the many kinds of Kernel functions available, we use the
linear kernel with considering time cost.

The heterogeneity of the data influences the perfor-
mance of CRF, SVM and M3-Net. In our experiments, each
machine learning algorithm is used to create two classifiers,
one that parses the input sentence from left to right (for-
ward), and the other from right to left (backward). Aggre-
gately six cue classifiers are used in our voting-based com-
bination experiments.

The following features are used for each component
classifier.

• Word (i = −n, . . . ,−1, 0,+1, . . . ,+n)
• Stem (i = −n, . . . ,−1, 0,+1, . . . ,+n)
• POS (i = −n, . . . ,−1, 0,+1, . . . ,+n)
• Chunking tag (i = −n, . . . ,−1, 0,+1, . . . ,+n)
• Keyword feature (i = −n, . . . ,−1, 0,+1, . . . ,+n)

Hedge cues that appear in the training dataset and their
synonyms in WordNet† are selected as keywords for hedge
cue detection. To find the complete cues, keywords are
matched through a maximum matching method (MM) [19].

The above linguistic features are base features, which
are effective in hedge detection. Base features, by them-
selves cannot determine the current token correctly. In this
paper, we introduce the following two additional features for
hedge detection.

• Co-occurrence keyword feature

Speculation keywords usually co-occur in the sen-
tences. Consider the sentence “Therefore, we asked whether
the observed iPfam coverage is larger than would be ex-
pected by chance.” Here, “whether” and “would” are spec-
ulation keywords and their co-occurrence might be a clue
for their speculation context. It is a binary feature which is
set to “Y” if there are co-occurring speculation keywords.
Otherwise, it is set to “N”.

• Combined features

Combined features include Wi−1Wi, P0C−1K1 and
C0K−1CO1, where −1 ≤ i ≤ 1, W denotes the word, P the
POS tag, C the chunk tag, K the keyword feature and CO
the co-occurrence keyword feature.

2.2.2 Voting-Based Ensemble Classifiers for Hedge De-
tection

Each individual cue classifier takes part in the decision of
labeling an input token. In the simple majority voting [20],
the decision of IOB2 labels is taken according to the number
of votes given by all classifiers. Sagae and Lavie [21] report
that they achieve a higher accuracy by applying weighted
voting of systems. It is well-known that weighted vot-
ing scheme can maximize the margin between critical sam-
ples and the separating hyperplane, and produces a decision
function with high generalization performance.

Three different voting schemes, therefore, are used in
this paper: (1) majority voting; (2) weighted voting by the
accuracy of the component classifier; (3) POS weighted vot-
ing by the accuracy of the component classifier on all to-
kens which have the same POS. We use six initial classi-
fiers mentioned previously- three learning algorithms times
two directions. Before applying weighted voting method,
we need to decide on the weights to be given to individual
classifiers. In all weighted voting experiments, the training
corpus is used to train the component classifiers and the de-
velopment corpus is used to learn weights. In our weighted
voting experiments, 4-fold cross-validation on the CoNLL-
2010 training dataset is used to get the voting weights. The
voting weight of the classifier i is calculated as:

w(i) =

∑
l j∈{B,I}

Ci(l j)

∑
l j∈{B,I}

Count(l j)
(1)

where Count(l j) is the total number of token whose
class label is l j in the development data, and Ci(l j) is the
number of correctly tagged token whose label is l j in the
development data by the classifier i. Since the number of
label O in the training corpus is far more than the number of
label B-cue and I-cue, it is difficult to distinguish the hedge
detection capability of the classifiers if label O is used to cal-
culate the voting weight. Therefore we only use two classes
(B-cue, I-cue) to calculate the voting weight.

2.3 Task 2: Hedge Scope Detection

Only sentences assigned cues in the hedge detection phase
are selected for hedge scope detection.

2.3.1 Voting-Based Hedge Scope Detection

We also adopt the three algorithms - CRF, SVMs and M3-
Net to implement hedge scope detection system.

The features used in hedge scope detection systems are
listed below.

• Word
• Stem
• POS
• Chunk tag
• Hedge cues feature (H)

Hedge cues labels that are doped out in Task 1 are se-
lected as an important feature.

• Distance from the current word to the closest preceding
and following hedge cue (DH)
• Stem of the closest preceding and following hedge cue

(SH)
• POS of the closest preceding and following hedge cue

(PH)
• Dependency feature
†Available at http://wordnet.princeton.edu/
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Dependency label of current word, POS tag and de-
pendency label of the head of cue in the dependency tree are
used in our experiments.

• Phrase structure feature (PS)

The phrase structure information plays an important
role in hedge scope detection. Enju† is used to get the phrase
structure feature. The parent phrase immediately dominat-
ing the cue is given IOB2 label as phrase structure feature.

• Context feature

Context of the word, stem, POS, chunk tag and hedge
cue feature in the window [−4, 4] and Context of DH, SH,
PH, dependency feature and syntactic feature in the window
[−2, 2] are used in our experiments.

• Combined feature

Combined features including Ci−1Ci,Ci−1CiCi+1,
P0C−1H1 and C0H−1DH1, where −1 ≤ i ≤ 1, C denotes the
chunk tag, P the POS of the word, H the hedge cue feature
and DH the distance to the closest preceding and following
hedge cue.

The three voting schemes used in hedge detection sys-
tem are also used in hedge scope detection system.

2.3.2 Post-Processing

In CoNLL-2010 share task corpus, scopes are annotated as
continuous sequences of tokens that include the cue. How-
ever, sometimes the classifiers only predict the first or the
last token of the scope. Therefore, we need to process the
output of the classifier to get the complete sequence of the
scope. The following post processing rules are adopted.

1. If one token has been predicted as F-scope and one as
L-scope, the sequence will start at the token predicted
as F-scope, and end at the token predicted as L-scope.

2. If one token has been predicted as F-scope and none
has been predicted as L-scope, the sequence will start
at the token predicted as F-scope and end at the end of
the sentence.

3. If one token has been predicted as L-scope and none
has been predicted as F-scope, the sequence will start
at the hedge cue and finish at the token predicted as
L-scope.

4. If one token has been predicted as F-scope and more
than one has been predicted as L-scope, the sequence
will start at the token predicted as F-scope and end at
the first token predicted as L-scope.

5. If one token has been predicted as L-scope and more
than one has been predicted as F-scope, the sequence
will start at the first token predicted as F-scope and fin-
ish at the token predicted as L-scope.

6. If an L-scope is predicted before an F-scope, the se-
quence will start at the token predicted as F-scope, and
finish at the end of the sentence.

3. Results and Discussion

3.1 Experimental Settings

Our experimental results are all based on the CoNLL-2010
BioScope dataset. The BioScope corpus consists of two
parts: biological paper abstracts and biological full papers.
The test set includes 5003 sentences and 1043 of them con-
tain uncertain information. The evaluation of hedge detec-
tion task is carried out using the sentence-level F-score of
the uncertainty class, and the results are calculated with the
official scorer provided by the task organizers.

In our experiments, CRF++-0.54†† implementation is
employed to CRF, YamCha-0.33††† implementation is em-
ployed to SVM method and pocket m3n 0.11†††† imple-
mentation is employed to M3-Net.

We set d = 3 for the dimension of the polynomial ker-
nel function of SVMs.

3.2 Hedge detection performance

Table 2 shows the effects of the additional features proposed
in Sect. 2.2.1. The base features are the same as those used
in the hedge detection system of Zhou [9]. The hedge tags
are predicted based on CRF algorithm in forward parsing
under the condition C = 1 (the hyper-parameter of CRF)
and n = 4 (window size), which is exactly the same setting
in Zhou [9]. From these results, we can conclude that all
additional features proposed in this paper are effective in
improving the performance.

Table 3 shows the relationship between the window
size and the hedge detection performance. Using all the base
features and the additional features, the best F-score 86.71
is obtained when the window size is ±2.

Table 4 shows the relationship between the hyper-
parameter C ∈ R+ of CRF and the hedge detection perfor-
mance. This parameter trades the balance between overfit-
ting and underfitting. With larger C value, CRF tends to

Table 2 Effects of the additional features in hedge detection.

Feature set Prec. Recall F-score
base features (Zhou [9]) 87.21 85.44 86.32
+co-occurrence keyword feature 87.73 85.06 86.38
+co-occurrence keyword 87.74 85.19 86.45

,combined feature

Table 3 Window size n vs. Performance in hedge detection.

Window size Prec. Recall F-score
1 85.93 85.82 85.88
2 88.01 85.44 86.71
3 88.43 84.18 86.25
4 87.74 85.19 86.45

†Available at http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
††Available at http://crfpp.sourceforge.net/
†††Available at http://chasen.org/ taku/software/yamcha/
††††Available at http://sourceforge.net/projects/pocket-crf-1/files/
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Table 4 Hyper-parameter C vs. Performance in hedge detection.

Classifier C Prec. Recall F-score

CRF-F

1.0 88.01 85.44 86.71
2.0 87.90 86.08 87.01
3.0 88.24 86.46 87.34
4.0 88.02 86.46 87.23

CRF-B

1.0 87.53 85.32 86.41
2.0 87.73 85.95 86.83
3.0 87.98 86.20 87.08
4.0 88.08 86.08 87.07

Table 5 Hedge detection results of six individual classifiers and their
ensemble through three voting schemes.

Classifier Prec. Recall F-score
CRF-F 88.24 86.46 87.34
CRF-B 87.98 86.20 87.08
SVM-F 88.29 84.94 86.58
SVM-B 87.28 85.95 86.61
M3-NET-F 87.79 85.57 86.67
M3-NET-B 87.22 84.68 85.93
Majority voting 88.46 86.33 87.38
Weighted voting 88.06 86.84 87.44
POS weighted voting 88.69 86.33 87.49
F: Forward, B: Backward

overfit the given training corpus. As shown in Table 4, the
results are significantly influenced by parameter C, which
can be determined by a cross validation. As a result, the
case of C = 3 gives the best F-score.

Table 5 compares the performance of six individual
classifiers and three voting-based ensemble classifiers. By
applying the ensemble, we can see that all voting schemes
are effective in improving the performance. Majority
scheme takes advantage of combination, and gets a higher
F-score than any single classifier. Weighted voting scheme
achieves a little improvement than majority voting scheme
because weighted voting gives appropriate weights to indi-
vidual classifiers. POS weighted voting scheme achieves
the best F-score of 87.49, which benefits from grouping
weights. It can be concluded that POS is an important fea-
ture for grouping weights.

Table 6 shows the different weights grouped by the
word POS. It can be seen that six classifiers have different
weights for different POS. The weights of CC (coordinat-
ing conjunction) are very low no matter what classifier is
selected. This means it is difficult to detect the hedge cues
whose POS tag is CC. The test set includes 888 coordinating
conjunctions and 67 of them are hedge cues. The coordinat-
ing conjunctions such as “either”, “or”, “and”, “but” and so
on do not have speculative meaning. Through the analysis
of the sentences containing coordinating conjunctions, we
find that whether a conjunction is a cue or not should be de-
termined by considering the whole sentence. For example,
consider the following two sentences.

(b) However, the increase in ISGF3 activity ultimately
correlates with the accumulation of ISGF3 gamma induced
by IFN-alpha <cue>or</cue> IFN-gamma.

(c) Furthermore, CD28 coligation fails to enhance IL-
2 promoter-reporter or RE/AP construct expression in CD2-

Table 6 Weights of POS weighted voting scheme for hedge detection.

POS
Estimated weights

CRF-F CRF-B SVM-F SVM-B M3- M3-
Net-F Net-B

JJ .7424 .6494 .6234 .64 .7227 .6625
RB .9167 .8269 .8148 .8182 .8958 .8302
VBG .9538 .9688 .9385 .9524 .9538 .9385
VBD .9211 .925 .9 .8974 .9474 .9
NN .6667 .8235 .8125 .8 .7222 .8
VBN .8571 .7447 .7872 .7959 .881 .7347
VB 1.0 .9286 .8667 .9231 1.0 .9286
VBP .9835 .9835 .978 .9834 .9725 .9834
CC .1034 .5333 .3333 .2857 .1034 .5
MD .9362 .8667 .8911 .881 .9404 .8656
VBZ .9859 .9467 .9589 .9452 .9859 .9467

Table 7 Hedge detection performance comparison on the CoNLL-2010
Share Task test data.

System Prec. Recall F-score
Ours 88.69 86.33 87.49
Tang [8] 85.03 87.72 86.36
Zhou [9] 86.49 85.06 85.77
Li [22] 90.40 81.01 85.45

Table 8 Scope detection results of six individual classifiers and their
ensemble through three voting schemes.

Classifier Prec. Recall F-score
CRF-F 61.16 57.31 59.17
CRF-B 61.05 57.21 59.07
SVM-F 61.05 57.21 59.07
SVM-B 61.36 57.50 59.37
M3-Net-F 61.57 57.70 59.57
M3-Net-B 61.47 57.60 59.47
Majority voting 61.67 57.79 59.67
Weighted voting 61.78 57.89 59.77
POS weighted voting 61.98 58.08 59.97

activated LPMC.
The word “or” in sentence (b) is a cue, which in sen-

tence (c), “or” is not used in a speculative context. Exploit-
ing neighboring words features to label the current word is a
traditional method in the Natural Language Processing. But
in fact, features in a narrow window are not rich enough
to analyze the meaning of the word in the whole sentence.
However, using features of the whole sentence would cause
the increase of computational cost as well as the problem of
data sparseness. This conflict is a problem that we should
resolve in the future.

Table 7 summarizes the top three systems from the
competition of CoNLL-2010 Share Task [6]: Tang et al. [8],
Zhou et al. [9] and Li et al. [22]. It is obvious that our sys-
tem outperforms the best system by an increase of 1.13 in
F-score.

3.3 Hedge Scope Detection Performance

For hedge scope detection system, we use the hedge cues
extracted by the POS weighted voting system (the best F-
score of 87.49 in Table 5). Table 8 shows the performance of
each single classifier and voting-based ensemble classifiers.



1994
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

Fig. 1 Phrase tree parsed by Enju Parser.

Table 9 Effects of phrase structure feature (PS) for scope detection.

Classifier
Without PS feature With PS feature

Prec. Recall F-score Prec. Recall F-score
CRF-F 59.92 56.15 57.97 +1.24 +1.16 +1.2
CRF-B 59.71 55.95 57.77 +1.34 +1.26 +1.3
SVM-F 59.71 55.95 57.77 +1.34 +1.26 +1.3
SVM-B 60.12 56.34 58.17 +1.24 +1.16 +1.2
M3-Net-F 59.81 56.05 57.87 +1.76 +1.65 +1.7
M3-Net-B 60.02 56.24 58.07 +1.45 +1.36 +1.4

All results of ensemble classifiers are better than those of
individual classifiers. POS weighted voting system achieves
a state-of-the-art F-score 59.97 in Task 2.

It needs to be pointed out that the scope of a hedge cue
is related to its POS and the phrase structure of the sentence
in which it occurs. Consider the uncertain sentence “Partial
cortisol receptor resistance <xcope><cue>might</cue> be
less rare than previously thought</xcope>.” whose phrase
tree parsed by Enju parser is shown in Fig. 1. Enju is an
accurate HPSG parser for English. We use it to analyze syn-
tactic structures of sentences in our experiment since it con-
tains a parsing model for the biomedical domain.

The sentence in Fig. 1 contains a hedge cue “might”.
The scope of the modal verb “might” extends to the parent
phrase “VP” immediately dominating it. In this paper, we
introduce a new type of feature called phrase structure fea-
ture (PS), which is effective in improving the performance.
Its contributions to the performance are shown in Table 9.

Table 10 shows the weights of POS weighted voting
for hedge scope detection. The low accuracy of the scope of
speculation CC is caused by the low accuracy of hedge cue
detection as shown in Table 6.

The weights of VB (Verb) and VBN (Verb, past par-
ticiple) are very low for all individual classifiers. By an-
alyzing the error of hedge cues which have VB and VBN
tag, we find the problem is caused by a verb in passive
voice like “be (VB) + past participle (VBN)”. The scope
of a verb in passive voice extends to the whole sentence
such as the scope of “thought” in “<xcope>Activation of
NF-kappaB is <cue>thought</cue> to be required for cy-
tokine release from LPS-responsive cells, a critical step for
endotoxic effects</xcope>”. In this case, most hedge cues
are predicted as F-scope by our classifiers mistakenly.

The weight of RB (Adverb) is also low, since it is dif-

Table 10 Weights of POS weighted voting scheme for hedge scope de-
tection.

POS
Estimated weights

CRF-F CRF-B SVM-F SVM-B M3- M3-
Net-F Net-B

JJ .5833 .5595 .6071 .5952 .5953 .5714
RB .4 .4 .425 .425 .375 .4
VBG .9155 .9155 .9155 .9155 .8873 .9014
VBD .7083 .7083 .6875 .7083 .7083 .7083
NN .8235 .8235 .7059 .7059 .8235 .8235
VBN .3529 .3529 .4706 .4706 .2941 .3529
VB .3636 .3636 .3636 .3636 .3636 .3636
VBP .8235 .8235 .8396 .8342 .8449 .8182
CC .0968 .0968 .1613 .0968 .0968 .0968
MD .7259 .7259 .736 .731 .731 .7208
VBZ .5246 .5246 .541 .5246 .4754 .4918

Table 11 Hedge scope detection performance improvement by addi-
tional post-processing.

Additional Different from the model
post-processing without additional post-processing

Prec. Recall F-score
rule1 +0.52 +0.49 +0.5
rule2 +0.42 +0.39 +0.4
Rule1+rule2 +0.93 +0.87 +0.9

Table 12 Hedge scope detection performance comparison on the
CoNLL-2010 Share Task test data.

System Prec. Recall F-score
Ours 62.91 58.95 60.87
Roser Morante et al. [11] 59.62 55.18 57.32
Rei and Briscoe [23] 56.74 54.60 55.65
Velldal et al. [24] 56.71 54.02 55.33

ficult for a classifier to determine the scope of the specula-
tion adverbs. Some scopes of an adverb extend to the whole
sentence such as the scope of “<xcope>Cosignaling via the
LT-beta and TNF-alpha receptors is <cue>probably</cue>
involved in the modulation of HIV-1 replication and
the subsequent determination of HIV-1 viral burden in
monocytes</xcope>”. However, some scopes of an ad-
verb start with the cue and end with the last token of the
highest level “NP” which dominates the adverb, such as in
“Thus, the novel enhancer element identified in this study is
<xcope><cue>probably</cue> a target site for both posi-
tive and negative factors</xcope>”.

To correct the errors above, scopes are reconstructed
from the POS weighted classifier output by using the fol-
lowing additional post-processing rules:

1. The scope of a verb in passive participle voice is ex-
tended to the whole clause.

2. If the detected cue is an adverb which modifies a verb,
the scope of the adverb is extended to the whole sen-
tence. Otherwise, the scope of the adverb starts with
the hedge cue and ends with the last token of the high-
est level “NP” which dominates the adverb.

Their contributions to the performance are shown in
Table 11. From the results we can conclude that all addi-
tional rules are effective in improving the performance.
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Fig. 2 Training data vs. hedge detection performance for majority vot-
ing.

We compare our system with the top three systems
from the competition of CoNLL-2010 Share Task in Ta-
ble 12. It is obvious that our system outperforms them by a
significant increase of 3.55 in F-score.

3.4 Training Data vs. Ensemble Performance

Since the BioScope corpus only includes 5003 sentences
and 1043 of them contain uncertain information, the contri-
bution of ensemble in our experiments is not very obvious.
However, the advantage of the ensemble approach is its ex-
pansibility. The performance of ensemble system can be
easily improved by adding more training data to the current
corpus. The effect of the training data size on the majority
voting is investigated in this paper.

We divide the BioScope training data into eight parts.
One part is used for training the six individual hedge de-
tection classifiers (three learning algorithms two directions),
which are then combined by majority voting. Next we in-
crease the size of the training dataset by one part incremen-
tally to train the other basic classifiers and then combine the
six classifiers trained by the same size training set. Figure 2
shows the hedge detection results using majority voting for
different training set sizes. Under majority voting, the F-
score of the hedge detection increase significantly as the
training dataset size increases. To estimate the asymptotic
value of the F-score for hedge detection as the training set n
increases, non-linear function fhedge = i+ jmn is fitted to the
results shown in Fig. 2. The variable fhedge is the F-score for
hedge detection, n is the training dataset size, and i, j, and
m are parameters requiring estimation. The statistical tool
SPSS† is used to carry out the estimation and the following
function is obtained.

fhedge = 92.58 − 14.0391(0.8832)n (2)

This function suggests that as the training set increases,
the F-score starts at about 80.18 for a training dataset of size
1 and reaches an asymptote at about 92.58.

Figure 3 shows the same information for hedge scope
detection using majority voting. The following estimation is
obtained for hedge scope detection.

fhedge = 75.67 − 19.8240(0.9736)n (3)

Fig. 3 Training data vs. hedge scope detection performance for majority
voting.

This function suggests that as the training dataset in-
creases, the F-score of hedge detection starts at about 56.37
for a training dataset of size 1 and reaches an asymptote at
about 75.67.

The average results of hedge and their scope detection
for different training set sizes are also shown in Fig. 2 and
Fig. 3 respectively. All results of ensemble classifiers are
steadily better than the average results on both hedge detec-
tion and their scope finding for different training set sizes.
The bigger the training set is, the more significant the en-
semble system improvement is. It is worthwhile to note that
the F-score of the ensemble classifiers with very large train-
ing data is not 100. Some hedges may be dropped during
statistical detection. This is different from the pure rule-
based approach.

3.5 The Upper Bounds for Ensembles

Given an ensemble of n classifiers {Cl(x), . . . ,Cn(x)}, where
n is an even integer, the majority voting classifier is defined
as:

C(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
n∑

i=1
Ci(x) ≥ n/2

0 Otherwise

(4)

The majority voting threshold k is set to be 3 in our
experiments. The token is tagged as B-cue or I-cue when not
less than half of the classifiers agree for the hedge detection;
while the token is tagged as F-scope or L-scope when not
less than half of the classifiers agree for the hedge scope
detection.

For multinomial classes with |Y | class values, the
threshold under which a voting system makes a correct pre-
diction depends on the distribution of the incorrect votes.
This means that to get a good voting result, selecting a set
of basic classifiers that are more different in their predic-
tions can minimize the required threshold. The number of
correct votes required may be as low as n/|Y | or as high as
n/2. Therefore the threshold may be 2 when the number of

†http://www.spss.com/
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the three class votes is 2 respectively.
The upper bounds of the F-score for majority vot-

ing can be estimated by minimizing the required threshold
n/|Y |(k = 2) using the Eq. (5):

max(C(x)) = F

⎛⎜⎜⎜⎜⎜⎜⎝
6∑

i=1

I(Ci(x) = Yc) ≥ 3+

6∑

i=1

I(Ci(x) = Yc) =
6∑

i=1

I(Ci(x) = Y1) =

6∑

i=1

I(Ci(x) = Y2) = 2

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

Where Yc is the correct prediction. x is the instance
whose classification to be confirmed. Experiments on the
CoNLL-2010 evaluation data show that our voting-based
ensemble system achieves an upper bound F-score of 91.87
on hedge detection task and 62.77 on scope finding task re-
spectively. Though the upper bound predicted by the Eq. (5)
is tight, the contribution of ensemble is relatively large. This
owes to the complement of the individual classifiers.

3.6 Overall Performance Comparison

From prior experiments on hedge detection (Table 5), it can
be seen that CRF achieves the best performance among the
three algorithms both in forward parsing and backward pars-
ing. However, for hedge scope detection (Table 8), M3-Net
models perform better than CRF and SVM. Generally, the
performance of SVM is moderate or steady among the three
algorithms in both tasks. This is due to the high generaliza-
tion ability of SVMs.

From the experiments on hedge detection for different
kinds of the word POS (Table 6), it is easy to note the ex-
tremely good results of the CRF models on the tokens with
POS tags VB*. As for hedge scope detection (Table 10),
SVM outperform the CRF and M3-Net on the tokens with
POS tags VB*. Overall, the performance of six basic clas-
sifiers is comparable and influenced by the heterogeneity of
the data. The proposed classifiers ensemble methods lead to
improvement in performance of hedge and their scope de-
tection.

Concerning the time needed to train the models, CRFs
certainly behave most favorable. YamCha uses two fast clas-
sification algorithms -PKE (Polynomial Kernel Expanded)
and PKI (Polynomial Kernel Inverted) to make the classifi-
cation speed faster than the original SVMs. However, the
SMO-style M3-Net algorithm employed here remains prob-
lematic in training time cost. The M3-Net models are trained
using linear kernel here since we could not carry out the
training in realistic time for the kernel of quadratic polyno-
mial.

4. Conclusions

This paper focuses on the voting scheme to detect hedges

and their scopes in biomedical texts. More specifically,
three voting schemes are adapted to voting-based ensem-
ble classifiers. The experimental results show that voting
may result in improvements over their component classi-
fiers by combining their individual advantages. Weighted
voting strategies perform better than the simple majority
voting method. Furthermore, grouping weights can achieve
even higher performance. The best voting scheme for hedge
detection and hedge scope detection achieves F-scores of
87.49% and 60.87% respectively, which far surpass the best
published results.
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