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Generation of Symmetric and Asymmetric Biconnected Rooted
Triangulated Planar Graphs

Bingbing ZHUANG†a), Nonmember and Hiroshi NAGAMOCHI†b), Member

SUMMARY In a rooted triangulated planar graph, an outer vertex and
two outer edges incident to it are designated as its root, respectively. Two
plane embeddings of rooted triangulated planar graphs are defined to be
equivalent if they admit an isomorphism such that the designated roots cor-
respond to each other. Given a positive integer n, we give an O(n)-space
and O(1)-time delay algorithm that generates all biconnected rooted trian-
gulated planar graphs with at most n vertices without delivering two reflec-
tively symmetric copies.
key words: enumeration, reflective symmetry, triangulation, plane graphs,
planar graphs, biconnectivity, graph algorithms

1. Introduction

To generate a certain class of graphs is one of the fundamen-
tal and important issues in graph theory. The common idea
behind most of the recent efficient enumeration algorithms
(e.g., [7]) is to define a unique representative graph for each
graph in a class of graphs as its “parent,” which induces a
rooted tree that connects all graphs in the class, called the
family tree F , where each node in F corresponds to a graph
in the class. Then all graphs in the class will be generated
one by one according to the depth-first traversal of the fam-
ily tree F . This is similar to the reverse research method [1],
which first requires to introduce an adjacency on pairs of
graphs before choosing a graph onto which we move from
a given graph. Time delay of an enumeration algorithm is
a time bound between two consecutive outputs. Enumer-
ating graphs with a polynomial time delay would be rather
easy since we can examine the whole structure of the cur-
rent graph anytime. However, an algorithm with a constant
time delay in the worst case is a hard target to achieve with-
out a full understanding of the graphs to be generated, since
not only the difference between two consecutive outputs is
required to be O(1), but also any operation for examining
symmetry and identifying the edges/vertices to be modified
to get the next output needs to be executable in O(1) time.

Our research group has been developing algorithms for
enumerating chemical graphs that satisfy given various con-
straints [2]–[4]. We aim to continue providing efficient enu-
meration algorithms for wider classes of graphs than trees
such as cacti and outerplanar graphs on our web server.
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The authors recently proposed a general enumeration
scheme for classes H of “rooted graphs with a reflective
block structure” [11], [12]. A reflective block means a rooted
biconnected component which may admit reflective symme-
try around its root. A rooted graph with reflective block
structure consists of reflective blocks, where we consider
the free symmetry among the siblings of each cut vertex; i.e.,
we do not distinguish any permutation of the siblings from
others. The proposed scheme [11], [12] allows us to develop
only an efficient enumeration algorithm for the classB of the
reflective blocks without designing any algorithm for enu-
merating entire graphs; i.e., plugging an enumeration algo-
rithm for the class B into our scheme automatically yields
an enumeration algorithm for the classH of the graphs that
consist of those reflective blocks without repetition. For ex-
ample, a cactus is a graph which consists of cycles such that
no two cycles share more than one vertex, where each rooted
cycle can be regarded as a reflective block. The scheme can
yield an algorithm that generates rooted cacti in O(1)-time
delay just by designing an O(1)-time delay algorithm for the
class of rooted cycles. Therefore, to develop algorithms for
various classes of graphs with a reflective block structure, it
is important to study the structure of reflective blocks from
an algorithmic view point.

In this paper, we study how to generate the class B
of rooted biconnected planar graphs with internally trian-
gulated faces, which has reflective block structure. As for
enumeration of triangulations, Li and Nakano [5] presented
an O(1)-time delay algorithm for the class of all biconnected
rooted triangulated plane graphs with at most n vertices. Af-
terwards Nakano [6] presented an O(1)-time delay algorithm
for the class of all triconnected rooted triangulated plane
graphs with at most n vertices. In these algorithms, two
reflectively symmetric copies around the root may be out-
put. Contrary to these, we show the next main result in this
paper.

Theorem 1: Let B1 (resp., B2) be the class of symmetric
(resp., asymmetric) biconnected rooted planar graphs with
internally triangulated faces. For each integer n ≥ 2 and
i ∈ {1, 2}, all blocks in Bi with at most n vertices can be gen-
erated without duplication in O(1) time delay in the worst
case and in O(n) space.

Theorem 1 together with the scheme [11], [12] implies that
rooted connected planar graphs with internally triangulated
faces can be generated in O(1) time delay in the worst case.

During our study, we realized a new method of avoid-
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ing duplications of symmetric copies of the same block by
introducing a notion of “pseudo-symmetry.” Unlike the
previous approach to avoiding duplications of symmetric
copies [7], [9], we do not encode graphs into sequences of
labels to define “canonical form” among symmetric copies,
and no comparison of two encoded subgraphs is executed in
our algorithm. In fact, we propose two algorithms, one gen-
erates only symmetric blocks and the other generates asym-
metric ones. We also developed a “balanced orientation”
of edges to check whether two vertices are adjacent or not
in O(1) time and O(n) space, which is crucial to establish
Theorem 1. These new ideas of “pseudo-symmetry” and
“balanced orientation” are used in our companion papers on
O(1)-time delay enumerations of outerplanar graphs and bi-
connected plane graphs [13].

The rest of the paper is organized as follows. Section 3
defines parents of blocks based on pseudo-symmetry. Sec-
tions 4 and 5 give algorithms for enumerating only symmet-
ric blocks and asymmetric blocks, respectively.

2. Preliminaries

Throughout the paper, a graph stands for a simple undirected
graph, which is denoted by a pair H = (V, E) of a vertex set
V and an edge set E. A graph is treated as a labeled graph in
which all vertices receive distinct vertex names unless stated
otherwise. The set of vertices and the set of edges of a given
graph H are denoted by V(H) and E(H), respectively.

A vertex in a connected graph is called a cut-vertex if
its removal results in a disconnected graph. A connected
graph is called biconnected if it has no cut-vertex.

We define a block to be a rooted biconnected graph with
a configuration [11], [12], in other words, a block is a plane
embedding of a graph. Two blocks are called equivalent
if the biconnected graphs of these blocks admit a rooted-
isomorphic bijection under the configuration. We assume
that, for each block B, either (i) no other block B′ is equiv-
alent to B under the configuration, where B is called asym-
metric or (ii) there is exactly one distinct block B′ which
is equivalent to B, and B and B′ admit a symmetry of
order 2 which is given by an automorphism ψ such that
V1(B) = {ψ(v) | v ∈ V2(B)} and ψ(v) = v, v ∈ V3(B) for a
partition V1(B), V2(B) and V3(B) of the vertex set V(B). Intu-
itively, V1(B) and V2(B) are the reflective symmetric vertex
partitions while V3(B) is the set of self symmetric vertices
which can be consider as the middle of a symmetric block.

A graph is called planar if its vertices and edges can
be drawn as points and curves on the plane so that no two
curves intersect except for their endpoints. In such a draw-
ing of a planar graph, the plane is divided into several con-
nected regions, each of which is called a face. A face is
called outer face if it is the unbounded region, and it is called
inner face otherwise. By definition, any drawing of a planar
graph has only one outer face. A cycle of a graph is called
a facial cycle if it is the boundary of a face. We call such
a cycle the outer facial cycle (resp., an inner facial cycle)
if it is the boundary of the outer (resp., an inner) face. A

set F of facial cycles in a drawing defines a combinatorial
embedding of a planar graph which gives an order of neigh-
bours of each vertex. A planar graph with a fixed combina-
torial embedding is called a plane graph if a facial cycle in
the embedding is designated as the outer facial cycle. Note
that two distinct plane graphs can be isomorphic to the same
planar graph, and hence both of them can be treated as plane
embeddings (i.e., drawings) of this planar graph.

A graph is called a triangulated planar graph if it ad-
mits a plane embedding in the plane such that all inner faces
are triangle, and we call such a plane embedding a proper.
If a triangulated planar biconnected graph with at least three
vertices has a proper embedding such that the outer face is
not a triangle, then the graph has only two proper embed-
dings, where each of them can be obtained from the other by
reflection since the outer face is decided. Otherwise, a trian-
gulated planar biconnected graph is a maximal planar graph,
which has 2 f proper embeddings, where f is the number of
faces in the graph.

Let G be a biconnected and triangulated planar graph.
We call G rooted if it designates a vertex v and two edges
e and e′ incident to it such that v, e and e′ appear as an
outer vertex and outer edges of a proper embedding of G.
Such a proper embedding of G can be treated as a block
of G. Two blocks are equivalent if they admit an isomor-
phism such that the roots (resp., outer vertices) correspond
to each other. Hence a block B has at most one distinct
block B′ equivalent to B. A block B is called asymmetric
if no other block is equivalent to B, and is called symmet-
ric otherwise, where a symmetric block has a reflectional
symmetry around its root vertex. Let B denote the set of all
blocks of rooted triangulated planar biconnected graphs.

In this paper, we give an algorithm of enumerating all
blocks in B without repetition.

3. Parents of Blocks

A block in B may have a reflectional symmetry around the
root. One possible approach to enumeration of all blocks
without outputting their symmetric copies is to encode the
structures by V1(B) and V2(B) of a block B separately and
to maintain a “canonical form” of B by comparing the two
codes whenever a new child of the current block is gener-
ated. The algorithm for rooted outerplanar graphs [9] ex-
ploits such a method which decomposes a rooted bicon-
nected outerplanar graph G into three subgraphs induced by
the subsets Vi(B), i = 1, 2, 3 to obtain three encoded se-
quences of G

However, in this paper, we use the following novel idea
to avoid such a comparison of two encoded subgraphs. We
introduce “pseudo-symmetry” of blocks in B, which can be
tested in O(1) time based on a local structure of B. Pseudo-
symmetry of a block G satisfies the property that a symmet-
ric block G is always pseudo-symmetric while an asymmet-
ric block G can be pseudo-symmetric or not. Then we intro-
duce (i) a “bilateral” operation to pseudo-symmetric blocks
that converts a symmetric (resp., asymmetric) block B into
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Fig. 1 (a) A fan Fk, (b)–(e) seed blocks Hi, i = 1, 2, 3, 4.

another symmetric (resp., asymmetric) block B′; (ii) a “uni-
lateral” operation to non pseudo-symmetric blocks that con-
verts an asymmetric block B into another asymmetric block
B′. By defining such B′ as the parent of B, we can obtain
two family trees of blocks separately, one for all symmetric
blocks, and the other for all asymmetric blocks. Generate
all the blocks in a family tree one by one. No comparison
between blocks is needed.

Let deg(v; G) denote the degree of a vertex v in a block
G. A block G ∈ B is called a fan if it is obtained from
a path P with at least one vertex by adding a new vertex v
together with an edge incident to each vertex in the path (see
Fig. 1 (a)), where v is regarded as the root rG of the fan G. A
fan with k vertices is denoted by Fk. For each block G ∈ B,
we define the core F(G) of G to be the maximum fan Fk

with r(Fk) = rG contained in G. A vertex (resp., an inner
face) in the core F(G) is called a core vertex (resp., a core
inner face).

Each block G ∈ B is treated as a plane drawing such
that the root rG of G appears on the top of the drawing and
the nonroot vertices v1, v2, . . . , vk in F(G) along a path from
right to left (see Fig. 1 (a)).

Let vk and vk−1 be the leftmost and second leftmost
neighbours of the root of a block G with the root rG. We
define the following three states for the leftmost/rightmost
neighbours of the root rG. The leftmost neighbour vk of the
root rG is called 3-outer (resp., 3-inner) if deg(vk; G) ≥ 3
and the second leftmost neighbour vk−1 is an outer (resp.,
inner) vertex; and vk is called 2-outer if deg(vk; G) = 2
(where vk−1 is always outer). We define state 2-outer, 3-inner
and 3-outer rightmost neighbours analogously. A block G is
called pseudo-symmetric if both the leftmost and rightmost
neighbours of the root rG take the same state. See Fig. 3 (a),
Fig. 4 (a) and Fig. 2 (a) for three such cases.

We define a total order for the three states to be
3-inner>3-outer>2-inner. We generate pseudo-symmetric
blocks such that the left side is heavier than the right side
with respect to their states without generating their symmet-

Fig. 2 (a) Block G with the 3-outer leftmost and rightmost neighbours of
rG; (b) Parent PB(G).

Fig. 3 (a) Block G with the 2-outer leftmost and rightmost neighbours;
(b) Parent PB(G).

Fig. 4 (a) Block G with the 3-inner leftmost and rightmost neighbours of
rG; (b) Parent PB(G).

ric copies.
In a block G, an edge is called removable if the block

obtained from G by deleting the edge remains biconnected
Fig. 5 (a) and (b), and a vertex v is called removable if
deg(v; G) = 2 and the block obtained from G by remov-
ing v together with the two incident edges remains bicon-
nected (Fig. 5 (c)). Let β denote the boundary of G, and let
β[u, v] denote the path from a vertex u to a vertex v obtained
by traversing β in the clockwise order. We call such a path
β[u, v]. Let β′[u, v] denote the path obtained by traversing
the boundary of G from u to v in the anti-clockwise order.

Lemma 2: Let vi and v j (i < j) be two neighbours of the
root. If E(β[vi, v j]) − E(F(G)) � ∅, then path β[vi, v j] con-
tains a removable edge or vertex.

Proof. If V(β[vi, v j]) − V(F(G)) contains a vertex of de-
gree 2, then we see that such a vertex is an outer ver-
tex and is removable since its two neighbours are joined
by an edge. Hence it suffices to show that if all edges in
E(β[vi, v j]) − E(F(G)) are irremovable then V(β[vi, v j]) −
V(F(G)) contains a vertex of degree 2. Since all inner
faces are triangulated in G, removal of any irremovable
edge e ∈ E(β[vi, v j]) − E(F(G)) creates exactly one cut-
vertex, which separates G into two subgraphs G′ and G′′
such that they share only the cut-vertex and one of them,
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Fig. 5 (a), (b) Removable edges e; (c) A removable vertex v.

say, G′ is disjoint with F(G). Let e = (u, u′) be an edge
in E(β[vi, v j]) − E(F(G)) that minimizes the number of ver-
tices in such a subgraph G′, where u′ ∈ V(G′) is assumed
without loss of generality. We claim that deg(u′; G) = 2.
Assume that deg(u′; G) ≥ 3, i.e., G′ contains an edge
e′ = (u′, u′′) ∈ E(β[vi, v j])− E(F(G)) which is adjacent to e.
Note that all inner faces in G′ are triangulated. Since e′ be-
longs to a triangle inner face of G′, the cut-vertex created by
removing e′ is contained in G′, which contradicts the choice
of e. Therefore, deg(u′; G) = 2, as required.

We introduce a parent-child relationship among blocks
in B. We first choose seed blocks, for which no parent is

defined, indicating that each of seed blocks will be generated
before enumerating other blocks in B

1. Seed blocks H0, H1, and H2 are defined to be F2, F3,
and F4, respectively. See Fig. 1 (b) and (c) for H1 and
H2

2. Seed block H3: The block obtained from F4 by adding
a vertex of degree 2 adjacent to the leftmost and second
leftmost neighbours of the root. See Fig. 1 (d).

3. Seed block H4: The block obtained from F5 by adding
an edge between the leftmost and the second rightmost
neighbours of the root. See Fig. 1 (e).

Note that each seed block Hi with i = 0, 1, 2 is sym-
metric while Hi with i = 3, 4 is asymmetric.

A block G is represented by a seed block followed by
a sequence of operations.

When G is not a seed block, we define the parent
PB(G) of each block G so that PB(G) remains symmetric
(resp., asymmetric) if G is symmetric (resp., asymmetric).
If a block G is pseudo-symmetric, we define PB(G) by a
reduction from G based on “bilateral” operations, where G
may not be symmetric. If G is not pseudo-symmetric, then
we use “unilateral” operations to keep the asymmetry of G.

Raising an edge (vi, vi+1) between two adjacent neigh-
bours of the root rG of a block G is an operation that replaces
edge (vi, vi+1) with a new edge (rG, u) for the nonroot vertex
u in the inner face (u, vi, vi+1).

For the next five cases, we introduce “bilateral” opera-
tions.

1. deg(rG; G) = 2 for the root rG, and deg(v2; G) ≥ 3 and
deg(v1; G) ≥ 3 for the leftmost and rightmost neigh-
bours v2 and v1 of rG, as shown in Fig. 6 (b), (d), (f)
and (i): Then PB(G) is defined to be the block obtained
by raising edge (v2, v1), as shown in Fig. 6 (c), (e), (g)
and (j).

2. deg(rG; G) = 3, and the middle neighbour v2 of rG is an
inner vertex: Then PB(G) is defined to be the block ob-
tained by removing the root together with the three in-
cident edges, designating v2 as the new root, as shown
in Fig. 6 (g) and (h).

3. deg(rG; G) ≥ 3, and G is a pseudo-symmetric block
such that the leftmost and rightmost neighbours vk

and v1 of the root are both 3-outer: Let vk−1 and v2

be the second leftmost and second rightmost neigh-
bours of the root rG. Then PB(G) is defined to be the
block obtained by raising the edges eL = (vk, vk−1) and
eR = (v2, v1), as shown in Fig. 2.

4. deg(rG; G) ≥ 4, and G is a pseudo-symmetric block
such that the leftmost and rightmost neighbours vk and
v1 of the root rG are both 2-outer, where vertices vk

and v1 are removable: Then PB(G) is defined to be the
block obtained by removing vk and v1 together with the
incident edges, as shown in Fig. 3.

5. deg(rG; G) ≥ 4, and G is a pseudo-symmetric block
such that the leftmost and rightmost neighbours vk and
v1 of the root rG are both 3-inner, where edges (rG, vk)
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Fig. 6 Parents of blocks with small cores.

Fig. 7 (a) Block G with the 3-inner leftmost neighbour and 3-outer right-
most neighbour of rG; (b) An ancestor of G.

and (rG, v1) are removable: Then PB(G) is defined to
be the block obtained by deleting the removable edges
(rG, vk) and (rG, v1), as shown in Fig. 4.

For the next three cases, we introduce “unilateral” op-
erations.

1. deg(rG; G) ≥ 4, and the leftmost and rightmost neigh-
bours of the root are 3-inner and 3-outer, respectively:
Let v1 and v2 denote the rightmost and second right-
most neighbours of the root, respectively. Then PB(G)
is defined to be the block obtained by deleting the
first removable element (edge or vertex) on the path
β′[v1, v2] from v1 to v2, as shown in Fig. 7 (a).

2. deg(rG; G) ≥ 3, deg(vk; G) ≥ 3 for the leftmost neigh-
bour vk of the root rG, the rightmost neighbour v1

is 2-outer, and G has more than one noncore inner
face: Then PB(G) is defined to be the block obtained
by deleting the first removable element on the path

Fig. 8 (a) The leftmost neighbour vk is 3-inner and the rightmost neigh-
bour v1 is 2-outer; (b) The leftmost neighbour vk is 3-outer and the right-
most neighbour v1 is 2-outer; (c) G has exactly one noncore inner face;
(d) G has exactly one noncore inner face; (e) H4; (f) H3.

β[v2, vk] from the second rightmost neighbour v2 of rG

to vk, as shown in Fig. 8 (a) and (b).
3. deg(rG; G) ≥ 3, deg(vk; G) ≥ 3 for the leftmost neigh-

bour vk of the root rG, the rightmost neighbour v1 is 2-
outer, and G has exactly one noncore inner face: Then
PB(G) is defined to be the block obtained by deleting
the rightmost neighbour v1 of the root rG, as shown
Fig. 8 (c) to (e) and Fig. 8 (d) to (f).

It is easy to see that any non-seed block G satisfies ex-
actly one of the above cases, implying that the parent PB(G)
of a non-seed block G is unique.

A block G′ is called a child of G if G = PB(G′). Let
CB(G) denote the set of all children of G. Note that if G is
symmetric then any child of G is also symmetric.

4. Generating Children of Symmetric Blocks

In this section, we see that all the symmetric blocks can be
generated by performing only “bilateral” operations starting
from symmetric seed blocks Hi, i = 1, 2. Actually, the fol-
lowing five bilateral operations are just the reverse operation
for generating parents (in different order).

Sinking an edge (rG, v) between the root rG and an in-
ner neighbour v in a block G is an operation that replaces
the edge (v, rG) with a new inner edge (v′, v′′) for the two
common neighbours of v and rG, where G is not allowed to
contain edge (v′, v′′) before sinking (v, rG).

We introduce the following bilateral operations.

1. Dual-wing (d-wing for short): Create two new ver-
tices vL and vR as the new leftmost and rightmost neigh-
bours of rG in the resulting block G′ by adding four
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new edges (vL, rG), (vL, vk), (vR, rG) and (vR, v1) for the
leftmost and rightmost neighbours vk and v1 of rG in G
(Fig. 3).

2. Stretch: Add a new vertex v together with three new
edge (v, rG), (v, v1) and (v, vk) joining v to the root rG,
the leftmost and rightmost neighbours vk and v1 of rG,
where the root of the resulting block G′ is designated
by v (Fig. 6 (h) to (g)).

3. Ear: Applicable only when the second vertex u2 and
the second last vertex up−1 in the path β[v1, vk] are
not adjacent to the root rG. Add two new outer edges
(rG, u2) and (rG, up−1). The core F(G′) of the result-
ing block G′ contains two more triangles than F(G)
(Fig. 4).

4. Sink: Applicable only when deg(rG; G) = 3 and the
rightmost and leftmost neighbours of rG are not adja-
cent. Sink the unique inner edge incident to the root rG

(Fig. 6 (c) to (b), (e) to (d), (g) to (f) and (j) to (i)).
5. Dual-sink (d-sink for short): Applicable only when

deg(rG; G) ≥ 5 and the third rightmost neighbour v3

(resp., third leftmost neighbour vk−2) of rG is an outer
vertex not adjacent to rightmost neighbour v1 (resp., the
leftmost neighbour vk). Sink two edges (vk−1, rG) and
(v2, rG) (Fig. 2).

We generate H0 = F2 separately from the other blocks
in B. To generate all symmetric blocks in B− {H0}, we start
with one of the symmetric seed blocks H1 and H2 and per-
form only bilateral operations stretch, d-wing, ear, sink
and d-sink. For any symmetric block G ∈ B− {H0}, the set
CB(G) of children is given by the set of all blocks that can be
constructed from G by applying one of stretch, d-wing,
ear, sink and d-sink. Thus, by considering applicability
of these bilateral operations on a given block G, we obtain
the following algorithm for computing all descendant of G
recursively.

Procedure Bilateral(G)
Input: A block G with at most n vertices.
Output: All descendant of G with at most n vertices
that can be obtained from G by applying bilateral
operations.
begin
/* Let v1, v2, . . . , vk be the neighbours of the root
rG of G, where k = deg(rG)
in the order from left to right. */
if deg(rG; G) = 3 and (v1, vk) � E(G) then

Let G′ be the block obtained from G by applying
sink; Bilateral(G′)

endif;
if deg(v; G) ≥ 5, v3 and vk−2 are outer vertices, and

(v1, v3), (vk, vk−2) � E(G) then
Let G′ be the block obtained from G by applying
d-sink; Bilateral(G′)

endif;
if the nonroot outer neighbour up−1 (resp., u2) of vk

(resp., v1) is not adjacent to the root rG then
Let G′ be the block obtained from G by applying

ear; Bilateral(G′)
endif;
if |V(G)| = n then return
else

Let G′ be the block obtained from G by applying
stretch; Bilateral(G′);
if |V(G)| = n − 1 then return
else

Let G′ be the block obtained from G
by applying d-wing; Bilateral(G′);
return

endif endif
Return

end.

Note that only a constant number of outer vertices in-
creases/decreases when a child G′ of G is generated. It is not
difficult to implement Bilateral(G) so that each line of the
procedure can be executed in O(1) time and O(|V(G)|) space
except for testing if (v1, vk) � E(G) or (v1, v3), (vk, vk−2) �
E(G). Each of such edges (v1, vk), (v1, v3), (vk, vk−2) ∈ E(G)
to tested is an edge such that each of its end-vertices is a
nonroot outer vertex, which we call an exposed-edge. We
show that whether given two outer vertices u and v has an
exposed-edge between them or not can be tested in O(1)
time in Sect. 6.

5. Generating Children of Asymmetric Blocks

In this section, we show that all asymmetric blocks can be
generated by both “unilateral” and bilateral operations start-
ing from asymmetric seed blocks Hi, i = 3, 4.

To generate asymmetric blocks, we start with one of the
asymmetric seed blocks H3 and H4 and perform both bilat-
eral operations and/or unilateral operations, each of which
never generates a symmetric block from any asymmetric
block.

We further introduce the following three unilateral op-
erations to construct a child from a given asymmetric block.
These three operations are the reverse operation for generat-
ing asymmetric parents.

1. Wing: Create a new vertex vR together with two new
edges (vR, rG) and (vR, v1) for the rightmost neighbour
v1 of the root rG of G. The vertex vR is the rightmost
neighbour of the root rG′ = rG of the resulting block G′
(Fig. 8 (e) to (c) and (f) to (d)).

2. v-add: Create a new outer vertex v together with two
new edges (v, u) and (v, u′) for an outer edge e = (u, u′)
in G. The vertex v is said to be v-added to edge e =
(u, u′).

3. e-add: For two adjacent outer edges (ua, ub) and
(ub, uc) such that the two end vertices ua and uc are
not adjacent, add a new outer edge (ua, uc). The edge
(ua, uc) is said to be e-added to ub.

Let v1 = vR, v2, . . . , vk = vL be the neighbours of the
root which appear in this order from right to left, and denote
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the sequence of vertices in β[v1, vk] by

β[v1, vk] = (u1 = v1, u2, . . . , up = vk).

For a block G such that v2 is an outer vertex, denote the
sequence of vertices in β′[v2, v1] by u′1 = v2, u′2, . . . , u

′
q =

v1. We define the right bank-path of G to be the path
β′[u′1, u

′
s+1] if the first removable element on β′[v2, v1] is an

edge (u′s, u′s+1) (resp., a vertex u′s), where we say that the
right bank-path ends up with a removable edge (resp., ver-
tex) (Fig. 9 (a)).

Note that wing is applicable to any non-pseudo-
symmetric block G to obtain a child of G. On the other hand,
e-add (resp., v-add) is applicable to an outer vertex (resp.,
an outer edge) only when the newly added edge (resp., ver-
tex) by e-add (resp., v-add) is the first removable element
β′[v2, v1] or β[v2, vk] in the resulting block.

(I) Operation e-add to the ith vertex u′i in the right
bank-path is allowed to be performed if and only if the sec-
ond leftmost neighbour of the root is an outer vertex, u′i−1
and u′i+1 are not adjacent, and (i) 2 ≤ i ≤ p or (ii) i = p + 1
and the first removable element is an edge.

(II) Operation v-add to the ith edge (u′i , u
′
i+1) in the

right bank-path is allowed to be performed if and only if
1 ≤ i ≤ p and the second leftmost neighbour of the root is
an outer vertex.

In (II), the newly introduced vertex is clearly the first
removable element in the right bank-path in the resulting
block G′. In (I), we show that the newly introduced edge
e = (u′i−1, u

′
i+1) is the first removable element in the right

bank-path in the resulting block G′. For this, it suffices to
prove that no irremovable edge e′ = (u′j−1, u

′
j) with j ≤ i − 1

never becomes removable in G′. If such edge e′ = (u′j−1, u
′
j)

exists, then G has a triangle inner face (u′j−1, u
′
j, u
′
i) and we

see that β′[u′j, u
′
i] contains a removable element, as in the

proof of Lemma 2, contradicting the choice of p.
We also denote the sequence of vertices in β[v2, vk] by

u1 = v2, u2, . . . , um = vk, and define the left bank-path of
G to be path β[u1, up+1] if the first removable element on
β[v2, vk] is an edge (up, up+1) (resp., a vertex up), where we
say that the left bank-path ends up with a removable edge
(resp., vertex) ((Fig. 9 (b) and (c)).

(III) Operation e-add to the ith vertex ui in the left
bank-path is allowed to be performed if and only if the sec-
ond rightmost neighbour of the root is an outer vertex, ui−1

and ui+1 are not adjacent, and (i) 2 ≤ i ≤ p or (ii) i = p + 1
and the first removable element is an edge.

(IV) Operation v-add to the ith edge (ui, ui+1) in the
left bank-path is allowed to be performed if and only if 1 ≤
i ≤ p and the right bank-path contains no outer vertex.

For (III) and (IV), we see that the newly introduced
vertex/edge is the first removable element in the left bank-
path in the resulting block, as observed in (I) and (II).

Note that once one of e-add and v-add is performed
on the right bank-path, none of e-add and v-add is per-
formed on the left bank-path in the resulting child.

Given a block G, the following shows what operations
can be applied to G.

Fig. 9 (a) The first removable vertex in the right bank-path; (b) The first
removable edge in the left bank-path; (c) The first removable vertex in the
left bank-path.

Case-1. An asymmetric block G is not pseudo-symmetric
and has exactly one non-core inner face: Then the set CB(G)
consists of the blocks that can be constructed from G by any
applicable operation from wing, v-add, e-add, stretch,
d-wing and d-sink.

Case-2. An asymmetric block G is not pseudo-symmetric
and contains at least two non-core inner faces: the set CB(G)
consists of the blocks that can be constructed from G by any
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applicable operation from v-add, e-add, sink, stretch,
d-wing, ear and d-sink.

Case-3. An asymmetric block G is pseudo-symmetric: the
set CB(G) consists of the blocks that can be constructed
from G by any applicable bilateral operation from sink,
stretch, d-wing, ear and d-sink.

Any bilateral operation in sink, stretch, d-wing,
ear and d-sink makes a block pseudo-symmetric. Hence
once a bilateral operation is applied to a block in Case-1 or 2,
the resulting block G′ satisfies Case-3 and any descendant of
G′ remains pseudo-symmetric after applying any sequence
of bilateral operations. Also once one of v-add, e-add,
stretch, d-wing and d-sink is applied to a block G in
Case-1, wing will never be applied to the resulting block G′
and any descendant of G′ never satisfies Case-1.

Procedure Unilateral(G)
Input: An asymmetric block G with at most n
vertices.
Output: All descendants of G with at most n vertices.
begin

Bilateral(G);
if the right bank-path contains no outer vertex
(none of v-add and e-add has been applied to the

right bank-path) then
/* Let (u1, u2, . . . , up+1) denote the left bank-path
of G. */
for i = 2, 3, . . . , p + 1 do

Let G′ be the block obtained from G by
applying e-add to vertex ui according to
rule (I); Unilateral(G′)

endfor
endif;
/* Let (u′1, u

′
2, . . . , u

′
p′+1) denote the right bank-path

of G. */
if the second leftmost neighbour of the root of G

is an outer vertex then
for i = 2, 3, . . . , p′ + 1 do

Let G′ be the block obtained from G by
applying e-add to vertex u′i according to
rule (III); Unilateral(G′)

endfor
endif;
if |V(G)| = n then return endif;
if G has exactly one noncore inner face then

Let G′ be the block obtained from G by applying
wing; Unilateral(G′);

endif;
if the right bank-path contains no outer vertex
(none of v-add and e-add has been applied to the

right bank-path) then
/* Let (u1, u2, . . . , up+1) denote the left

bank-path of G. */
for i = 1, 2, . . . , p do

Let G′ be the block obtained from G by
applying v-add to edge (ui, ui+1)

according to rule (II); Unilateral(G′)
endfor

endif;
/* Let (u′1, u

′
2, . . . , u

′
p′+1) denote the right

bank-path of G. */
if the second leftmost neighbour of the root of G

is an outer vertex then
for i = 1, 2, . . . , p′ do

Let G′ be the block obtained from G by
applying v-add to edge (u′i , u

′
i+1)

according to rule (IV); Unilateral(G′)
endfor

endif;
Return

end.

By maintaining each of the left and right bank-paths, it
is not difficult to implement Unilateral so that each line of
the procedure can be executed in O(1) time.

6. Algorithm and Analysis

The entire algorithm is described as follows.

Algorithm GenTriangle(n)
Input: An integer n ≥ 2.
Output: All rooted triangulated blocks with at most n
vertices.
begin

Let G := H0;
for i = 1, 2, 3, 4 do

if |V(Hi)| ≤ n then G := Hi;
if G = Hi is symmetric (i.e., i ∈ {1, 2}) then

Bilateral(G)
else

Unilateral(G)
endif

endif
endfor

end.

For the recursive process, we use the odd-even out-
put method [6]. Output before the recursion if the recursive
depth is odd, otherwise output after the recursion. Hence
there will only be gap of O(1) time during the recursion.

In what follows, we show how to test whether given
two outer vertices u and v has an exposed-edge between
them.

Lemma 3: Let G be a block constructed during an exe-
cution of GenTriangle(n), and let G0 be the ancestor of G
constructed after finishing all applications of unilateral op-
erations. If deg(rG; G) is odd, then the middle neighbour vM

of rG in G was the root of an ancestor of G or the middle
neighbour of the root of G0.

Proof. Immediate from construction of blocks by symmet-
ric operations.
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For a vertex v in a block G constructed constructed
during an execution of GenTriangle(n), let ear(v) denote
an application of operation ear by which v becomes adja-
cent to the root of G or its ancestor, and let sink(v) (resp.,
d-sink(v)) denote an application of operation sink (resp.,
d-sink) by which an edge joining v and the root of G or its
ancestor is eliminated.

We observe that a vertex created as a core vertex during
an execution of GenTriangle(n) can change into a non-core
vertex only by applying sink(v), d-sink(v) or stretch,
and that a non-core vertex can change into a core vertex only
by applying ear(v) to the vertex.

We easily see that an exposed-edge in a block origi-
nally belongs to a seed block, or can be introduced only
by operations wing, v-add, e-add, sink, d-wing and
d-sink. We show how to store all exposed-edges created
during an execution of GenTriangle(n) as long as they re-
main exposed-edges in the current block.

For two adjacent vertices u and v, define mark(u, v) to
be a procedure that assigns the directed edge (u, v) to u as
an exposed-edge of vertex u. If an exposed-edge is marked
by both end vertices, then there may exist some vertex with
O(n) exposed-edges. To avoid this, for most of the exposed-
edges we only let one of its vertices remember it. We denote
the set of expose-edges assigned to a vertex u by Ex(u),
where some edge in Ex(u) may be replaced with another
edge and some edge in Ex(u) may become a non-exposed-
edge during an execution of GenTriangle(n). However we
will show that, for a block G at any stage of an execution
of GenTriangle(n), |Ex(u)| ≤ 4 holds for all u ∈ V(G), and
all exposed-edges in G are contained in the union of Ex(u),
u ∈ V(G). This enables us to test whether two outer ver-
tices has an exposed-edge between them in O(1) time as
long as Ex(u), u ∈ V(G) can be updated in O(1) time per
bilateral/unilateral operation.

We show how to maintain Ex(u), u ∈ V(G) as follows.

• When G is set to be the seed block H1, we apply
mark(v2, v1) for the leftmost and rightmost neighbours
v1 and v2 of the root (see Fig. 10 (a)).
• When G is set to be the seed block H2, we apply
mark(v1, v2) and mark(v3, v2) for the leftmost, second
rightmost and rightmost neighbours v1, v2 and v3 of the
root (see Fig. 10 (b)).
• When G is set to be the seed block H3, we apply
mark(v1, v2), mark(v3, v2), mark(u, v2) and mark(u, v3)
for the leftmost, second rightmost and rightmost neigh-
bours v1, v2 and v3 of the root and the unique non-core
vertex u (see Fig. 10 (c)).
• When G is set to be the seed block H4, we apply
mark(v4, v2) and mark(v1, v2) for neighbours v1, v2, v3

and v4 of the root from right to left (see Fig. 10 (d)).
• When wing is applied in a block with the rightmost and

second rightmost neighbours v1 and v2 of the root, we
apply mark(v, v1) to the resulting new edge joining v1

and the new rightmost neighbour v, and mark(v2, v1),
deleting edge (v1, v2) from Ex(v1).

Fig. 10 Storing exposed-edges in seed blocks Hi, i = 1, 2, 3, 4.

• When v-add is applied to an edge (ui, ui+1) to cre-
ate a new non-core vertex v in an execution of
Unilateral(G), we apply mark(v, ui) and mark(v, ui+1).
• When e-add is applied to a vertex ui to create a new

edge (ui+1, ui−1) in an execution of Unilateral(G), we
replace (ui+1, ui) ∈ Ex(ui+1) with (ui+1, ui−1).
• When d-wing is applied to G, we apply mark(v, vk)

and mark(v′, v1) to the two new vertices v and v′, where
v1 and vk are the leftmost and rightmost neighbours of
G.
• When d-sink is applied to G, where vk, vk−1 and vk−2

denote the first, second and third leftmost neighbours
of the root, we apply mark as follows: replace edge
(vk, vk−1) in Ex(vk) with (vk, vk−2) and mark(vk−1, vk).
For the three rightmost neighbours of the root, we ap-
ply the same procedure symmetrically.
• When sink is applied, where v1, v2 and v3 denote the

first, second and third leftmost neighbours of the root,
we apply mark in the same manner of d-sink.
• When ear is applied to G, where v1 (resp., vk) denote

the rightmost (resp., leftmost) neighbours of the root,
we delete any edge in Ex(v1) (resp., Ex(vk)) one of
which end-vertices is an inner vertex at this point.

For a core vertex v in a block, let sink(v) (resp.,
d-sink(v)) denote an application of sink (resp., d-sink)
that removes the edge between v and the root of the block.
Let ear(v) denote an application of ear by which v becomes
adjacent to the root.

Lemma 4: Let G ∈ B be a block constructed during an
execution of GenTriangle(n). Then two outer vertices u and
u′ are adjacent if and only if (u, u′) ∈ Ex(u) or (u, u′) ∈
Ex(u′) holds. Moreover |Ex(v)| ≤ 4 holds for every vertex
v.

Proof. It is easy to see by induction that during an execution
of GenTriangle(n) each exposed-edge in the current block
is stored in Ex(v) of a vertex v.
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We show the second part of the lemma. After setting
the initial block as a seed block, |Ex(u)| ≤ 1 for each core
vertex u and |Ex(u)| ≤ 2 for the unique non-core vertex u
(if any). Applying v-add creates a new non-core vertex v
with |Ex(v)| = 2, without changing the set size of Ex(u) of
any other existing vertex u. When a new exposed-edge is
added to Ex(v) for a vertex v by e-add, one of the edges
Ex(v) (which is no longer exposed) will be deleted from
Ex(v), without changing the set size of Ex(u) of each ex-
isting vertex u. Applying wing creates a new core vertex
v with |Ex(v)| = 1, without changing the set size of Ex(u)
of any other existing vertex u. After setting an initial block
to be a seed block and applying wing, e-add and v-add,
we see that (i) |Ex(v)| ≤ 1 for every core vertex v; and (ii)
|Ex(v)| ≤ 2 for every non-core vertex v.

We show that |Ex(v)| can increase at most by 2 after
applying any sequence of symmetric operations.

We see that sink(v) is applied at most once since v
can be the middle neighbour of the root at most once by
Lemma 3.

When d-sink(v) is applied for the first time, |Ex(v)|
increases by 1. After this, d-sink(v) may be applied many
times as long as v remains an outer vertex. We show that
at least one edge in Ex(v) will be deleted by an operation
ear(v) between any two applications of d-sink(v). Let
(v, u) be the edge added to |Ex(v)| by the first of these ap-
plications of d-sink(v) (see Fig. 11 (a), (b)). We observe
that u appears before v along the boundary β′[vL, vR] from
the leftmost neighbour vL to the rightmost neighbour vR in
any block (see Fig. 11 (c)). Note that u cannot appear after
v along the boundary of any block constructed later, since
no operation can change the order of any two outer vertices
along the boundary.

Before the next application of d-sink(v), vertex v must
be an outer core vertex, which implies that v remains an
outer vertex after the first of application of d-sink(v).

If (v, u) remains an exposed-edge, then u cannot appear
after v along the boundary β[vL, vR] from the leftmost neigh-
bour vL to the rightmost neighbour vR in any block. This
means that u is an inner vertex after ear(v) is applied, and
that edge (v, u) will be deleted from Ex(v) by the application
of ear(v).

Therefore, |Ex(v)| never exceeds 4. This proves the sec-
ond part of the lemma.

We briefly show that O(n) space suffices to implement
GenTriangle(n). Define signature γ(G) of each block G to
be the sequence of operations that generates G. We show
that the length of γ(G) is O(n). The total number of applica-
tions of sink and d-sink are bounded from above by that
of wing, d-wing, stretch, v-add, e-add and ear. The
total number of applications of the operations is bounded by
|V(G)| + |E(G)| since each of those operations introduce at
least one new vertex or edge. Since |E(G)| = O(|V(G)|) for
planar graphs G, the length of σ(G) is O(n).

Each operation done to a parent block G adds or

Fig. 11 (a), (b) Application of d-sink(v) for a vertex v; (c) An exposed-
edge (v, u).

changes at most two vertices and at most four edges. Hence
it costs O(1) time each operation. Form a parent to a child
takes one operation from a child to the parent also takes only
one reverse operation. Thus all rooted triangulated planar
blocks can be generated in constant time.

Theorem 5: For an integer n ≥ 2, all blocks in B with at
most n vertices can be generated without duplication in O(n)
space by an algorithm that outputs the difference between
two consecutive blocks in O(1) time in a series of all outputs.

7. Concluding Remarks

In this paper, we gave an enumeration algorithm for the
class of rooted biconnected planar graphs with internally
triangulated faces. By combining the algorithm with the
general framework for rooted connected graphs [11], [12],
rooted connected planar graphs with internally triangulated
faces can also be generated efficiently.

Unlike the previous approach to enumeration of graphs
with reflectional symmetry such as the algorithm for rooted
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outerplanar graphs [9], our algorithm never compares any
two encoded subgraphs. It is our future work to design new
enumeration algorithms for other classes of blocks using bi-
and unilateral operations on pseudo-symmetry.
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