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PAPER

Committee-Based Active Learning for Speech Recognition

Yuzo HAMANAKA†∗, Nonmember, Koichi SHINODA†a), Senior Member, Takuya TSUTAOKA†, Nonmember,
Sadaoki FURUI†, Fellow, Tadashi EMORI††∗∗, Nonmember, and Takafumi KOSHINAKA††,†, Member

SUMMARY We propose a committee-based method of active learning
for large vocabulary continuous speech recognition. Multiple recogniz-
ers are trained in this approach, and the recognition results obtained from
these are used for selecting utterances. Those utterances whose recogni-
tion results differ the most among recognizers are selected and transcribed.
Progressive alignment and voting entropy are used to measure the degree
of disagreement among recognizers on the recognition result. Our method
was evaluated by using 191-hour speech data in the Corpus of Spontaneous
Japanese. It proved to be significantly better than random selection. It only
required 63 h of data to achieve a word accuracy of 74%, while standard
training (i.e., random selection) required 103 h of data. It also proved to
be significantly better than conventional uncertainty sampling using word
posterior probabilities.
key words: active learning, query by committee, LVCSR, progressive align-
ment

1. Introduction

Statistical speech-recognition systems require a large
amount of speech data and transcriptions for training speech
models. Unfortunately, it is too expensive to transcribe
speech data. Semi-supervised learning and active learning
have been studied as ways of reducing the costs of such tran-
scriptions. Semi-supervised learning [1] is a learning ap-
proach where unlabeled data are used for training as well
as labeled data. Active learning is where a learner selects
data to be labeled, which are then used for training. Tran-
scription costs in active learning for speech recognition are
reduced by selecting and transcribing a small amount of in-
formative data, which is expected to be the most useful for
training.

There have been many studies on active learning for
speech recognition [2]–[5]. The key issues in active learn-
ing are the criteria for selecting useful utterances. Many ap-
proaches [2]–[4] have used uncertainty sampling based on
confidence measures. The initial recognizer in these ap-
proaches, which is prepared beforehand, is first used to rec-
ognize all the utterances that have recognition results with
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less confidence and is then selected. The word posterior
probabilities (WPPs) for each utterance have often been
used as confidence measures [2], [3]. Varadarajan et al. [4]
used entropy in a word lattice for each utterance produced
by a recognizer.

This paper proposes a committee-based active-learning
method for large vocabulary continuous speech recognition
(LVCSR) [6]. Multiple speech recognizers are prepared be-
forehand in this approach, and those utterances with a high
degree of disagreement among the recognition results are
selected to be manually transcribed.

A committee-based active-learning approach, called
query-by-committee (QBC), was first proposed by Seung
et al. [7]. It was applied to selective-sampling problems
by Freund [8], where the learner examined many unlabeled
examples and only selected those samples that were more
informative for learning than the others. The learner in
this committee-based sampling scheme constructed a com-
mittee of classifiers using the training data currently avail-
able. Each committee member then classified the candidate
samples extracted from the unlabeled training data, and the
learners measured the degree of disagreement among the
committee members. Samples with larger degrees of dis-
agreement were selected for labeling.

Early QBC studies by Seung et al. [7] took into consid-
eration their theoretical aspects within the context of binary-
classification problems. They defined a version space as a
set of concepts that labeled all the training examples cor-
rectly, and they developed an algorithm to effectively re-
strict the version space as the number of examples increased.
They proved that it achieved an exponential reduction in the
ratio of the number of labeled examples required to attain
a necessary classification accuracy to the number needed in
the random selection of training samples.

However, it is rather difficult to directly apply the orig-
inal QBC framework to speech recognition, since our classi-
fication problem, i.e., LVCSR, is much more complex than
simple binary classification problems. The QBC approach
to problems other than such simple ones may not expo-
nentially reduce the number of labeled examples required
to achieve a certain accuracy. However, Dagan et al. [9]
experimentally proved that committee-based active learn-
ing performs well in part-of-speech tagging tasks, which is
a more complex problem than simple binary-classification
problems.

Inspired by this work, we applied committee-based ac-
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tive learning to speech recognition, where utterances with
higher degrees of disagreement in their recognition results
among several classifiers were selected as informative train-
ing data and then transcribed. We first aligned word se-
quences from the K recognizers using an efficient search
technique and then calculated the voting entropy of the
alignment result, represented by a confusion network (CN).

Our approach is closely related to the entropy-based
approach proposed by Varadarajan et al. [4]. However,
while they measured the entropy of a word lattice produced
by a single recognizer, we measured that of a CN produced
by the utterances identified by many recognizers.

This paper is organized as follows. Section 2 explains
the active method of learning we propose. Section 3 de-
scribes how we evaluated it and Sect. 4 presents the results
of our analysis of the evaluations. Section 5 concludes the
paper.

2. Committee-Based Active Learning

2.1 Algorithm

Figure 1 outlines the flow for our committee-based active-
learning method for speech recognition. Let us assume we
have training data, T , whose utterances are fully transcribed,
and untranscribed training data, U. We determine the num-
ber of recognizers, K, for active learning, the amount of data
N (h) to be selected in one active learning cycle, and the
amount of transcribed data we would like to have, which are
all done beforehand.

The active learning is carried out in a five-step process.

1. Divide the training data, T , randomly and equally into

Fig. 1 Committee-based active-learning scheme for speech recognition.

K data sets, Tk, k = 1, . . . ,K.
2. Train the k-th recognizer, Mk, by using the k-th data

set, Tk, for k = 1, . . . ,K.
3. Recognize all the utterances in the untranscribed train-

ing data, U, with each recognizer, Mk, k = 1, . . . ,K, to
generate K different recognition results (sentences) for
each utterance.

4. Select those utterances with a higher degree of dis-
agreement between K recognizers than the others until
the selected utterances reach N (h).

5. Transcribe the selected data from U, move them from
U to T , and go to Step 1.

We repeat this active-learning cycle until the amount of tran-
scribed data reaches our predetermined goal. The selection
process in Step 4 is explained in detail in Sects. 2.2 and 2.3.

Active learning for speech recognition can be applied
not only to an acoustic model but also to a language model.
We applied the active learning process previously described
in three ways: to both of these and to either of these. A sin-
gle recognizer trained with the currently available training
data, T , was used for recognizing test data in our evaluation.

2.2 Sentence Alignment

Unlike part-of-speech tagging [9], the numbers of recog-
nized words for an utterance differ among recognizers, so
it is necessary to align sentences to measure the degree of
disagreement. The alignment process for two sentences is
called pairwise alignment and that for more than two sen-
tences is called multiple alignment. When the dynamic
programming (DP) algorithm, which is used for pairwise
alignment, is applied to multiple alignment, its compu-
tational complexity increases exponentially in proportion
to the number of sentences. Thus, many approximation
methods for multiple alignment that are less computation-
ally complex are being studied. The alignment method in
ROVER [11] is one such method, in which multiple align-
ment is done by aligning one sentence and then aligning
each of the other sentences one by one. This method, how-
ever, does not focus much on the alignment algorithm or
accuracy. The results may change according to the order of
sentences to be aligned, and the way the order is determined
is not mentioned. We employed a progressive search [12],
which could be expected to produce more accurate align-
ment. The progressive search algorithm is as follows:

1. Calculate the degree of similarity between all pairs in a
sentence set and construct a guide tree (Sect. 2.2.1).

2. From the first node added to the tree, align child nodes
(which may be two sequences, a sequence and an align-
ment result, or two alignment results). Repeat this for
all other nodes in the order that they were added to the
tree until all sentences have been aligned.

2.2.1 Construction of Guide Tree

We employed the unweighted pair group method with arith-
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Fig. 2 Example guide tree. Hyphens “−” indicate gaps.

Table 1 Example multiple-alignment result. There are five rows, K, and
six columns, C. Each letter of the alphabet is a unique word in the vocabu-
lary. Hyphens “−” indicate gaps.

1 2 3 4 5 6

1 G A A T T G
2 G − A T T G
3 G A A − T C
4 − − A − T C
5 − − A − T G

metic mean (UPGMA) to construct a guide tree (Fig. 2).
DNA sequences are used in Figs. 2 and 3 and Table 1 to ex-
plain progressive alignment, while words in speech recogni-
tion results can be applied in the same way.

Initialization Assign a cluster, Ci, to each sequence, si.
Add all clusters to a cluster group, S . Carry out pair-
wise alignment for all pairs of sentences (si, s j), and
calculate similarity between cluster pair Ci,C j, which
is denoted by di j. di j is the mean of match, mismatch,
and gap scores. Here they correspond to 1, 0, and 0.

Iteration Combine Ci,C j with the largest di j and create a
new cluster, Ck. Add Ck to S and delete Ci, C j from
S . The similarity, dkl, between Ck and one of the other
clusters Cl is calculated as

dkl =
1
|X||Y |

∑
x∈X

∑
y∈Y

dxy (1)

where X is a group of sentence indexes in cluster Ck

and Y is that in Cl. Iterate this process until S has only
two clusters.

Termination Construct a guide tree in the order clusters are
combined.

Figure 2 has an example of a guide tree. It should be
noted that a gap introduced in alignment is treated as a word.

2.2.2 Alignment of Child Nodes

Child nodes are aligned after a guide tree is constructed.
Two sentences (Node1 and Node2 in Fig. 2) can be aligned
by pairwise alignment. A sentence and an alignment result
(Node3 in Fig. 2) can be aligned and two alignment results
(Node4 in Fig. 2) can be aligned as in Fig. 3. DP match-
ing is carried out by expanding the DP matrix, maintaining
the original alignment relationship in the alignment result.

Fig. 3 Example of DP matrix. Hyphens “−” indicate gaps.

Figure 3 is a DP matrix calculated at Node3 in Fig. 2.
We can explain this alignment using an expanded DP

matrix. Each node has two objects to be aligned, which are
a sentence or an alignment result. Let N be the number of
sentences in an object to be aligned, sn (1 ≤ n ≤ N) be each
sentence, Q be the number of columns in the sentence, and
mq

n be a word in sentence sn in the q (1 ≤ q ≤ Q)-th column.
Similarly, let N′ be the number of sentences in the other
object to be aligned, s′n′ (1 ≤ n′ ≤ N′) be each sentence,
Q′ be the number of columns in the sentence, and m′q

′
n′ be

a word in sentence s′n′ in the q′ (1 ≤ q′ ≤ Q′)-th column.
s(a, b) is a score which is 2 if words a and b are the same
except for a gap, otherwise −1.

s(a, b) =

{
2 (a = b � gap),
−1 (a = b = gap or a � b)

(2)

This value of s(a, b) was the best in the pre-experiment. We
express SPS({ai}) as the sum of all pair scores s(a, b) in a
word set, {ai}. The score, S (i, j), at point (i, j) in the DP
plane is calculated as:

S (i, 0) = 0, (3)

S (0, j) = 0, (4)

S (i, j) = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S (i − 1, j − 1) + SPS({mi

n, m′ j
n′ }),

S (i, j − 1) + SPS({Ngaps, m′ j
n′ }),

S (i − 1, j) + SPS({mi
n, N′gaps}),

(5)

where 1 ≤ n ≤ N, 1 ≤ n′ ≤ N′. During this recursive
process, the previous point selected in Eq. (5) is memorized
for every point (i, j). The alignment result is obtained by
tracing back after the scores of all points in the DP matrix
have been calculated. In the example at Node3 in Fig. 3,
N = 2, s1 =“GAATTG”, s2 =“G−ATTG”, Q = 6, and
N′ = 1, s′1 =“GAATC”, Q′ = 5. The score of (3,3) in the
matrix is, for example,

S (3, 3) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S (2, 2) + SPS ({m3
1,m

3
2,m

′3
1})

= 6 + s(A,A) + s(A,A) + s(A,A) = 12,
S (3, 2) + SPS ({−,−,m′31})
= 9 + s(A,−) + s(A,−) + s(−,−) = 6,

S (2, 3) + SPS ({m3
1,m

3
2,−})

= 3 + s(A,A) + s(A,−) + s(A,−) = 3

= 12
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2.3 Voting Entropy

We can measure the degree of disagreement among recog-
nizers by voting entropy. The results of multiple alignment
described in Sect. 2.2 can be represented by K × C matrix
where K is the number of recognizers and C is the number
of columns in the alignment result. An example of this is
given in Table 1. Let P be the number of unique words in
column c (1 ≤ c ≤ C), wp (1 ≤ p ≤ P) be a unique word,
and V(wp, c) be the number of wp in the c-th column. Then,
the voting entropy, VE(c), for the distribution of K words in
the c-th column of the alignment result is defined as

VE(c) = −
P∑

p=1

V(wp, c)

K
log

V(wp, c)

K
(6)

The degree of disagreement, D, is defined as the aver-
age voting entropies over all the columns:

D =
1
C

C∑
c=1

VE(c) (7)

Those utterances with larger D are selected to be transcribed
at Step 4 in the process of the active-learning method ex-
plained in Sect. 2.

3. Experiment

3.1 Experimental Conditions

We evaluated our method using speech data of academic lec-
tures obtained from male speakers in the Corpus of Spon-
taneous Japanese (CSJ) [13]. We prepared 224,434 utter-
ances (191 h) from 666 speakers as the untranscribed data
for active learning. In our evaluation, an utterance was de-
fined as a speech sample longer than one second, where each
shorter speech sample was connected with its successive
sample such that their total duration was longer than one
second. It should be noted that these utterances were fully
transcribed but we assumed that they were untranscribed in
the utterance-selection experiments. We used 2328 utter-
ances (1.95 h) from another ten speakers, which were fully
transcribed, to test the performance of the proposed method.

The frame period in speech analysis was 10 ms and
the frame width was 25 ms. The speech-feature vector was
39 dimensional, consisting of 12-order mel-frequency cep-
stral coefficients (MFCCs) appended with energy, delta, and
delta-delta coefficients. We applied cepstral mean subtrac-
tion to all utterances.

The acoustic model for a recognizer was a triphone hid-
den Markov model with 3000 states, each of which had a
Gaussian-mixture probability density function. The num-
ber of triphones was 7361. There were 16 mixtures in each
state. The structure of the acoustic model remained un-
changed throughout all the experiments in this study. We
applied a two-pass search for speech recognition. A 2-gram

language model was used in the first pass and a 4-gram lan-
guage model was used in the second. HTK [14] was used in
the experiment.

We randomly selected 25 h (29,461 utterances) of data
as the initial transcribed training data from the training data,
and used them to train the initial acoustic model and the
initial 2-gram and 4-gram language models. The other data
from the training data were used as untranscribed data for
active learning. The amount of data N to be selected at one
cycle of the active learning process was set at 25 h.

We carried out three experiments to confirm how effec-
tive our proposed method was by (1) investigating how to
construct a committee, (2) comparing it with other methods
(random selection, a WPP-based method, and a simplified
form of Varadarajan’s method), (3) optimizing the number
of recognizers in a committee, K, and (4) comparing meth-
ods of alignment (progressive and ROVER alignment).

3.2 Results

3.2.1 Investigation into How to Construct a Committee

The number of speech recognizers in a committee, K, in
this experiment was set to eight. Each recognizer consisted
of an acoustic model (AM) and a language model (LM). To
investigate what was the most effective combination of AMs
and LMs, we trained AMs and LMs in three ways and con-
structed a committee.

AM8-LM8
Trained the AM and LM of the k-th recognizer with
data Tk (k = 1, . . . , 8),

AM8-LM1
Trained the AM of the k-th recognizer with data Tk (k =
1, . . . , 8) and trained an LM with the whole data, T , and

AM1-LM8
Trained the LM of the k-th recognizer with data Tk (k =
1, . . . , 8) and trained an AM with the whole data, T .

Figure 4 plots the recognition results. The best result
was obtained when an LM was trained with currently avail-
able transcribed data T and shared among all the committee
recognizers. This may be because an LM needs more train-
ing data to achieve a certain level of performance than an
AM. When LMs are trained with a divided data set, the
reliability of recognition results by all recognizers may de-
crease.

3.2.2 Comparison with Other Methods

We compared the proposed approach with three other meth-
ods: random selection, a WPP-based method, and a sim-
plified form of Varadarajan’s method. The utterances to be
transcribed in random selection were arbitrarily chosen. The
word-posterior probabilities of words with the WPP-based
method [2] in the recognition results of all utterances in un-
transcribed data U were averaged, and those utterances with
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Fig. 4 Recognition results for three ways of constructing a committee.
The horizontal solid line plots the recognition result (75.3%) obtained by
using all the training data (191 h) we prepared for the experiment.

Fig. 5 Recognition results by random selection (Random), WPP-based
method (WPP), simplified form of Varadarajan’s method (CN), and pro-
posed method (AM8-LM1).

lower word-posterior probabilities were selected. The word-
posterior probabilities were calculated by making a confu-
sion network (CN) from a word lattice. A CN is a chain of
nodes where two adjacent nodes are connected by several
arcs. Each arc represents a word or a gap. An entropy of
word-posterior probabilities in a CN was calculated in the
simplified form of Varadarajan’s method (CN) [4], where
first the entropy of word arcs for every adjacent node pair
is calculated and then they are averaged over all the adja-
cent node pairs. Those utterances with the higher averaged
entropies were selected †.

Figure 5 plots the results obtained from the compar-
isons. Our proposed method had significantly better recog-
nition than random selection. The proposed approach only
required 63 h of data to achieve a word accuracy of 74.0%
while random selection required 113 h. It also had better
recognition than the other two methods, i.e., the WPP-based
method and the simplified form of Varadarajan’s method.
Furthermore, the new approach obtained a word accuracy of
75.3% in just 100 h, which is almost half the amount of data

Table 2 Recognition results (word accuracy %) obtained with different
numbers of recognizers, K.

Amount of T (h) AM4-LM1 AM8-LM1 AM16-LM1

25 69.7 69.7 69.7
50 73.4 73.2 73.6
75 74.7 74.7 74.7

100 75.1 75.3 75.2

(191 h) needed in standard training (i.e., random selection)
to achieve the same accuracy. When the amount of data was
125 h, the recognition accuracy of our proposed method was
higher than that obtained using all the data (191 h). This in-
dicates that nearly one-third of the training data did not con-
tribute to increase recognition performance, and our method
successfully excluded those data in its selection process.

We carried out a matched-pair test [15] to investigate
whether the difference in recognition accuracy between the
proposed method and the others was statistically significant
or not. The proposed method was significantly better than
the random selection at 0.1% level when the data amounts
were 75 h, 100 h, 125 h, and at 1% level when the amounts
were 50 h, 150 h, 175 h. It was also significantly better than
the WPP-based method at 1% level when the data amount
was 100 h and at 5% level when the data amounts were 75 h
and 125 h. It was significantly better than the CN-based
method at 1% level when the data amount was 100 h. Thus,
the effectiveness of the proposed method was confirmed.

In Figs. 4 and 5, the recognition accuracy of the pro-
posed method was slightly better than that obtained by using
all the training data. This result indicates that some portion
of the training data may degrade the recognition accuracy
and that our method can effectively exclude those data.

3.2.3 Optimization of Number of Recognizers in Commit-
tee

Table 2 lists the active learning results obtained with various
K of 4, 8, and 16. No great differences were observed in
this experiment. Taking into account the computational cost
in sentence selection, K was sufficiently acceptable at four
with our method.

3.2.4 Comparison of Alignment Methods

Table 3 lists the recognition results obtained with two dif-
ferent alignment methods of progressive and ROVER align-
ment. The word accuracy using progressive alignment was
slightly better than that using ROVER alignment except at
50 h in AM8-LM1, while the difference between them was
not significant.

†In Varadarajan’s method [4], entropies of utterances were
measured by their word lattices, not by their CNs. Furthermore,
they used the distance between each pair of utterances as well as
entropies to select utterances, even though we did not use this here.
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Table 3 Recognition results (word accuracy %) with different alignment
methods: Progressive and ROVER alignment.

AM8-LM1 AM16-LM1
Amount of T (h) Progressive ROVER Progressive ROVER

25 69.7 69.7 69.7 69.7
50 73.2 73.4 73.6 73.2
75 74.7 74.5 74.7 74.7

100 75.3 75.0 75.2 75.2

4. Discussion

4.1 Discussion on Experimental Results

We analyzed the experimental results to find why the pro-
posed method was significantly better than the WPP-based
method. First, we investigated which model, an AM or
an LM, contributed more to improved recognition accuracy.
The test data in Fig. 5 were recognized by a single recog-
nizer with an AM and an LM, which were trained using data
T of 25, 50, 75, and 100 h. Here, whenever data T were 25,
50, 75, or 100 h, either model was trained with all the train-
ing data (191 h) and the other model was trained with data
T available at that time, so that the model trained with all
the training data would not affect the recognition results and
only improved recognition accuracy obtained with the other
model could be observed. Figure 6 plots the LM-only active
learning results obtained with an AM trained with all the
training data, and Fig. 7 plots the AM-only results obtained
with an LM trained with all the training data.

These figures indicate both models with the proposed
method were better than those with the WPP-based method.
However, there was no significant difference between them
either in Fig. 6 or in Fig. 7. This indicates that, while neither
AM-only active learning nor LM-only active learning may
be effective, their combination is significantly effective. The
recognition accuracies in Fig. 6 increase as the amount of
data T increases, whereas the accuracies in Fig. 7 become
almost constant after 50 h, which means LM training re-
quires more data than AM training does. We further eval-
uated the triphone coverage and N-gram hit rate to inves-
tigate why the proposed method were better than the WPP-
based method.

4.1.1 Triphone Coverage

We measured how many triphones contained in the test data
were covered by the selected data T to analyze how much
useful utterances for speech recognition were selected. Tri-
phone coverage (%) was calculated by the ratio of the unique
triphones in the test data covered by those in the data T .

Fig. 8 plots the triphone coverages for the different
methods. There were 3647 unique triphones in the tran-
scription of the test data in this experiment. The proposed
approach has higher triphone coverage than the WPP-based
method and the random selection method. This high tri-
phone coverage may be one reason that the recognition ac-

Fig. 6 Recognition results with an AM trained with all training data
(191 h) and LM trained with data T selected by random selection (Ran-
dom), WPP-based method (WPP), and proposed method (AM8-LM1).

Fig. 7 Recognition results with LM trained with all training data (191 h)
and AM trained with data T selected by random selection (Random), WPP-
based method, (WPP) and proposed method (AM8-LM1).

Fig. 8 Triphone coverage by random selection (Random), WPP-based
method (WPP), and proposed method (AM8-LM1). The horizontal solid
line plots the triphone coverage (99.89%) obtained by using all the training
data (191 h) prepared for the experiment.

curacy with the proposed method was better than that with
those methods. However, since triphone coverage is over
98.6% even when T is 25 h, the contribution of this high
triphone coverage to the improvement in accuracy may be
limited.
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Table 5 Vocabulary sizes of training data, OOV rates, and test set perplexities for 4-gram.

Vocabulary size OOV rates (%) Test set perplexity
Amount of T (h) Random WPP AM8-LM1 Random WPP AM8-LM1 Random WPP AM8-LM1

25 16375 22.5 76.9
50 23402 28365 27141 18.7 17.0 17.2 72.9 74.5 74.2
75 29008 35414 34771 16.7 14.9 14.9 72.1 72.7 72.4

100 33577 39932 39700 15.2 13.5 13.9 71.0 71.0 70.3

Table 4 2-gram and 4-gram hit rates by random selection (Random),
WPP-based method (WPP), and proposed method (AM8-LM1).

2-gram hits rate (%) 4-gram hits rate (%)
Amount of

T (h) Random WPP
AM8-
LM1 Random WPP

AM8-
LM1

25 56.1 56.1 56.1 20.4 20.4 20.4
50 63.0 64.0 64.1 25.1 24.4 24.4
75 66.9 67.8 68.0 27.9 27.3 27.1

100 69.0 70.1 70.3 30.0 29.3 29.4

4.1.2 N-Gram Hit Rate

We assessed how many word N-grams included the test data
were included in the transcription of data T to analyze how
effective the proposed method was from the point of view of
the language model. The N-gram hit rate was calculated by
the ratio of unique N-grams in the test data covered by those
in the data T .

Table 4 lists the 2-gram and 4-gram hits rates with the
three methods. We can see that the proposed approach and
the WPP-based method had similar tendencies, and they
had high 2-gram hit rates compared with random selection,
while they had low 4-gram hit rates. It seems that the rea-
son that recognition accuracy with an LM trained with data
T with the new method was better than that with the WPP-
based method was not related to the N-gram.

4.1.3 Vocabulary Size, OOV Rate, and Perplexity

Finally, we examined the vocabulary size of the training
data, the out-of-vocabulary (OOV) rate in the test data, and
the test set perplexity, for different amounts of the training
data. The results are shown in Table 5. The vocabulary size
of the training data for the proposed method and for WPP
were both significantly larger than Random, and accord-
ingly, the OOV rates for these two methods were smaller
than Random, while there were no significant differences
between the proposed method and WPP. The perplexities
for the three methods were decreased as the amount of train-
ing data increases, but the differences between them were
not significant. We believe the reduction of the OOV rates
is one major reason for the effectiveness of our method and
of WPP method.

4.2 Computational Time for Sentence Selection

Since our method uses multiple recognizers, some might ar-
gue that it has too high computational costs to be used in real

application. To investigate this point, we compared com-
putational time for the three methods. A computer with a
2.4-GHz Core 2 Duo processor and 3 GB of memory was
used in the experiment. The sentence selection processes
required by the three methods were as follows:

Random selection
1. Randomly select utterances to be transcribed.

WPP-based method
1. Recognize all utterances in data U, and calculate

word-posterior probabilities.
2. Sort the utterances by their word-posterior proba-

bility averages, and select utterances with a lower
average.

Proposed method
1. Construct a committee by using data T .
2. Generate K recognition-result sentences using the

committee.
3. Individually carry out multiple alignments for K

recognition-result sentences for all utterances.
4. Sort the utterances by the degree of disagreement

D, and select utterances with higher D.

As random selection and sorting did not take much
time, we neglected them. Here, computational time was cal-
culated by measuring the time needed to process part of the
data extracted randomly from the entire amount of data and
then multiplying the time by the amount of data. We cal-
culated the computational time to transcribe up to 100 h of
data by only using one CPU.

4.2.1 WPP-Based Method

The recognition and calculation of WPPs for data U of 165,
140, and 115 h (420 h in total) were carried out until 100 h
of data were transcribed with the WPP-based method. We
recognized one hour of data randomly selected from data
U of 165 h using an AM and an LM trained by transcribed
data T of 25 h and then calculated WPP. It took 35 minutes.
As the number of states and Gaussian mixtures in an AM
were constant no matter how much data T there were, the
computational times to recognize the same amount of data
and calculate WPPs using the pairs of an AM and an LM
trained with 25, 50, and 75 h data were considered to be
almost the same. Thus, the computational time for the WPP-
based method was calculated as

420 × 35
60
= 245 (h)
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4.2.2 Proposed Method

We calculated the computational time with the proposed
method of AM8-LM1, where the recognition and multiple
alignment for data U for a total of 420 h were also carried
out until 100 h of data were transcribed. First, we took into
consideration the computational time in process 1. It took
7.13 h to train eight AMs by using each divided data set Tk

when the amount of T was 25 h. It was not necessary to
train an LM because it was already made to recognize test
data. Training eight AMs with data T of 50 h and 75 h took
twice and three times longer than training AMs with data T
of 25 h, so the time in process 1 was calculated as

(1 + 2 + 3) × 7.13 = 42.8 (h)

Second, we took into consideration the computational
time in process 2. We reduced the computational time to
recognize data U for K times by cutting off the beam width
from 120 to 100 in HDecode. We recognized one hour of
data randomly selected from data U using an AM trained
with divided transcribed data set Tk and an LM trained with
whole transcribed data T , whose amount was 25 h. It took
20 min. The computational time in process 2 was

420 × 20
60
× 8 = 1120 (h)

Finally, we calculated the computational time in pro-
cess 3. It took 292 s to carry out progressive alignment for
eight recognition-result sentences for the one hour of data
selected in process 2, and it took 162 s to do ROVER align-
ment for the same sentences. The computational time in
process 3 with progressive alignment was

420 × 292
60 × 60

= 34.1 (h)

It took 1,197 h in total to select utterances with the pro-
posed method. The computational time in process 2 dom-
inated the whole computational time. The proposed ap-
proach required K/2 times longer than the WPP-based one,
because the former needed to recognize data U for K as
many times as the latter did, while the former reduced the
recognition time by around half by cutting off the beam
width.

The computational time increased as the amount of
data U increased. However, this computational time would
not be a practical issue considering the huge amount of data
of over 190 h we used in this experiment. Even if it took
about 1200 h with one CPU, it would only take 60 h with
20 CPUs.

5. Conclusion

We proposed an active method of learning based on query-
by-committee for speech recognition. A committee was
constructed by using data sets of divided transcribed data.

A degree of disagreement for recognition-result sentences
by the committee was calculated by multiple alignment and
voting entropy and used for sentence selection.

Our method performed better than did the others in
our evaluation where we used speech data of academic lec-
tures by male speakers in CSJ. It only took 63 h to obtain a
word accuracy of 74.0% with the proposed method (AM8-
LM1), while it took random selection 107 h. It also proved
to be significantly better than the WPP-based method and
the simplified form of Varadarajan’s method. The proposed
approach required just 100 h to achieve a word accuracy of
75.3%, which was obtained by using all the training data of
191 h.

We demonstrated AMs should be trained by divided
data sets and an LM trained with the entire amount of tran-
scribed data to construct a committee. The optimal number
of recognizers K in a committee was four, considering the
fact that there were no significant improvements when K
was increased to eight and 16 and that the computational
time with the proposed method was K/2 times longer than
that with the WPP-based method. We also found progres-
sive alignment was slightly better than ROVER alignment
as a multiple method of alignment, though the difference
between them in recognition accuracy was not significant.

The reason our approach was better than the WPP-
based method has not yet become clear. We investigated tri-
phone coverage, N-gram hit rates, OOV rates, and perplex-
ities in those methods but found no significant difference in
them. Further analysis should be carried out.

In future, we plan to investigate how to construct dif-
ferent recognizers. We are also interested in using numerous
word graphs, each of which is generated by one recognizer,
in our framework. We also plan to combine the proposed
method and others using a confidence measure. Our method
is expected to be more effective in different tasks such as
call routing in telephone applications, and we plan to apply
our method to these.
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