
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011
2043

LETTER

An Optimal Algorithm for Searching the Optimal Translation of
Query Windows in Quadtree Decomposition

Hao CHEN†a), Member and Guangcun LUO†, Nonmember

SUMMARY One of the efficient methods to build the index of contin-
uous window queries over moving objects is by means of region quadtree
index. In this paper, we present an optimal algorithm to search for the op-
timal position translation of query windows, where the total number of de-
composed quadtree blocks for those windows in quadtree representation is
minimal. We exploit the branch-and-bound concept to prune the particular
paths of recursions in the search space. Evaluation proves that our optimal
algorithm reduces search time greatly and the quadtree index based on op-
timal position translation works efficiently for continuous window queries.
To the best of our knowledge, the algorithms and experiments reported in
this paper are novel.
key words: quadtree blocks, query windows, query indexing, position
translation

1. Introduction

Quadtree-based hierarchical data structures have been
widely used in many fields such as geographic information
systems, spatio-temporal databases, image processing, and
so on [1]–[4]. A well-known strategy for window or range
query processing is by decomposing a window into a set of
maximal quadtree blocks. In the past a few years, some hi-
erarchical decomposition algorithms have been presented to
solve this window decomposition problem [5]–[7].

Recently, continuous window or range query over mov-
ing objects has attracted researchers’ attention greatly [8]–
[11] because of various emerging applications require-
ment, such as navigation and information services, location-
dependent advertising, and moving target monitoring, etc.
In contrast to traditional snapshot query, which runs once
against a snapshot of databases, continuous window query
over moving objects must be reevaluated continuously as
new data of object location continues to arrive in a data
stream, until it is canceled. Since a brute-force approach
which evaluates each of the window queries for each incom-
ing data tuple of object location is inefficient, it is natural to
adopt main-memory-based solutions of indexing to speed
up the processing of continuous window queries. Kalash-
nikov [8] proposed a cell-based query indexing scheme
which was shown to perform better than the R-tree-based
query index. Mokbel and Aref [11] presented a Scalable
On-Line Execution (SOLE) algorithm for the evaluation

Manuscript received January 28, 2011.
Manuscript revised May 5, 2011.
†The authors are with the School of Computer Science, Uni-

versity of Electronic Science and Technology of China, ChengDu,
China.

a) E-mail: chenhao@uestc.edu.cn
DOI: 10.1587/transinf.E94.D.2043

of concurrent continuous spatio-temporal queries over data
streams. SOLE maintains a simple grid structure that di-
vides the space into equal non-overlapped rectangular cells
as an in-memory shared buffer pool among all continu-
ous queries. However, the simple grid structure in SOLE
is not optimal for large scale queries. To optimize query
processing further, some kinds of virtual constructs (VCs)
for building query indexes were proposed, including cov-
ering tiles [9], virtual construct rectangles (VCRs) [16] and
containment-encoded squares (CES) [10]. The CES-based
query index uses quadtree blocks to decompose query win-
dows and was shown to outperform other query indexing ap-
proaches. In CES method, the query index is implemented
with a pointer array and dynamically maintained query ID
lists, one for each quadtree block. Each window query is
decomposed into quadtree blocks and the query ID is in-
serted into the ID lists associated with these decomposed
quadtree blocks. Search operations are conducted indirectly
via quadtree blocks. However, the CES method have per-
formance limitation. The number of decomposed quadtree
blocks for query windows could be cut down by doing op-
timal position translation on query windows, since the de-
composed quadtree blocks for a rectangle query window is
sensitive to the relative position of the window in the coor-
dinate grid. A shift of the window may change the number
of decomposed blocks and the cost of indexing greatly [13],
[14]. For example, a square window of 2d × 2d may be de-
composed into just only one quadtree block or as many as
3(2d+1−d)−5 blocks [15] by placing the window at different
positions in a global grid of size 2N×2N (d < N). Therefore,
it’s desired to locate an optimal position translation for win-
dow queries so that the total number of quadtree blocks de-
composed by quadtree-based decomposition approach can
be minimized, after an unified position translation. And
then, the total index storage cost can be decreased.

In this paper, we study position translation of query
windows for quadtree indexing and make the following con-
tributions: 1) We design a basic search algorithm to find
out the optimal translation of window queries where the
number of decomposed quadtree blocks is minimal, exploit-
ing the conception of quadtree decomposition and strip-
splitting-based decomposing method [7]; 2) To speed up the
search process further, we present an optimal search algo-
rithm in which two new pruning methods are used to cut
down the searching space further. Experiment evaluation
shows that our optimal search algorithm works efficiently,
and the quadtree indexing based on optimal position trans-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

2044
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

lation outperforms CES-based Indexing both in storage cost
and query evaluation time.

The remainder of this paper is organized as follows:
Section 2 describes the background and problem. Sec-
tion 3 presents our algorithms for searching for the optimal
translation of query windows. Section 4 reports the results
and comparisons of our experimental study and Sect. 5 con-
cludes this paper.

2. Background and Problem Description

We assume that there is a global grid area of size 2N × 2N ,
where moving objects are tracked. A continuous window
query over moving objects in the global area is specified
as a rectangle window along the grid lines. We denote a
rectangle query window with width w, height h and bottom-
left corner at (x, y) by R(x, y,w, h). Let d = min(�logw�,
�logh�) and we call d the dimension of R. We use RS
(= {R1,R2, . . . ,RM}) to denote a set of registered query win-
dows which could be intersected or disjointed. To speed
up the processing of multiple continuous window queries, a
main-memory-based region quadtree is used to index query
windows RS and each node of the quadtree maintains a
query ID list. In this index, each window query is decom-
posed into quadtree blocks and the query ID is inserted into
query ID lists of corresponding quadtree nodes associated
with these blocks. The processing of continuous window
queries is data-driven and the query answer is computed in-
crementally on arrival of new location updates of moving
objects. For any location update of moving object, a search
of quadtree index is conducted to first identify the quadtree
blocks that cover the object location. Then we can obtain
the related queries from the associated query ID lists, and
output the object ID or location data to the resulting queues
associated with these identified queries. Since the quadtree
decomposition of window queries is shift variant, we opti-
mize the quadtree indexing of RS by translating all these
query windows at locations and searching for an unified op-
timal position translation, where the total number of decom-
posed quadtree blocks is minimal. With position translation
of query windows, it is expected that the total index storage
cost is reduced and the total query evaluation time becomes
lower.

3. Searching for the Optimal Position Translation of
Query Windows in Quadtree Presentation

3.1 Problem Analysis and Basic Algorithm

If we translate RS in all possible locations of the global grid
to look for the optimal translation with minimal quadtree
block count, the algorithm must search exhaustively through
the whole space. The worst time complexity of this naive
algorithm is O(4N). Here, we first propose a basic search
algorithm based on the following definition and lemmas.

Definition 1 (Cyclic Translation of Query Window).
For a query window R(x, y,w, h) in global area of 2N × 2N,

we translate (move) R with magnitude Xtm and Ytm in eastern
and northern direction respectively. A window translation is
called a cyclic one if the final position of an unit cell located
originally at (x’, y’) in this window, after translation, can be
derived from the following function:

CT (x′, y′, Xtm,Ytm) = ((x′ + Xtm) mod 2N , (y′ +
Ytm) mod 2N).

With the cyclic translation of query windows, we can
construct a region quadtree of size 2N × 2N to decompose
all translated query windows without the need of expanding
the quadtree to the size of 2N+1 × 2N+1. From the property
of region quadtree and cyclic translation, we present the fol-
lowing result without proof.

Lemma 1. Translating a query window embedded in
2N × 2N grid cyclically by 2d grid cells in east and north
directions, where d < N, does not change the number of
decomposed quadtree blocks of size less than 2d × 2d.

From lemma 1, we can derive the minimal searching
space for finding the optimal position of a query window in
quadtree decomposition.

Lemma 2. An optimal position for decomposing R into
minimal quadtree blocks could be gotten by translating R(x,
y, w, h) by less than 2d units to the east and 2d units to the
north, where d = min(�logw�, �logh�).

Proof. Since the largest quad block possibly decom-
posed from R is of size 2d×2d,we can have the same number
of decomposed blocks when we translate R with magnitudes
of 2d+1. It’s easy to see that all blocks of size 2d × 2d in R
are always arranged in a line. Therefore, translating R with
magnitudes of 2d won’t change the number of blocks of size
2d × 2d, the same as those blocks no more than 2d−1 × 2d−1.
We thus have the proof. �

By Lemma 2, we know that only translations by at most
2d −1 grid elements to the east and to the north need be con-
sidered when we search for the optimal location of quadtree
decomposition for a query window R. Hence, the sam-
ple solution space of optimal translation for a set of query
windows RS is of size 2D × 2D, where D = max(d1, d2,
. . . , dM), dm is the dimension of each window Rm in RS .
Since any translation amount t (< 2D) can be expressed as
the sum of some numbers from the set 1, 2, 4, . . . , 2D−1 and
the translations with larger magnitudes(2i) would not affect
the number of decomposed quadtree blocks with smaller
magnitudes(2i−1), we can derive a basic algorithm of search-
ing for optimal position translation, based on the conception
of strip-splitting-based decomposing method [7]. The basic
idea of the algorithm is to consider the combination of mov-
ing rightward or upward by 1, 2, 4, . . . , 2D−1 elements suc-
cessively during the search process, recursively translating
all windows of RS in four directions (no movement, north,
east, northeast) by 2i elements and then strip-splitting each
of them using strip-splitting-based method, while evaluat-
ing the sum of stripped quadtree blocks. After each transla-
tion, each window of RS is stripped off some slices. Then,
we recursively call the algorithm on remaining new query
windows of each translation configuration. Recursion halts
when we strip-split original windows D − 1 times or when

LETTER
2045

further translation will not produce any savings.
The pseudocode of the basic search algorithm is de-

scribed in Algorithm 1. Here, M(x, y) = x mod y. The al-
gorithm is constructed by a sequence of translations to RS ,
with magnitudes from 20 to 2D−1 in four different directions:
no movement, north, east, and northeast (lines 6-7 of Algo-
rithm 1). At each translation, we strip-split and compact
each query window by a process which is a modification of
strip-splitting-based algorithm [9] (lines 8 of Algorithm 1).
In the strip-splitting process (lines 26-46), each window of
RS is stripped off some slices of size c × 2i × 2i where c
is a positive integer. After that, we shrink these remain-
ing windows (line 41) since the same number of blocks is
maintained while making the granularity coarser [17]. Then,
we recursively call the algorithm on new query windows
(line 12). Note that translating these windows by 1 element
at level i of recursion corresponds to a translation of un-
shrunk windows by 2i elements. Actually, for each transla-
tion, instead of performing translations at all next levels, we
calculate the total number of quadtree blocks stripped so far,
which is computed from the bottom level of strip-splitting to
the level being processed, and then compare it with the cur-
rent least block counter derived so far (line 10). If the total
number of blocks obtained so far is larger, the recursions of
further levels are cut down. The algorithm breaks off when
all recursions are executed or cut down. At last, the trans-
lation magnitudes for the optimal location in two directions,
i.e. Xtm and Ytm, can be acquired by the above process in a
sequence of binary digits (line 9, 19). The worst time com-
plexity of this basic algorithm is O(4D).

3.2 Optimal Algorithm

Algorithm 1 is quite efficient compared with the brute force
approach in the sense that it makes use of the partial result
computed so far to cut down the number of recursions. To
enhance search performance further, we propose an optimal
algorithm (Algorithm 2) adopting two more pruning meth-
ods.

The first pruning mechanism is to use a heuristic that
can lead us to some branch of the configuration search tree
with quadtree block count close to that of the optimal so-
lution. It’s obvious that, the sooner a particular path of
recursion in Algorithm 1 is pruned, the greater is the sav-
ing of search time. In order to obtain a candidate close to
the optimal solution as earlier as possible, We use an itera-
tive process to quickly derive the “initial candidate” (lines
2, 47-57 of Algorithm 2). For each iteration, four trans-
lations to RS in different directions with magnitudes from
20 to 2D−1 are performed, each window is strip-splitted and
shrunk (line 50). Then, the translated RS with the small-
est number of striped quad blocks is selected for the next
iteration (line 52). After at most D iterations, the “initial
candidate” is identified to establish the bound.

To introduce the second pruning mechanism, we
present following lemmas.

Lemma 3 Given a query window R of size w × h, d =

Algorithm 1 Basic Search Algorithm.
Require:

RS ;
Ensure:

Xtm,Ytm (translation magnitudes);
1: d = 0; BN[D + 1] = {0, . . . , 0}; Xm = Ym = 0;
2: least =

∑M
m=1 wm × hm;Xtm = Ytm = 0;

3: OptimalS earch(RS , Xm,Ym, least, BN, d);
4:
5: f unction : OptimalS earch(RS , Xm,Ym, least, BN, d)
6: for (k = 0; k ≤ 3; k + +) do
7: i = �k/2�; j = M(k, 2); RS ′ ← RS ; BN′ ← BN;
8: BN′[d] = RangesS plitS hrink(RS ′, k);
9: X′m = Xm + i × 2d; Y′m = Ym + j × 2d;

10: if
∑d

i=0 BN′[i] ≤ least then
11: if (d < D − 1) then
12: OptimalS earch(RS ′, X′m,Y′m, least, BN′, d + 1);
13: else
14: if RS ′ � φ then
15: BN′[D] = RangesS plitS hrink(RS ′, 0);
16: end if
17: BNtotal =

∑D
i=0 BN′[i];

18: if BNtotal < least then
19: least = BNtotal; Xtm = X′m; Ytm = Y′m;
20: end if
21: end if
22: end if
23: end for
24:
25: f unction : RangesS plitS hrink(RS , k)
26: i = �k/2�; j = M(k, 2); C = 0;
27: for each Rm(xm, ym,wm, hm) in RS do
28: xm = xm + i; ym = ym + j;
29: if M(xm, 2) � 0 then
30: C = C + hm; xm = xm + 1; wm = wm − 1;
31: end if
32: if M(ym, 2) � 0 then
33: C = C + wm; ym = ym + 1; hm = hm − 1;
34: end if
35: if M(xm + wm, 2) � 0 then
36: C = C + hm; wm = wm − 1;
37: end if
38: if M(ym + hm, 2) � 0 then
39: C = C + wm; hm = hm − 1;
40: end if
41: xm = xm/2; ym = ym/2; wm = wm/2; hm = hm/2;
42: if wm = 0 or hm = 0 then
43: delete Rm from RS ;
44: end if
45: end for
46: return C;

min(�logw�, �logh�). If we place the low left corner of R
at (i × 2d, j × 2d), where i and j are positive integers, the
minimal number of decomposed quad blocks can be gotten.

Proof. The number of decomposed blocks of a window
is obviously minimal if more cells are merged into larger
quad blocks. It’s easy to see that, if we shift the lower
left corner of R to coordinates (0, 0) of global grid, then
at each level of strip-splitting of the window, the least num-
ber of blocks (i.e. at most one column and one row strip) are
stripped off, and more cells are left to merge into more larger
blocks. From lemma 1 and 2, it’s clear that the number of
decomposed blocks is always minimal if we move the lower

2046
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

left corner of R to (i × 2d, j × 2d). We thus have the proof. �
From lemma 3, for any query window of size w × h,

the least number of decomposed blocks can be gotten by de-
composing R(0, 0,w, h). Lemma 3 can be extended to obtain
the following:

Lemma 4 For a query window R(x, y,w, h), let
B1, B2, . . . , Bi be the numbers of decomposed quad blocks
from the 1th to ith strip-splitting, where i ≤ min(�logw�,
�logh�). The possible minimal total count of decomposed
quad blocks, Bpmin(R), is the sum of Bis and the number
of quad blocks of a new window R′i which is derived from
strip-splitting i levels off original window and then shifting
it’s lower left corner to the coordinates (0, 0):

Bpmin(R) = B1 + B2 + . . . + Bi + B(R′i).
Lemma 4 can be used for pruning the search process.

For each translation configuration, we can calculate the cur-
rent possible minimal number of quad blocks (line 9, 26-44).
If the total possible minimal number of quadtree blocks is
greater than current least counter (line 10), the search paths
rooted by the translation configuration are cut down.

4. Experimental Results

In this section, we evaluate the performance of search
algorithms for optimal position translation and compare
translation-based quadtree indexing with CES-based index-
ing mechanism. In the simulations, the global area is de-
fined by a 210 × 210 grid. A total number of |Q| continual
window queries are registered. A total of 20000 moving ob-
jects are tracked and object locations are updated 10 times
each minute. We conducted our simulations over a machine
equipped with 2.4-GHz CPU, 512-Mbyte RAM, and Win-
dows XP.

4.1 Performance of Optimal Search Algorithm

Now, we are in the position of comparing the performance
of the optimal algorithm with the basic algorithm for finding
optimal translation of query windows. Firstly, the width and
height of query windows were randomly chosen between 23

and 29, and we varied the number of queries |Q| from 100 to
1000. Figure 1 (a) shows the search time of two algorithms
with different number of query windows. It is clear that the
optimal algorithm outperforms the basic algorithm greatly.
Secondly, |Q| = 1000. We varied the dimension of all query
windows from 3 to 9. Figure 1 (b) shows the search time

Fig. 1 The performance evaluation of search algorithms.

of two algorithms with different size of queries. The search
time is decreased greatly when the dimension of query win-
dows is smaller.

Algorithm 2 Optimal Search Algorithm.
Require:

RS ;
Ensure:

Xtm,Ytm (translation magnitudes);
1: d = 0; BN[D+ 1] = {0, . . . , 0}; Xm = Ym = 0; sum = 0; Xtm = Ytm = 0;
2: least = FindInitialCandidate(RS);
3: OptimalS earch(RS , Xm,Ym, least, BN, d);
4:
5: f unction : OptimalS earch(RS , Xm,Ym, least, BN, d)
6: for (k = 0; k ≤ 3; k + +) do
7: i = �k/2�; j = M(k, 2); RS ′ ← RS ; BN′ ← BN;
8: BN′[d] = RangesS plitS hrink(RS ′, k);
9: X′m = Xm+ i×2d; Y′m = Ym+ j×2d; sum = ComputeMinS um(RS ′);

10: if
∑d

i=0 BN′[i] + sum ≤ least then
11: if (d < D − 1) then
12: OptimalS earch(RS ′, X′m,Y′m, least, BN′, d + 1);
13: else
14: if RS ′ � φ then
15: BN′[D] = RangesS plitS hrink(RS ′, 0);
16: end if
17: BNtotal =

∑D
i=0 BN′[i];

18: if BNtotal < least then
19: least = BNtotal; Xtm = X′m; Ytm = Y′m;
20: end if
21: end if
22: end if
23: end for
24:
25: f unction : ComputeMinS um(RS)
26: for each Rm(xm, ym,wm, hm) in RS do
27: xm = 0; ym = 0;
28: end for
29: sum = 0;
30: while RS � φ do
31: for each Rm = (xm, ym,wm, hm) in RS do
32: if M(wm, 2) � 0 then
33: wm = wm − 1; sum = sum + hm;
34: end if
35: if M(hm, 2) � 0 then
36: hm = hm − 1; sum = sum + wm;
37: end if
38: wm = wm/2; hm = hm/2;
39: if wm = 0 or hm = 0 then
40: delete Rm from RS ;
41: end if
42: end for
43: end while
44: return sum;
45:
46: f unction : FindInitialCandidate(RS)
47: Ck = 0, k = 0, 1, 2, 3
48: for (d = 0; d < D; d + +) do
49: for (k = 0; k ≤ 3; k + +) do
50: RS k ← RS ; Ck = Ck + RangesS plittingS hrink(RS k , k);
51: end for
52: K = argmink(Ck); least = least +CK ; RS ← RS K ;
53: end for
54: if RS � φ then
55: least = least + RangesS plitS hrink(RS , 0);
56: end if
57: return least;

LETTER
2047

Fig. 2 (a) storage cost over different query distribution; (b) query evalu-
ation time over different query distribution.

4.2 Storage Cost and Query Evaluation Time

Now we shall report the comparison results as to storage
cost and query evaluation time between translation-based
quadtree indexing against CES-based indexing approach.
Here, |Q| = 1000. The width and height of query windows
were randomly chosen between 23 and 29. The bottom-left
corners of window queries were distributed according to an
α − β rules as in [10]: α fraction of the bottom-left cor-
ners of query windows are located within β fraction of the
monitoring area, where β = 1 − α. We vary α from 0.55
to 0.95 and compare two indexing methods under differ-
ent query distribution. Figure 2 (a) shows the total storage
cost of both indexing methods. It is clear that our index
outperforms CES-based index greatly, as more significant
as the query positions become more skewed. Figure 2 (b)
shows the impact of query distribution on the query eval-
uation time. Under all cases, our index outperforms CES-
based index, as more significant as the query positions be-
come more skewed. It is because the CES-based indexing is
implemented with pointer arrays and constant times of ac-
cessing to the index are needed whenever a location update
of moving object is received for query processing. For our
approach, the query evaluation efficiency is higher when ob-
jects move in quadtree block regions not covered by queries,
since no tree nodes corresponding to these regions are con-
structed in the index.

5. Conclusions

We propose an optimal algorithm of searching for the opti-
mal position translation of query windows with the minimal
total number of decomposed quadtree blocks. To reduce the
searching time, we exploit the branch-and-bound concept to
prune the unnecessary searching paths. A almost-optimal
solution is identified at first to establish the bound. Then an-
other pruning technique of computing the possible minimal
number of quadtree blocks is used to cut the particular paths

of recursions in the search space. Experiment results show
that the optimal search algorithm works efficiently and out-
performs another basic algorithm. Moreover, the optimal-
translation-based quadtree indexing approach outperforms
CES-based indexing in both storage cost and query evalua-
tion time.

References

[1] E. Nardelli and G. Proietti, “Efficient secondary memory processing
of window queries on spatial data,” Inf. Sci., vol.84, pp.67–83, 1995.

[2] E. Nardelli and G. Proietti, “Time and space efficient secondary
memory representation of quadtrees,” Information Systems, vol.22,
pp.25–37, 1997.

[3] S.-K. Chen, “An exact closed-form formula for d-dimensional
quadtree decomposition of arbitrary hyperrectangles,” IEEE Trans.
Knowl. Data Eng., vol.18, no.6, pp.784–798, June 2006.

[4] J.A. Orenstein and F.A. Manola, “Probe spatial data modeling and
query processing in an image database application,” IEEE Trans.
Softw. Eng., vol.14, no.5, pp.611–629, 1988.

[5] W.G. Aref and H. Samet, “Decomposing a window into maximal
quadtree blocks,” Acta Informatica, vol.30, pp.425–439, 1993.

[6] G. Proietti, “An optimal algorithm for decomposing a window into
maximal quadtree blocks,” Acta Informatica, vol.36, no.4, pp.257–
266, 1999.

[7] Y.-H. Tsai, K.-L. Chung, and W.-Y. Chen, “A strip-splitting-based
optimal algorithm for decomposing a query window into maxi-
mal quadtree blocks,” IEEE Trans. Knowl. Data Eng., vol.16, no.4,
pp.519–523, April 2004.

[8] D.V. Kalashnikov, S. Prabhakar, W.G. Aref, and S.E. Hambrusch,
“Efficient evaluation of continuous range queries on moving ob-
jects,” Proc. Int’l Conf. Database and Expert Systems Applications,
pp.731–740, 2002.

[9] K.-L. Wu, S.-K. Chen, and P.S. Yu, “Efficient processing of contin-
ual range queries for location-aware mobile services,” Information
Systems Frontiers, vol.7, nos.4-5, pp.435–448, Dec. 2005.

[10] K.-L. Wu, S.-K. Chen, and P.S. Yu, “Incremental processing of con-
tinual range queries over moving objects,” IEEE Trans. Knowl. Data
Eng., vol.8, no.11, pp.1560–1575, 2006.

[11] M. Mokbel and W. Aref, “SOLE: Scalable on-line execution of
continuous queries on spatio-temporal data streams,” In VLDB J.,
pp.971–995, 2008.

[12] K.-L. Wu, S.-K. Chen, and P.S. Yu, “Interval query indexing for
efficient stream processing,” Proc. ACM 13th Conf. Information and
Knowledge Management, pp.88–97, 2004.

[13] M. Li, W. Grosky, and R. Jain, “Normalized quadtrees with respect
to translations,” Computer Graphics and Image Processing, vol.20,
pp.72–81, 1982.

[14] P.-M. Chen, “A quadtree normalization scheme based on cyclic
translations,” Pattern Recogn., vol.30, no.12, pp.2053–2064, 1997.

[15] C.R. Dyer, “The space efficiency of quadtrees,” Computer Graphics
and Image Processing, vol.19, no.4, pp.335–348, Aug. 1982.

[16] K.-L. Wu, S.-K. Chen, and P.S. Yu, “Processing continual range
queries over moving objects using VCR-based query indexes,” Proc.
IEEE Int’l Conf. Mobile and Ubiquitous Systems: Networking and
Services, Aug. 2004.

[17] C. Faloutsos, H.V. Jagadish, and Y. Manolopoulos, “Analysis of n-
dimensional quadtree decomposition of arbitrary rectangles,” IEEE
Trans. Knowl. Data Eng., vol.9, no.3, pp.373–383, May/June 1997.

