
2048
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

LETTER

ROCKET: A Robust Parallel Algorithm for Clustering Large-Scale
Transaction Databases∗

Woong-Kee LOH†, Yang-Sae MOON††, and Heejune AHN†††a), Members

SUMMARY We propose a robust and efficient algorithm called
ROCKET for clustering large-scale transaction databases. ROCKET is a
divisive hierarchical algorithm that makes the most of recent hardware ar-
chitecture. ROCKET handles the cases with the small and the large number
of similar transaction pairs separately and efficiently. Through experiments,
we show that ROCKET achieves high-quality clustering with a dramatic
performance improvement.
key words: divisive hierarchical clustering, large-scale transaction
databases, parallelization

1. Introduction

A transaction is a set of one or more items [6]. The transac-
tion database is composed of a number of transactions, each
of which can have a different number of items. A typical
example is a market basket database [4], [6]; a transaction is
a set of products simultaneously purchased by a customer
at a market. The issue in clustering the transaction database
is creating good clusters (or groups) of similar (or highly
correlated) transactions and then utilizing them in various
applications. For example, the clustering result in a market
basket database can be used to find groups of customers with
similar purchase preferences and utilize them in improving
sales performance.

The challenge in clustering transaction databases is
that most of them are composed of a very large number of
transactions. The previous clustering algorithms could deal
with only small-sized databases or could not generate high-
quality clusters [4], [6], [7]. Moreover, the algorithms were
designed without consideration on the up-to-date hardware
architecture. Instead of raising clock speed, recent CPUs are
constructed to have multiple, simultaneously running cores,
and a few such CPUs are equipped in a single server ma-

Manuscript received February 28, 2011.
Manuscript revised June 7, 2011.
†The author is with the Department of Multimedia, Sungkyul

University, Korea.
††The author is with the Department of Computer Science,

Kangwon National University, Korea
†††The author is with the Department of Control & Instrumenta-

tion Engineering, Seoul National University of Science and Tech-
nology, Korea.

∗This work was supported by the Korea Research Founda-
tion Grant funded by the Korean Government (MOEHRD, Ba-
sic Research Promotion Fund) (KRF-2008-331-D00487). This
work was partially supported by the Korea Ministry of Knowledge
Economy through the Strategic Technology Development Project
(10031824).

a) E-mail: heejune@seoultech.ac.kr (Corresponding author)
DOI: 10.1587/transinf.E94.D.2048

chine. Hence, we need an algorithm that fully harnesses the
recent hardware technology to achieve high-quality cluster-
ing efficiently on the large-scale transaction databases.

In this paper, we propose a robust and efficient algo-
rithm called ROCKET∗∗ for clustering the large-scale trans-
action databases. ROCKET is a divisive hierarchical al-
gorithm using the notion of link in ROCK algorithm [4].
ROCKET is a parallel algorithm making the most of recent
hardware architecture. ROCKET also separates the cases
with the small and the large number of similar transaction
pairs and handles each case efficiently. Through a series of
experiments, we show that ROCKET achieves high-quality
clustering with a dramatic performance improvement; it out-
performed ROCK by up to 55.2 times. We expect that
ROCKET will achieve higher improvement than previous
algorithms with the release of CPUs with more cores and
servers with more CPUs in the near future.

2. Related Work

ROCK [4] is a clustering algorithm for the objects with cat-
egorical attributes. The transaction is a kind of categorical
objects. ROCK presented a new notion of link as a similar-
ity measure for categorical objects. The link is obtained as
follows. Given a threshold θ (0 ≤ θ ≤ 1), ROCK computes
a sim(pi, p j) value for each object pair (pi, p j). The sim()
measure can be differently defined according to the target
database and is defined as Eq. (1) for two transactions T1

and T2 [4]:

sim(T1,T2) =
|T1 ∩ T2|
|T1 ∪ T2| , (1)

where |T | represents the number of items in T . Two objects
(or transactions) are defined as neighbors, if the sim() value
between them is greater than or equal to θ. The link between
two objects pi and p j is computed as follows:

link(pi, p j)

=
∣∣∣∣
{
pk |sim(pi, pk) ≥ θ AND sim(p j, pk) ≥ θ

}∣∣∣∣ . (2)

That is, the link between two objects is the number of their
common neighbors.

ROCK is an agglomerative hierarchical algorithm that
merges the most similar cluster pairs one by one based on
the links. Initially, for each object, ROCK forms a cluster

∗∗It stands for an algorithm faster than ROCK.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

LETTER
2049

containing only the object. Then, ROCK computes good-
ness g(Ci,C j), which is a function of links, for each cluster
pair (Ci,C j) and then merges the cluster pair with the highest
goodness. The g() values incorporating the merged cluster
are newly computed. Again, the cluster pair with the highest
goodness is merged. This procedure is repeated until there is
no more cluster pairs to merge or the pre-specified number
k of clusters are obtained.

ROCK has a high time complexity of O(n2 + nmmma +

n2 log n) [4], where n is the number of objects, and mm and
ma are the maximum and the average numbers of neighbors,
respectively. Regardless of the target database, ROCK has
the time complexity higher than O(n2), and thus it can hardly
be applied for large-scale transaction databases. It was as-
sumed in [4] that mm is practically close to ma and much
smaller than n; however, there actually exist many databases
with both mm and ma close to n. In this case, the time com-
plexity of ROCK reaches as high as O(n3). In this paper, we
call this kind of databases as dense databases and discuss
how to handle them in Sect. 3.3.

Wang et al. [6] presented a new notion of a large item
and proposed a clustering algorithm based on the notion.
We call the algorithm as LARGE in this paper. As an exper-
imental result using the mushroom database†, many of clus-
ters created by LARGE contained both edible and poisonous
mushrooms [6], which made the users skeptical about the
clustering quality of the algorithm.

Yang et al. [7] proposed the CLOPE algorithm, which
showed better clustering performance and quality than
ROCK [4] and LARGE [6]. As an experimental result us-
ing the mushroom database, CLOPE obtained a perfect
clustering result when setting its parameter repulsion r as
r ≥ 3.0 [7]. However, CLOPE can run only on a single
thread by its nature; even when running on a most up-to-
date server, it uses the server’s capability only partially and
hence cannot have an ultimate performance improvement.

Feng et al. [3] proposed a parallel clustering algorithm
that runs on a cluster system composed of multiple PCs.
Bohm et al. [1] proposed a density-based clustering algo-
rithm that harnesses Graphics Processing Unit (GPU). This
algorithm improved the performance by up to 15 times than
the DBSCAN algorithm [2].

The algorithm by Feng et al. [3] deals with the objects
that can be represented as points in a d-dimensional space.
The objects consist of d items (real numbers), and the order
and the difference between any two items are well-defined.
Guha et al. [4] showed that the clustering quality dramati-
cally falls off by applying the algorithms such as the one by
Feng et al. [3] to transaction databases. The algorithm by
Bohm et al. [1] and DBSCAN [2] primarily deals with the
same objects as the algorithm by Feng et al. [3]. If the algo-
rithms are managed to deal with transaction databases, their
time and space complexity reaches as high as O(n2), where
n is the number of transactions.

3. ROCKET Algorithm

3.1 Basic Architecture

ROCKET is given the same parameter θ as ROCK [4].
ROCKET computes a link value for each transaction pair
using Eq. (2) in the same manner as ROCK. We discuss
more on this procedure in Sect. 3.3. ROCKET uses the no-
tion of connectedness defined as follows. Two transactions
Ti and T j are defined to be (directly) connected, if it holds
that link(Ti,T j) > 0. The two transactions are defined to be
indirectly connected, if the following holds:

∃ Tl(0 ≤ l < p) s.t. link(Tl,Tl+1) > 0 , (3)

where T0 = Ti and Tp = T j (p ≥ 1).
ROCKET forms the initial clusters with indirectly con-

nected transactions. Two transactions Ti and T j are in the
same cluster, if and only if they are indirectly connected.
The clusters obtained at this stage are identical with those
obtained by ROCK with k = 1. The problem with these
clusters is that they may be very big and have very low qual-
ity depending on the target database. Actually, by clustering
the mushroom database with θ ≤ 0.5, we got a single big
cluster containing the entire database of mushrooms.

ROCKET divides the clusters in the direction of im-
proving their quality. The divided clusters are recursively
divided if it is needed to improve their quality. This recur-
sion stops when there is no more quality improvement.

The cluster division method of ROCKET is based on
the following observation. Figure 1 shows the occurrence
counts of link values of transaction pairs in a bad cluster
that should be divided (needs quality improvement). The
figure was obtained in the middle of clustering the mush-
room database with θ = 0.8. In the figure, we can find that
the incorrect links connecting two transactions that should
not be in the same cluster have small link values.

ROCKET divides clusters by removing incorrect links,
and each cluster is divided independently of the others. For
a cluster, ROCKET computes the mean μ and the standard
deviation σ of link values. Given a parameter s, it removes

Fig. 1 Occurrence counts of link values in a bad cluster: incorrect links
have small link values.

†It was obtained from UCI machine learning repository
(http://archive.ics.uci.edu/ml/)

2050
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

all the links l satisfying the following:

l ≤ μ − sσ . (4)

Then, ROCKET forms (sub)clusters with indirectly con-
nected transactions in the same manner as forming the initial
clusters. This procedure is repeated until there are no links
removed or the removal of links does not lead to a cluster
division.

This cluster division method is simple, yet effective and
fast. We found through experiments that s values around 1.0
were reasonable. The number of clusters k could be adjusted
by changing s. Even with inattentive parameter θ values, we
could achieve high-quality clustering by properly setting s
values. We explain the reason that s was chosen as a param-
eter instead of k in the next section.

The cluster division method always generated a mean-
ingful result using Eq. (4). Actually, the method performed
not more than three iterations for any initial clusters in our
experiments and returned high-quality clusters. The reason
for the convergence is that, by applying the method repeat-
edly, the links satisfying Eq. (4) are removed very quickly,
and there remain only the links with large link values. The
convergence is dependent on the s value in Eq. (4); it should
not be negative.

3.2 Parallelization

ROCKET has two methods for fully utilizing the up-to-date
hardware architecture. The first is to have different clusters
processed separately in different threads†. This method cre-
ates a critical section only for accessing the clusters queue
shared by the threads. Since each cluster extracted from the
queue can be processed independently of the others, as many
clusters as threads can be processed in parallel, which results
in a dramatic performance improvement. This is the reason
that we designed ROCKET as a ‘divisive’ algorithm. We
chose s as a parameter instead of k for the same reason. If
k is used as a parameter, whenever we divide a cluster, we
should select the most appropriate one from the candidate
clusters. The next cluster to divide can only be selected af-
ter the previously selected cluster is divided and the number
of current clusters is checked. That is, the clusters can only
be processed sequentially.

The second method is to evenly distribute data into
multiple threads when computing links for transaction pairs.
As in ROCK [4], ROCKET creates a neighbor list NLi for
each transaction Ti. Then, for each pair of transactions T j

and Tl in NLi, the algorithm increments the pair’s occur-
rence count by 1. After processing NLi for every transaction
Ti, the count associated with each transaction pair (T j,Tl)
is its link link(T j,Tl) [4]. The second method divides the
entire set of neighbor lists evenly into t sets, where t is the
number of threads. Each set is processed separately in a
different thread, and then the results from the threads are
merged. In the merging phase, the links obtained from dif-
ference threads for the same transaction pair need only to be
summed up.

3.3 Sparse and Dense Databases

As explained in the previous section, the neighbor list for
every transaction is created to compute the link for every
transaction pair. In this paper, we claim that the case with
a small number of neighbors (ma 	 n) and the case with
a large number of neighbors (ma ≈ n) should be differently
handled. The former is called sparse databases and the lat-
ter is called dense databases.

A straightforward method for creating neighbor lists is
to compute a sim() value using Eq. (1) for every combination
of transactions Ti and T j (i � j) and then to add T j in NLi

and Ti in NL j if it holds that sim(Ti,T j) ≥ θ. However, in
the case of sparse databases, i.e., when ma is very small,
since most of sim() computation is needless, i.e., sim() < θ,
this method causes performance degradation. This method
is effective in the case of dense databases, i.e., when ma is
close to n.

An efficient method for creating the neighbor lists in
sparse databases is as follows. First, for each item ei in ev-
ery transaction, a list of transactions containing ei is cre-
ated. Then, for each pair of transactions T j and Tl in the list,
the occurrence count is incremented by 1. After processing
all the transaction lists, the count associated with a transac-
tion pair (T j,Tl) is equal to the number of items commonly
contained in two transactions, i.e., the denominator value
in Eq. (1). The numerator value in Eq. (1) can be easily ob-
tained using the property |T j∪Tl| = |T j|+ |Tl|−|T j∩Tl|. This
method requires an execution time proportional to λ2, where
λ is the average size of transaction lists. In sparse databases,
since it holds that λ 	 n, this method should have a short ex-
ecution time. However, in dense databases, since λ is close
to n, the execution time should be much longer. Actually,
in our experiments, the straightforward method was more
efficient in dense databases.

4. Evaluation

In this section, we evaluate the clustering quality and perfor-
mance of ROCKET through a series of experiments. We use
a mushroom database and an AOL database, which are typ-
ical examples of dense and sparse databases, respectively.

4.1 Mushroom Database

The mushroom database consists of 8124 mushroom
records; each record contains categorical attributes on physi-
cal features such as color, odor, size, and shape. In addition,
each record has an attribute indicating whether the mush-
room is edible or poisonous. We transformed the database
into a transaction database using a previously developed
method [4], [7].

†For maximum hardware utilization, the number of threads t
should be equal to the number of CPU cores p. If the CPU with
Intel’s Hyper-threading technology is used, t should be 2p. If the
server machine is equipped with m such CPUs, t should be 2pm.

LETTER
2051

Table 1 Quality test using the mushroom database: ROCKET achieved
100% purity in every case.

θ s purity k
0.9 1.00 100% 22
0.8 1.00 100% 25
0.7 0.85 100% 28
0.6 0.90 100% 42
0.5 0.75 100% 35

Fig. 2 Performance test using the mushroom database: ROCKET
outperformed ROCK by up to 55.2 times.

We performed quality and performance tests using the
mushroom database. In the quality test, purity values are
computed for the clustering results by ROCKET obtained
for various parameter values. The purity is defined as the
number of mushrooms in pure clusters divided by the num-
ber of mushrooms in the entire database (= 8124), where a
pure cluster contains either edible or poisonous mushrooms.
The purity can have a value between 0% and 100%, and the
higher, the better. Table 1 shows the result of the quality
test; we could achieve 100% purity for various θ values by
adjusting s appropriately. The fourth column (k) contains
the number of final clusters.

In the performance test, the elapsed time of ROCKET
and ROCK was compared for various parameter values. We
set k = 20 for ROCK. Figure 2 shows the result of the
performance test; ROCKET outperformed ROCK by up to
55.2 times and on the average by 40.9 times. The reason that
the elapsed time for ROCK jumped up for θ = 0.6 is that the
number of neighbors dramatically increased.

4.2 AOL Database

The AOL database consists of 20M query records by about
650K users from March 1 through May 31, 2006. Each
record contains a few attributes including user ID, query,
and query time. We transformed the database into a transac-
tion database using the method presented in [5].

We compared the elapsed time of ROCKET, ROCK,

Fig. 3 Performance test using the AOL database: ROCKET outper-
formed ROCK by up to 10.0 times and CLOPE by up to 4.6 times.

and CLOPE for various numbers of transactions. We set
θ = 0.5 and s = 1.0 for ROCKET, k = 20 for ROCK, and
r = 1.5 for CLOPE. Figure 3 shows the result of the perfor-
mance test; ROCKET outperformed ROCK by up to 10.0
times and on the average by 7.5 times, and it also outper-
formed CLOPE by up to 4.6 times and on the average by
4.1 times. Since the AOL database is a sparse database, the
performance improvement ratio by ROCKET over ROCK
was lower than that with the mushroom database. However,
ROCKET fully utilizes the most up-to-date hardware archi-
tecture, and therefore we believe that the algorithm should
achieve a higher performance improvement than the others
with the advance in hardware technology.

References

[1] C. Bohm, R. Noll, C. Plant, and B. Wackersreuther, “Density-based
clustering using graphics processors,” Proc. Int’l Conf. on Informa-
tion and Knowledge Management (CIKM), pp.661–670, Hong Kong,
China, Nov. 2009.

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
Proc. Int’l Conf. on Knowledge Discovery and Data Mining (KDD),
pp.226–231, Portland, Oregon, USA, Aug. 1996.

[3] Z. Feng, B. Zhou, and J. Shen, “A parallel hierarchical clustering
algorithm for PCs cluster system,” Neurocomputing, vol.70, no.4-6,
pp.809–818, Jan. 2007.

[4] S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering al-
gorithm for categorical attributes,” Information Systems, vol.25, no.5,
pp.345–366, 2000.

[5] W.-K. Loh, Y.-S. Moon, and J.-G. Kang, “A data cleansing method
for clustering large-scale transaction databases,” IEICE Trans. Inf. &
Syst., vol.E93-D, no.11, pp.3120–3123, Nov. 2010.

[6] K. Wang, C. Xu, and B. Liu, “Clustering transactions using large
items,” Proc. Int’l Conf. on Information and Knowledge Management
(CIKM), pp.483–490, Kansas City, Missouri, USA, Nov. 1999.

[7] Y. Yang, X. Guan, and J. You, “CLOPE: A fast and effective cluster-
ing algorithm for transactional data,” Proc. Int’l Conf. on Knowledge
Discovery and Data Mining (KDD), pp.682–687, Edmonton, Alberta,
Canada, July 2002.

