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A Visual Signal Reliability for Robust Audio-Visual Speaker
Identification

Md. TARIQUZZAMAN†, Member, Jin Young KIM†a), Seung You NA†, Hyoung-Gook KIM††, Nonmembers,
and Dongsoo HAR†††, Member

SUMMARY In this paper, a novel visual signal reliability (VSR) mea-
sure is proposed to consider video degradation at the signal level in audio-
visual speaker identification (AVSI). The VSR estimation is formulated
using a Gaussian fuzzy membership function (GFMF) to measure light-
ing variations. The variance parameters of GFMF are optimized in order
to maximize the performance of the overall AVSI. The experimental re-
sults show that the proposed method outperforms the score-based reliability
measuring technique.
key words: visual signal reliability measure, Gaussian fuzzy membership
function, audio-visual speaker identification

1. Introduction

Multi-modal integration for audio-visual speaker identifica-
tion (AVSI) is one of the robust approaches [1]–[5] in noisy
environments, where speech signals have relatively high lev-
els of distortion. The main issues concerning AVSI involve
an integration structure and reliability decision-making. In
state-of-the-art bimodal biometrics technology, a number
of approaches have been proposed for reliability measures,
which can be broadly classified into signal-based measures
(SIM) and score-based measures (SCM). SCMs utilize the
distribution of the model probabilities [1]–[3], and in SIM,
SNR and the voicing index are the representative parame-
ters for audio signal [4], [5] only. However, until now there
has been no SIM for the corresponding video signal in
AVSI. Thus, SCMs are generally used for AV integration,
or SIM is adopted with the assumption that video signal
is not corrupted or degraded by variation of lighting con-
ditions and camera setup between installment and testing
image collection. Therefore, measuring the visual reliability
at the signal level is an important issue in dealing with the
lighting variation in real-environment images for the robust
AVSI. This letter proposes a novel visual signal reliability
(VSR) estimation technique at the signal level formulated
by a Gaussian fuzzy membership function (GFMF). The
proposed VSR method employs lighting change indicators
that measure the global and directional lighting variations in
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visual signals. The proposed method is evaluated by per-
forming AVSI experiments with the VidTimit database [6].

2. Baseline AVSI System: Score-Based Fusion

Based on the classical Gaussian mixture model [7], we im-
plemented the classifiers of the individual modalities in par-
allel, and the late integration (LI) approach [2] is adopted for
integrating the audio and visual information. In the AVSI
system lip information is selected as visual modality. Fig-
ure 1 shows the baseline AVSI system. The main features of
the implemented system are included in Table 1. For audio-
visual fusion, we adopted the score dispersion as an SCM
approach in the baseline fusion scheme. Assuming K speak-
ers, the fusion procedure is as follows [1], [2].

a) Generate the audio and video log-likelihood scores
through individual classifiers for the input of AV fusion;
{S A

k = log P(OA | λA
k )} and {S V

k = log P(OV | λV
k )}, for k =

1, 2 · · · ,K, where OA and OV are audio and video observa-
tions, respectively, and λA

k and λV
k are the audio and video

GMMs for the k-th subject.
b) Normalize the audio and video scores based on

min-max rule, which shifts and scales the scores into the
range [0, 1]; S̃ m

k = (S m
k − S m

min)/S m
max − S m

min for m = {A,V},
where S m

min and S m
max are the minimum and maximum of S m

k ,
respectively.

Fig. 1 Implemented baseline AVSI system.

Table 1 AVSI system features.
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c) Calculate the audio and video reliability values ξA

and ξV based on the score dispersion [1], [2];

ξm =
Max S̃ m

k −Max2 S̃ m
k

Mean S̃ m
k

(1)

for m = {A,V}, where Max, Max2 and Mean are the maxi-
mum, second maximum and mean values of the normalized
scores {S̃ m

k }, respectively.
d) Calculate the weighting values, αA and αV , for audio

and video;

αm =
ξm

ξA + ξV
, for m = {A,V}. (2)

e) Calculate the integrated score using the weighting
values, αA and αV ;

S̃ AV
k = α

AS̃ A
k + α

V S̃ V
k . (3)

f) Finally, the identification process is completed by
arg maxk S̃ AV

k , where k is the speaker model index.

3. Proposed GFMF-VSR

Generally, in digital image processing, the grayscale image
is obtained from the RGB color space in the form of the
following luminance (Y) expression:

Y = 0.2989R + 0.587G + 0.114B.

Let us suppose that we have a grayscale image f (y, x)
typically termed as the intensity image, which has a 256 pos-
sible different shades of gray from black to white; where
y and x represent the spatial co-ordinates, y = 0, 1, 2, . . . ,
M − 1 and x = 0, 1, 2, . . . ,N − 1.

In a video-based speaker identification system, the
identification process uses the images’ characteristics of
each speaker including the average intensity of the faces
or lips. Therefore, in the installment stage, we can math-
ematically express the average intensity (μ) of an image as
follows:

μkl =
1

MN

∑M−1

y=0

∑N−1

x=0
f tr
kl (y, x); l = 1, 2, . . . , Lk (4)

μ̄k = E(μkl), (5)

where f tr
kl indicates the l-th training (tr) image of the k-th

speaker in the installment/training stage, μkl represents the
average intensity at the l-th image of the k-th speaker, and
Lk is the total number of k-th speaker’s utterances. μ̄k is the
average image intensity for the k-th speaker. Similarly, we
can express the average intensity of the left-half (LH) and
right-half (RH) image as:

μLH
kl =

2
MN

∑M−1

y=0

∑ N
2 −1

x=0
f tr
kl (y, x); l=1, 2, . . . , Lk (6)

μRH
kl =

2
MN

∑M−1

y=0

∑N−1

x= N
2

f tr
kl (y, x); l=1, 2, . . . , Lk (7)

μ̄LHRH
k = E(μLH

kl ) − E(μRH
kl ), (8)

where μLH
kl and μRH

kl indicate the average intensity of the
left-half and right-half images at the l-th image of the k-th
speaker, respectively, and μ̄LHRH

kl denotes the average inten-
sity difference between μLH

kl and μRH
kl of the Lk images. Sub-

sequently, for measuring the intensity difference between
the upper-half (UH) and down-half (DH) images we can
write:

μUH
kl =

2
MN

∑M−1

y= M
2

∑N−1

x=0
f tr
kl (y, x); l=1, 2, . . . , Lk (9)

μDH
kl =

2
MN

∑ M
2 −1

y=0

∑N−1

x=0
f tr
kl (y, x); l=1, 2, . . . , Lk (10)

μ̄UHDH
k =E(μUH

kl ) − E(μDH
kl ), (11)

where μUH
kl and μDH

kl indicate the average intensity of the
upper-half and down-half images at the l-th utterance of the
k-th speaker, respectively and μ̄UHDH

kl denotes the average
intensity difference between μUH

kl and μDH
kl of the Lk images.

In the same way, we can write the following expression for
an input image f te(y, x) of individual utterance at the testing
(te) stage:

μte =
1

MN

∑M−1

y=0

∑N−1

x=0
f te(y, x) (12)

μLH
te =

2
MN

∑M−1

y=0

∑ N
2 −1

x=0
f te(y, x) (13)

μRH
te =

2
MN

∑M−1

y=0

∑N−1

x= N
2

f te(y, x) (14)

μLHRH
te = μLH − μRH (15)

μUH
te =

2
MN

∑M−1

y= M
2

∑N−1

x=0
f te(y, x) (16)

μDH
te =

2
MN

∑ M
2 −1

y=0

∑N−1

x=0
f te(y, x) (17)

μUHDH
te = μUH − μDH (18)

In Eq. (12), f te indicates the input image at the testing
stage and μte represents the input image average intensity.
In Eqs. (13), (14) and (15), μLH

te and μRH
te indicate the av-

erage intensity of the left-half and right-half input image,
respectively, and μLHRH

te denotes the average intensity differ-
ence between μLH

te and μRH
te of the input image. In Eqs. (16),

(17) and (18), μUH
te and μDH

te indicate the average inten-
sity of the upper-half and down-half input image, respec-
tively, and μUHDH

te denotes the average intensity difference
between μUH

te and μDH
te of the input image.

The proposed VSR measure employs the lighting
change indicators, i.e., the global and directional lighting
variation using each set of intensity calculations noted in
the above expressions and, consequently, the VSR values
can be separately determined for each speaker. That is, the
VSR measure is formulated using GFMF as in Eq. (19).

ξVk = e
−
{

(μte−μ̄k )2

2σ2
1
+

(μLHRH
te −μ̄LHRH

k )2

2σ2
2

+
(μUHDH

te −μ̄UHDH
k )2

2σ2
3

}
, (19)

where ξVk is the visual reliability for the k-th speaker’s
model, σ1, σ2 and σ3 are the control parameters of the
GFMF-VSR measure and should be optimized for the SI
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performance maximization. According to Eq. (19), the VSR
value is not unique through the speakers. It depends on the
speaker index. Hence, the visual weighting value is deter-
mined separately for each speaker using the reliability as
follows.

αA
k =

ξA

ξA + ξVk
(20a)

αV
k =

ξVk
ξA + ξVk

(20b)

Finally, the integrated AV score is typically expressed as

S̃ (OA,OV | λk) = αA
k S̃ A

k + α
V
k S̃ V

k , (21)

To optimize the parameters of σ1, σ2 and σ3 in
Eq. (19), we need to set an object function. In this paper,
we adopt the identification rate as the target function in the
following Eq. (22) to optimize the variances.

g(σ1, σ2, σ3) =∑K
k=1

(∑Lk

l=1 δ(arg maxi(S̃ i(OAkl,OVkl | λi)), k)
)

∑K
k=1 Lk

(22)

In the above function expressed by Eq. (22), δ(i, j) is
the delta function, K is the number of the speakers, k is the
speaker index, Lk is the total number of k-th speaker’s ut-
terances, l is the utterance index. And OAkl or OVkl is the
l-th audio or visual observations of the k-th speaker, i is
the speaker model index and S̃ i is the integrated score at
given model λi for the given observations of OAkl and OVkl.
arg maxi S̃ i means the index of the speaker with the maxi-
mum score value. In Eq. (22), the integrated probability S̃ i

is the function of αA
i and αV

i , and αV
i is related to σ1, σ2

and σ3 by Eqs. (20) and (19). So, the target function de-
fined through the identification rate is controlled by σ1, σ2

and σ3. However, optimizing the object function is not a lin-
ear problem. Thus, we adopt the particle swarm optimiza-
tion (PSO) algorithm [10], which is one of the well-known
approaches for solving the nonlinear optimization problem.
The PSO procedure is as follows:
a) Initialize S particle vectors randomly;

Σ j = (σ1 j, σ2 j, σ3 j), j = 1 . . . S .

b) Calculate g(Σ j) and set the temporary best particle, ΣT B,
so that g(ΣT B) > g(Σ j) and set the global best particle,
ΣGB = ΣT B.
c) Update the particles {Σ j} according to the PSO rules [10].
d) Calculate ΣT B, and if g(ΣT B) < g(ΣGB), then ΣGB = ΣT B.
e) Until a termination criterion is met, repeat c) and d).

After finishing the PSO process, ΣGB are the optimiza-
tion parameters for maximizing Eq. (22).

4. Experiments and Results

We performed the AVSI experiments using the VidTimit
database containing 43 speakers and 10 utterances (U1∼

Fig. 2 Examples of lip image degradation due to lighting changes.
(a) original image (b) illumination change from LR (c) illumination
change from RL (d) illumination change from UD (e) illumination change
from DU.

U10) for each speaker. The lip ROI (region of interest) RGB
color pixel blocks were converted to gray scale [0, 255] im-
ages of 64×64 pixel from the lip database. The lip database
was manually created from the VidTimit video database
based on the lip center. We partitioned the database into
the following groups:

(a) DS1A: Audio U1∼U4
(b) DS1V: Video U1∼U3
(c) DS2: U5∼U7 (Audio & Video)
(d) DS3: U8∼U10 (Audio & Video)
DS1A & DS1V are used for training audio & video

GMMs, respectively. Note that in the training stage, the
data in audio and video are asynchronously selected. DS2
and DS3 are used for creating the GFMF-VSR model and
evaluating the proposed method alternately.

In order to create the global and directional lighting
variations in the installment and testing images, an artificial
illumination was added to the testing lip images in different
directions. Suppose we have a lip image w(y, x) to which
illumination will be added. Using Eq. (23), an illuminated
image F(y, x) is obtained [11], [12].

F(y, x) = w(y, x) +
−γ
D

z + γ, (23)

for y = 0, 1, 2, . . . ,M−1 and x = 0, 1, 2, . . . ,N−1,

where z is either y or x axis direction depending on the il-
lumination direction, γ controls the ‘strength’ of the artifi-
cial illumination, and D is the total length through x-axis
(N = 64) or y-axis (M = 64) of a lip image. Examples of
the ROI lip images with artificial illumination in different
directions at γ = 150 and D = 64 are shown in Fig. 2. Four
directions of the lighting variation i.e., left-to-right (LR),
right-to-left (RL), up-to-down (UD) and down-to-up (DU)
are taken into account; as a result, there were twelve test-
ing video utterances at the testing stage. To synchronize
with these visual data, we have shaped the audio utterances
accordingly.

In our experiments, the values of Lk in Eqs. (4) to (11)
are equals to three, since we have taken only three utterances
in the training stage for visual model (λV ) creation. For
the VSR measure, we have employed only the first frame
of each utterance at the training and test stages.

Table 2 shows the audio-based, lip-based and audio-
visual score-based speaker identification performances
while the testing images have illumination variations in
the visual classifier system. In the experiments AV-SCM
was implemented based on A.F. Niall’s approach [2]. As
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Table 2 Audio and video SI performance with the illumination change.

Table 3 AVSI performance with the proposed method.

shown in Table 2, the previous SCM achieved better perfor-
mance compared with the single modality-based SI systems.
Table 3 shows the AVSI performances with the proposed
VSR measure with the same experimental environments of
Table 2. In the experiments, we set the audio reliability
value as 1, as we did not add extra noises to the speech
database even though the speech signal has a high level
of distortion since the audio signal was collected in an of-
fice environment. The average AVSI rate of the proposed
method is 97.87%, which is 3.79% higher than that of the
score-based AVSI system. By adopting the VSR measure,
the relative reduction of AVSI error rate is 64.02% while the
score-based AVSI system is taken as baseline.

5. Conclusion

In this study, we proposed a VSR measure that can han-
dle video distortion due to illumination change. With the
AVSI experimental results, we confirmed that the proposed
VSR measure, for estimating the influences of illumination
change, is a promising solution in multimodal biometrics. In
the future, we will develop a VSR to measure the morpho-
logical correctness of detected lips, and we will also study

a combining method of the proposed VSR and the morpho-
logical reliability for AVSI in real environment.
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