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SUMMARY An anonymous password-authenticated key exchange
(PAKE) protocol is designed to provide both password-only authentication
and client anonymity against a semi-honest server, who honestly follows
the protocol. In INDOCRYPT2008, Yang and Zhang [26] proposed a new
anonymous PAKE (NAPAKE) protocol and its threshold (D-NAPAKE)
which they claimed to be secure against insider attacks. In this paper, we
first show that the D-NAPAKE protocol [26] is completely insecure against
insider attacks unlike their claim. Specifically, only one legitimate client
can freely impersonate any subgroup of clients (the threshold t > 1) to the
server. After giving a security model that captures insider attacks, we pro-
pose a threshold anonymous PAKE (called, TAP+) protocol which provides
security against insider attacks. Moreover, we prove that the TAP+ proto-
col has semantic security of session keys against active attacks as well as
insider attacks under the computational Diffie-Hellman problem, and pro-
vides client anonymity against a semi-honest server, who honestly follows
the protocol. Finally, several discussions are followed: 1) We also show
another threshold anonymous PAKE protocol by applying our Rationale to
the non-threshold anonymous PAKE (VEAP) protocol [23]; and 2) We give
the efficiency comparison, security consideration and implementation issue
of the TAP+ protocol.
key words: password-authenticated key exchange, passwords, on-line/off-
line dictionary attacks, anonymity, insider attacks, provable security

1. Introduction

In order to establish secure channels between parties, one of
the ways is to use an authenticated key exchange (AKE) pro-
tocol that allows the involving parties to authenticate each
other and then share an authenticated session key to be used
for subsequent cryptographic algorithms (e.g., AES-CBC or
MAC). Note that the Diffie-Hellman protocol [8] is a key
exchange that does not provide authentication at all.

Adding authentication to a (plain) key exchange pro-
tocol is crucial because it can prevent an active adversary,
who can completely control the communications, from get-
ting any useful information about the session key. In par-
ticular, human-memorable passwords (e.g., 4-digit pin-code
or alphanumerical passwords) are commonly used for au-
thentication rather than high-entropy keys because of their
convenience in use. Many password-based AKE protocols
(see [11] for the exclusive list) have been extensively investi-
gated for a long time where a client remembers a short pass-
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word and the corresponding server holds the password or its
verification data that is used to verify the client’s knowledge
of the password. However, one should be very careful about
two attacks on passwords: on-line and off-line dictionary at-
tacks. Let us take for example a simple challenge-response
password authentication protocol [21] where a client and a
server share a password pw. In the protocol, the server
sends a challenge c to the client, who computes a response
r = H(c, pw) and sends back r to the server where H is
a hash function. After receiving r, the server authenticates
the client if the received r is equal to its own computation
H(c, pw). The on-line dictionary attacks are performed by
an adversary who impersonates one party (i.e., the client in
the above example) so that the adversary can sieve out possi-
ble password candidates one by one. On the other hand, the
off-line dictionary attacks are performed off-line and in par-
allel where an adversary exhaustively enumerates all pos-
sible password candidates, in an attempt to determine the
correct one, by simply guessing a password and verifying
that with additional information. In the above example, an
adversary can find out the correct password pw with off-
line dictionary attacks by trying all password candidates pw′
until it satisfies r = H(c, pw′). While on-line attacks are
applicable to all of the password-based protocols equally,
they can be prevented by having a server take appropriate
countermeasures (e.g., lock-up accounts for 10 minutes af-
ter 3 consecutive failures of passwords). But, we cannot
avoid off-line attacks by such countermeasures mainly be-
cause these attacks can be done off-line and independently
of the party.

1.1 Anonymous Password-Authenticated Key Exchange
and Its Threshold Version

Quite interestingly, it is not trivial at all to design a se-
cure password-based AKE protocol against off-line dictio-
nary attacks where a client remembers his/her password
only and the counterpart server has password verification
data. This problem is first discussed in [2] by Bellovin
and Merritt, who have also proposed several password-only
AKE (called, Encrypted Key Exchange) protocols. Though
some protocols turned out to be insecure, their main idea [2]
deserves to be reconsidered that by correctly combining
symmetric and asymmetric cryptographic techniques we can
prevent an adversary from verifying a guessed password
(i.e., doing off-line dictionary attacks). Since then, their
Encrypted Key Exchange protocols have formed the ba-
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Table 1 Previous anonymous PAKE and threshold anonymous PAKE protocols where t is the thresh-
old.

References Anonymous PAKE (t = 1) Threshold Anonymous PAKE (t > 1)

[25] APAKE t-out-of-n APAKE
(insecure against active attacks)

[22] TAP (t = 1) TAP (t > 1)
(secure against active attacks)

(insecure against insider attacks)
[26] NAPAKE D-NAPAKE

(claimed to be secure against insider attacks)
[23] VEAP −

(the most efficient)

Table 2 Summary of our works where t is the threshold.

Anonymous PAKE (t = 1) Threshold Anonymous PAKE (t > 1)

Our Works − D-NAPAKE
(insecure against insider attacks [Section 2.2])

Formal model and definition [Section 3.1]
TAP+ [Section 4]

(secure against active and insider attacks)
ThresholdVEAP [Section 5.1] obtained by applying our Rationale to VEAP [23]

(secure against active and insider attacks)

sis for what we call Password-Authenticated Key Exchange
(PAKE) protocols. Such protocols [10] have been in stan-
dardization of IEEE P1363.2.

In PAKE protocols, a client should send his/her iden-
tity clearly in order to mutually authenticate with a server
and share a secret that may be the Diffie-Hellman key to
be used for generating authenticators and a session key.
Let us suppose an adversary who fully controls the net-
works. Though the adversary cannot impersonate any party
in PAKE protocols with non-negligible probability, it is easy
to collect a client’s personal information about the commu-
nication history itself (e.g., history of access to ftp servers,
web-mail servers, Internet banking servers or shopping mall
servers). This information may reflect the client’s life pat-
tern and sometimes can be used for spam mails. For this
problem, Viet et al., [25] proposed an anonymous PAKE
(APAKE) protocol and its threshold construction† (t-out-
of-n APAKE) both of which simply combine a PAKE pro-
tocol [1] for generating secure channels with an Oblivious
Transfer (OT) protocol [7], [24] for client’s anonymity. The
client anonymity is guaranteed against an outside adversary
as well as a passive server, who follows the protocol hon-
estly but it is curious about identity of the client involved
with the protocol. In [22], Shin et al., pointed out that the
t-out-of-n APAKE protocol [25] is insecure against an out-
side adversary (i.e., doing off-line dictionary attacks). Also,
they proposed an anonymous PAKE (TAP (t = 1)) protocol
and its threshold (TAP (t > 1)) which are only based on the
PAKE protocol [1], and showed that their protocols are se-
cure against an outside adversary. In [26], Yang and Zhang
first showed that the TAP (t > 1) protocol is insecure against
an inside adversary and then proposed a new anonymous
PAKE (NAPAKE) protocol and its threshold (D-NAPAKE).
Their protocols are based on a different PAKE protocol
(called, SPEKE [12]–[14]). Recently, Shin et al., [23] pro-
posed an anonymous PAKE (VEAP) protocol that provides

the most efficiency in terms of computation and communi-
cation costs. Unlike the previous ones, the VEAP protocol
is constructed from the blind signature scheme [3], [5]. We
summarized the previous works in Table 1.

As a possible application of the (threshold) anonymous
PAKE protocols, one can think of the server’s public bulletin
board on which a message can be posted in an anonymously-
authenticated way. After running the (threshold) anonymous
PAKE protocols, any subgroup member can post his/her
messages securely and anonymously, and also post other’s
messages because all the subgroup members share the same
session key with the server (in the case of threshold anony-
mous PAKE).

1.2 Our Contributions

The contributions of this paper are as follows (and summa-
rized in Table 2):

• After analyzing the D-NAPAKE protocol [26], we
show that it is insecure against insider attacks unlike
their claim. Specifically, only one legitimate client can
freely impersonate any subgroup of clients (the thresh-
old t > 1) to the server.

• In order to capture insider attacks in threshold anony-
mous PAKE protocols, we give a formal model where
an adversary can control less than the threshold num-
ber of clients by invoking the Register-query. Also, we

†In the threshold construction, the “threshold” number of
clients (i.e., a subgroup of the whole clients’ group) should collab-
orate with one another in order to be authenticated by the server. In
a different context, MacKenzie et al., [15], [17] proposed a thresh-
old PAKE protocol where the “threshold” number of servers col-
laborate with one another to resist against compromise of the pass-
word verification data. However, such collaborations in the former
(resp., latter) protocol require secure channels among the involved
clients (resp., servers).
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propose a threshold anonymous PAKE (called, TAP+)
protocol that provides security against insider attacks.
Moreover, we prove that the TAP+ protocol is AKE-
secure (semantic security of session keys) against ac-
tive attacks as well as insider attacks under the compu-
tational Diffie-Hellman problem in the random oracle
model, and provides client anonymity against a semi-
honest server, who honestly follows the protocol.

• Finally, several discussions are entailed: 1) We also
show another threshold anonymous PAKE protocol by
applying our Rationale to the (non-threshold) anony-
mous PAKE (VEAP) protocol [23]; and 2) We give the
efficiency comparison, security consideration and im-
plementation issue of the TAP+ protocol.

1.3 Organization

This paper is organized as follows. In the next section,
we point out that the D-NAPAKE protocol [26] is insecure
against insider attacks. In Sect. 3, we give a formal model
and security definitions for threshold anonymous PAKE pro-
tocols. In Sect. 4, we propose a threshold anonymous PAKE
(called, TAP+) protocol that provides security against in-
sider attacks with its security proof. We give several discus-
sions related to the threshold anonymous PAKE protocols in
Sect. 5. Finally, we conclude this paper in Sect. 6.

1.4 Notation

In this subsection, we explain some notation to be used
throughout this paper (except Sect. 2). Let Gp be a finite,
cyclic group of prime order p and g be a generator of Gp,
where the operation is denoted multiplicatively. Let h be an-
other generator of Gp such that its discrete logarithm prob-
lem with g (i.e., computing b = logg h) should be hard.
This parameter (Gp, p, g, h) is public to everyone. In the
aftermath, all the subsequent arithmetic operations are per-
formed in modulo p unless otherwise stated.

Let lk be the security parameter for hash functions (i.e.,
the size of the hashed value). Let {0, 1}∗ be the set of fi-
nite binary strings and {0, 1}lk be the set of binary strings
of length lk. Let “‖” be the concatenation of bit strings in
{0, 1}�. Let “

⊕
” be the exclusive-OR (XOR) operation of

bit strings. If D is a set, then d
R← D indicates the process

of selecting d at random and uniformly over D. If D is a
function (whatever it is), then d ← D indicates the process
of assigning the result to d. We denote by G,G1,G2 full-
domain hash (FDH) functions where G : {0, 1}� → Z�p and
G1,G2 : {0, 1}� → Gp, respectively. The other hash func-
tions are denoted Hk : {0, 1}� → {0, 1}lk , for k = 1, 2, 3, 4.
Let C = {C1,C2, · · · ,Cn} and S be the identities of a group
of n clients and server, respectively, with each ID ∈ {0, 1}�.

2. Insider Attacks on Previous Threshold Anonymous
PAKE Protocol

As explained in the Introduction, a threshold anonymous

PAKE protocol allows only the threshold number of clients
to authenticate with the corresponding server anonymously.
In this section, we show that the D-NAPAKE protocol [26]
is not secure against an insider attack where only one legit-
imate client can freely impersonate any subgroup of clients
to the server. In other words, the D-NAPAKE protocol is
NOT a threshold anonymous PAKE protocol unlike their
claim [26].

2.1 The D-NAPAKE Protocol

First, we describe the D-NAPAKE protocol [26] that is de-
signed for any subgroup of clients (denoted by S G) to au-
thenticate with the server (denoted by S ) anonymously. The
main idea of the D-NAPAKE protocol is that each client
belonging to the subgroup and the server share a Diffie-
Hellman-like key, by using the SPEKE protocol [12]–[14],
and then the subgroup and the server run a sequential Diffie-
Hellman protocol, partly-masked with each key, in a thresh-
old secret sharing manner [18]. For the visual description,
see Fig. 1.

Let G = 〈g〉 be a finite, cyclic group of prime order q,
and g be a generator. Let G : {0, 1}∗ → G be a full-domain
hash function, andH0,H1 : {0, 1}∗ → {0, 1}l be two random
hash functions where l is the security parameter. Let pwi be
a password shared between the client Ci (∈ Γ) and the server
S , and PWi = G(i, pwi). The subgroup S G and the server S
agree on the client group Γ = {C1, · · · ,Cn} in advance.

1. The server S chooses a random number rS
R← Z�q and,

for all n clients in Γ, generates Aj = PWrS

j where
1 ≤ j ≤ n. Then, server S sends (S , {Aj}1≤ j≤n) to the
subgroup S G.

2. The subgroup S G ⊂ Γ (|S G| = t) checks that all the
values in {Aj}1≤ j≤n are different from one another. If
not, subgroup S G aborts the protocol. Otherwise, each
client Ci ∈ S G picks Ai= j from {Aj}1≤ j≤n and chooses

two random numbers (ri, xi)
R← Z�q . Then, each client

Ci ∈ S G computes Xi = gxi , Zi = Ari
i , Bi1 = Zi · Xi and

Bi2 = PWri
i . The subgroup S G sends (t, {Bi1, Bi2}1≤i≤t)

to server S where t (t ≥ 2) is the threshold.

3. The server S chooses a random number y
R← Z

�
q

and computes Y ≡ gy. For j (1 ≤ j ≤ t), server
S generates a share y j of y, by using Shamir’s se-
cret sharing scheme [18] over Z�q , and computes Z′j =
BrS

j2, X′j = Bj1/Z′j and Kj = (X′j)
y j . Also, server

S generates an authenticator AuthS = H1(Trans||Y)
and a session key sk = H0(Trans||Y) where
Trans = Γ||S ||{Aj}1≤ j≤n||t||{Bi1, Bi2}1≤i≤t ||{Kj}1≤ j≤t. Fi-
nally, server S sends ({Kj}1≤ j≤t, AuthS ) to subgroup
S G.

4. Each client Ci ∈ S G computes Y ′i = K1/xi

i . Then, the
subgroup S G recovers Y ′ from t Y ′i values by Lagrange
interpolation. The subgroup S G checks whether AuthS

is equal to H1(Trans||Y ′). If not, subgroup S G aborts
the protocol. Otherwise, subgroup S G computes a ses-
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Fig. 1 The D-NAPAKE protocol [26] where the threshold (i.e., the number of clients belonging to
S G) t ≥ 2 and Trans = Γ||S ||{A j}1≤ j≤n ||t||{Bi1, Bi2}1≤i≤t ||{K j}1≤ j≤t .

sion key sk = H0(Trans||Y ′) and accepts it.

2.2 The Attack

Now, we are ready to show an attack on the D-NAPAKE
protocol [26]. W.l.o.g., we assume that a legitimate client
Cl ∈ Γ, who is sharing his/her password pwl (and thus
PWl = G(l, pwl)) with server S , is trying to impersonate
any subgroup S G (t ≥ 2) of clients to server S . Note that
Yang and Zhang [26] proposed the D-NAPAKE protocol as
a threshold anonymous PAKE protocol so that the threshold
(t ≥ 2) number of clients should participate in the protocol.

1. This is the same as step 1 of Sect. 2.1.
2. After receiving (S , {Aj}1≤ j≤n) from server S , the client

Cl ∈ Γ picks Al= j from {Aj}1≤ j≤n and chooses 2t random

numbers {(ri, xi)}1≤i≤t
R← Z�q . For i (1 ≤ i ≤ t), client

Cl computes Xi = gxi , Zi = Ari

l , Bi1 = Zi · Xi and Bi2 =

PWri

l . The client Cl sends (t, {Bi1, Bi2}1≤i≤t) to server S
where t (t ≥ 2) is the threshold.

3. This is the same as step 3 of Sect. 2.1.
4. After receiving ({Kj}1≤ j≤t, AuthS ) from server S , the

client Cl ∈ Γ computes Y ′i = K1/xi

i for i (1 ≤ i ≤ t).
Then, client Cl recovers Y ′ from t Y ′i values by La-
grange interpolation. Finally, the client Cl shares a ses-
sion key sk = H0(Trans||Y ′) with the server S because
Y ′ = Y .

Correctness of the attack. It is enough to show that Kj =

(gxi )y j for i = j:

Kj = (X′j)
y j =

⎛⎜⎜⎜⎜⎜⎝Bj1

Z′j

⎞⎟⎟⎟⎟⎟⎠
y j

=

⎛⎜⎜⎜⎜⎜⎝Bj1

BrS

j2

⎞⎟⎟⎟⎟⎟⎠
y j

=

(
Zi · Xi

(PWri

l )rS

)y j

=

(
Ari

l · gxi

(PWri

l )rS

)y j

=

(
(PWrS

l )ri · gxi

(PWri

l )rS

)y j

= (gxi )y j . (1)

The problem of the D-NAPAKE protocol resides in the fact
that all the Diffie-Hellman-like keys PWrS ri

l , computed from
the SPEKE protocol [12]–[14], are determined by one el-
ement rS and thus can be used to (de-)mask the sequential
Diffie-Hellman protocol for t shares of Y (i.e., gyj ). One may
think of a simple fix to this attack by having server S choose
n different random elements rS j, for j (1 ≤ j ≤ n), instead
of rS in step 1 of Sect. 2.1. In that case, the D-NAPAKE
protocol should be changed significantly and carefully be-
cause the server S has to know which element rS j is used
with which pair {Bi1, Bi2}. Also, this simple fix makes the
D-NAPAKE protocol inefficient and does not guarantee se-
curity against any other insider attacks.

3. Formal Model

In this section, we give a formal model (based on [23]) and
security definitions for threshold anonymous PAKE proto-
cols. The model described below actually captures insider
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attacks by allowing an adversary to control less than the
threshold number of clients.

3.1 Model

In a threshold anonymous PAKE protocol P, there are t + 1
parties S G (⊂ C = {C1,C2, · · · ,Cn} and |S G| = t) and S
where a pair of client Ci and server S share a low-entropy
password pwi, chosen from a small dictionary Dpassword, for
i (1 ≤ i ≤ n). We fix the cardinality of Dpassword to N.
Each of S G and S may have several instances, called oracles
involved in distinct, possibly concurrent, executions of P.
We denote S G (resp., S ) instances by S Gμ (resp., S ν) where
μ, ν ∈ N, or by I in case of any instance. During the protocol
execution, an adversaryA has the entire control of networks
(and some clients) which can be represented by allowingA
to ask several queries to oracles. Let us show the capability
of adversaryA each query captures:

• Execute(S Gμ, S ν): This query models passive attacks,
where the adversary gets access to honest executions of
P between the instances S Gμ and S ν by eavesdropping.

• Send(I,m): This query models active attacks by hav-
ing A send a message m to an instance I. The ad-
versary A gets back the response I generates in pro-
cessing m according to the protocol P. A query
Send(S Gμ, Start) initializes the protocol, and then
the adversary receives the first message.

• Reveal(I): This query handles misuse of the session
key [9] by any instance I. The query is only available
to A, if the instance actually holds a session key, and
at that case the key is released toA.

• Register(Ci, pwi): This query handles insider attacks
by havingA register a client Ci to server S with a pass-
word pwi (i.e., Ci ∈ C). That means Ci is completely
controlled byA.

• Test(I): This query does not model any attacks, but it is
used to define the AKE security (see Definition 2). The
Test-query can be asked at most once by the adversary
A and is only available to A if the instance I is fresh
(see below). This query is answered as follows: one
flips a private coin b ∈ {0, 1}, and forwards the corre-
sponding session key S K (Reveal(I) would output), if
b = 1, or a random value with the same size except the
session key, if b = 0.

Definition 1: (Freshness) Let I′ be a partnered instance of
I†. We say that an instance I is fresh if the following con-
ditions hold: (1) the instance has computed and accepted
a session key; (2) no Reveal-query has been asked by A to
the instance I and its partner instance I′; (3) Register(Ci, �)-
query has been asked byA at most up to t− 1 times, for any
i, where t is the threshold of the target instance I; and (4) no
Execute-query has been asked byA if there is any Ci ∈ S G,
registered by Register(Ci, �)-query.

Note that the above freshness definition avoids trivial at-
tacks, for example, by invoking Register(Ci, �)-query t

times or by invoking Execute-query with any Ci ∈ S G (reg-
istered by Register(Ci, �)-query).

3.2 Security Definitions

The adversary A is provided with random coin tosses and
some oracles, and then is allowed to invoke any number of
queries as described above, in any order. The aim of the
adversary is to break the privacy of the session key in the
context of executing P. The AKE security is defined by the
game Gameake(A, P) where the ultimate goal of the adver-
sary is to guess the bit b, involved in the Test-query, by out-
putting this guess b′. We denote the AKE advantage, by
Advake

P (A) = 2 Pr[b = b′] − 1, as the probability that A can
correctly guess the value of b. Formally,

Definition 2: (AKE Security) A protocol P is said to be
AKE secure if, when adversary A asks qsend queries to
Send oracle and passwords are chosen from a dictionary
of size N, the adversary’s advantage Advake

P (A) = 2 Pr[b =
b′] − 1 in attacking the protocol P is upper-bounded by

O(qsend/N) + ε(·), (2)

for some negligible function ε(·) in the security parameter.
The first term represents the fact that the adversary can do
no better than guess a password during each query to Send
oracle.

As in [22], [23], [25], we consider a semi-honest server
S , who honestly follows the protocol P, but it is curious
about the involved clients’ identities. The client anonymity
is defined by the probability distribution of messages in P.

Definition 3: (Anonymity) Let P(S G, S ) (resp., P(S̃ G, S ))
be the transcript of P between S G (resp., S̃ G) and S . We can
say that the protocol P provides client anonymity if, for any
two subgroups S G and S̃ G,

Dist[P(S G, S )] = Dist[P(S̃ G, S )] (3)

where Dist[c] denotes c’s probability distribution.

This security definition means that the server S gets no in-
formation about the clients’ identities (in S G) by just ob-
serving the protocol transcripts.

4. A Threshold Anonymous PAKE Protocol Secure
against Insider Attacks

In this section, we propose a threshold anonymous PAKE
(called, TAP+) protocol that provides security against insider
attacks. We also show that the TAP+ protocol guarantees
not only AKE security against active attacks as well as in-
sider attacks but also client anonymity against a semi-honest
server, who honestly follows the protocol.

†Please, refer to Sect. 3 of [4] for the partnering definition.
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Fig. 2 A threshold anonymous PAKE (TAP+) protocol secure against insider attacks where the thresh-
old t > 1 and trans = t‖{X∗i }1≤i≤n‖Y‖{Z j,V j}1≤ j≤n.

4.1 The TAP+ Protocol

In the TAP+ protocol, client group C consists of n clients
Ci (1 ≤ i ≤ n). For simplicity, we assign the clients con-
secutive integer i (1 ≤ i ≤ n) so that Ci can be regarded as
the i-th client of C = {C1,C2, · · · ,Cn}. Here, we assume that
each client Ci of the group C has registered his/her password
pwi to server S and the latter stores the password verification
data Wi, for 1 ≤ i ≤ n, where Wi ≡ hwi and wi ← G(i, pwi).
We also assume that each client Ci in the subgroup S G is
connected with the others via pairwise secure channels. In
the TAP+ protocol, any subgroup S G composed of at least
t (t > 1) clients wants to share an authenticated session key
with server S anonymously (see Fig. 2). Below are descrip-
tions of the TAP+ protocol.

Step 1

1.1 Each Ci ∈ S G: Each client Ci, who belongs to the
subgroup S G, chooses a random number xi from
Z
�
p and computes the Diffie-Hellman public value

Xi ≡ gxi . The client Ci also computes the pass-
word verification data Wi ≡ hwi where wi ←
G(i, pwi), and (i, pwi) are the index and the pass-
word of Ci, respectively. The Wi is used to mask
Xi so that its resultant value X∗i can be obtained in
a way of X∗i ≡ Xi × Wi. The exponent xi is kept
secret by client Ci.

1.2 Subgroup S G: By collaborating with one another,

subgroup S G chooses X∗j
R← Gp for each client

C j (1 ≤ j � i ≤ n), who belongs to the group C
but not to the subgroup S G. Then, the subgroup
sends the threshold t and {X∗i }1≤i≤n, to the server,
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together with the group C of all clients’ identities.

Step 2

2.1 The server S chooses two random numbers (y, s)

from
(
Z
�
p

)2
and computes its Diffie-Hellman pub-

lic value Y ≡ gy. The secret s is distributed
as shares by using Shamir’s (t, n) secret sharing
scheme [18]. Specifically, server S generates the
respective share f ( j), for all clients, from a poly-
nomial f (x) ≡ ∑t−1

k=0 uk · xk with u0 = s and coef-
ficients uk (1 ≤ k ≤ t − 1) randomly chosen from
Z
�
p .

2.2 For the received X∗j (1 ≤ j ≤ n), server S com-
putes Xj ≡ X∗j/Wj and the Diffie-Hellman key

Kj ≡
(
Xj

)y
. The Zj is derived from XOR-

ing gs j and the hashed output of G2: Zj ←
G2(X∗j ,Y,Kj,Wj)

⊕
gs j where s j ← f ( j). For

each client C j, an authenticator Vj is generated
as follows: Vj ← H1(C j‖X∗j ‖Y‖Zj‖Kj‖Wj).

2.3 Also, server S generates an authenticator VS ←
H2(C‖S ‖t‖{X∗i }1≤i≤n‖Y‖{Zj,Vj}1≤ j≤n‖gs) for sub-
group S G. Then, the server sends its identity S ,
the Diffie-Hellman public value Y , {Zj,Vj}1≤ j≤n

and the authenticator VS to subgroup S G.

Step 3

3.1 Each Ci ∈ S G: Each client Ci, who belongs to the
subgroup S G, first looks for the pair {Zj=i,Vj=i}
and computes the Diffie-Hellman key Ki with xi:
Ki ≡ Y xi . If the received Vi is not valid (i.e., Vi �
H1(Ci‖X∗i ‖Y‖Zi‖Ki‖Wi)), client Ci terminates the
protocol (and deletes all temporal secrets as well).
Otherwise, the client extracts gsi from Zi in an ob-
vious way (i.e., gsi = Zi

⊕G2(X∗i ,Y,Ki,Wi)), and
then outputs gsi for the subgroup S G.

3.2 Subgroup S G: By collaborating with one an-

other, subgroup S G reconstructs gs′ from the
t shares gsi by Lagrange interpolation: gs′ ≡
g
∑t

k=1 λk ·sk where λk ≡ ∏
1≤m≤t,m�k

m
m−k mod

p. If the received VS is not valid (i.e.,
VS � H2(C‖S ‖t‖{X∗i }1≤i≤n‖Y‖{Zj,Vj}1≤ j≤n‖gs′ )),
the subgroup terminates the protocol. Other-
wise, subgroup S G generates an authenticator
VC ← H3(C‖S ‖t‖{X∗i }1≤i≤n‖Y‖{Zj,Vj}1≤ j≤n‖gs′ )
and its session key S K ← H4(C‖S ‖t‖{X∗i }1≤i≤n

‖Y‖{Zj,Vj}1≤ j≤n‖gs′ ). The authenticator VC is sent
to server S .

Step 4

4.1 If the received VC is not valid (i.e., VC �
H3(C‖S ‖t‖{X∗i }1≤i≤n‖Y‖{Zj,Vj}1≤ j≤n‖gs)), server
S terminates the protocol (and deletes
all temporal secrets as well). Otherwise,
the server generates a session key S K ←
H4(C‖S ‖t‖{X∗i }1≤i≤n‖Y‖{Zj,Vj}1≤ j≤n‖gs).

Instead of collaborating with one another, one client in the
subgroup S G can choose (n − t) X∗j in Step 1.2 and recon-

struct gs′ by collecting (t − 1) shares gsi from the others in
Step 3.2. The reconstructed gs′ is, of course, shared among
the involving clients Ci ∈ S G.

Rationale. To be secure against active attacks as well as in-
sider attacks, main rationale behind the TAP+ protocol is as
follows: 1) In Step 1, subgroup S G prepares all necessary
values for n clients. In fact, only t masked values X∗i are
computed by the involving clients Ci ∈ S G, and each X∗i
is indistinguishable from a randomly chosen X∗j . It is im-
portant in order to provide client anonymity against a semi-
honest server; 2) In Step 2.1 and 2.2, server S distributes the
secret gs by Shamir’s secret sharing scheme so that n shares
gs j are obtained. For 1 ≤ j ≤ n, the server de-masks the re-
ceived X∗j and computes the corresponding Diffie-Hellman
key Kj that is used to transport each share gs j . Obviously,
distributing and recovering the secret gs in Step 2.1 and Step
3.2, respectively, are the threshold part for the TAP+ pro-
tocol. In particular, recovering gs in Step 3.2 guarantees
security against active attacks because it happens with neg-
ligible probability for an adversary (excepting probability of
on-line dictionary attacks on the specific clients†); and 3) In
order to prevent insider attacks, each client Ci should not re-
veal any useful information on the password pwi. That is the
reason why server S computes the authenticator Vj for each
client C j in Step 2.2 and the other one VS for subgroup S G
in Step 2.3, respectively. If Vj=i is invalid, client Ci termi-
nates the protocol. This only allows for inside adversaries
to do on-line dictionary attacks (inevitable in the password-
only setting)††.

4.2 Security

In this subsection, we explain the computational Diffie-
Hellman (CDH) problem and then show that, under the
CDH problem, the TAP+ protocol of Sect. 4.1 is provably
secure in the random oracle model [6].

4.2.1 Computational Assumption

Here, we explain the computational Diffie-Hellman (CDH)
problem the TAP+ protocol is based on.

Definition 4: (CDH Problem) Let Gp = 〈g〉 be a finite
cyclic group of prime order p with g as a generator. A
(t1, ε1)-CDHg,Gp attacker is a probabilistic polynomial time
(PPT) machine B, running in time t1, such that its success
probability Succcdh

g,Gp
(B), given random elements gx and gy to

output gxy, is greater than ε1. We denote by Succcdh
g,Gp

(t1) the

†Note that a guessed password pw′i can only be tested with the
client index i.
††Of course, one can take a general countermeasure to on-line

dictionary attacks, for example, by making each party to hold one
minute after 3 failed trials of passwords (see Sect. 5.3 for more
detailed discussion).



2102
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.11 NOVEMBER 2011

Fig. 3 Simulation abstraction of Theorem 1.

maximal success probability over every adversaries, running
within time t1. The CDH problem states that Succcdh

g,Gp
(t1) ≤

ε1 for any t1/ε1 not too large.

4.2.2 Security Proof

In this subsection, we prove that the TAP+ protocol is
AKE-secure under the CDH problem in the random ora-
cle model [6] and provides unconditional client anonymity
against a semi-honest server.

Theorem 1: Let P be the TAP+ protocol of Fig. 2 where
passwords are independently chosen from a dictionary of
size N and n is the number of clients. For any adversary
A within a polynomial time t, with less than qsend active
interactions with the parties (Send-queries), qexecute pas-
sive eavesdroppings (Execute-queries) and asking qhashG,
qhashG2 and qhashH hash queries to G, G2 and any Hk, for
k = 1, 2, 3, 4, respectively,

Advake
P (A) ≤ 2(qsendSG + nqsendS)

N
+ 6q2

hashG2 × Succcdh
g,Gp

(t1 + 3τe)

+
4nqsendS + 2qhashH2 + 2Q2

|Gp|

+
qsendSG

2l1+l2−1
+

qsendS

2l3−1
+

q2
hashH

2l
(4)

where (1) qsendSG (resp., qsendS) is the number of Send-
queries to S G (resp., S ) instance, (2) Q = qexecute + qsend +

qhashG + qhashG2, (3) l is the security parameter for the hash
functions, (4) l1, l2 and l3 are the output sizes of hash func-
tion H1, H2 and H3, respectively, and (5) τe denotes the
computational time for an exponentiation in Gp.

This theorem shows that the TAP+ protocol is secure against
off-line dictionary attacks since the advantage of the ad-
versary essentially grows with the ratio of interactions and

number of clients to the number of passwords. As it is clear,
we have a security loss of factor n in the first term of the
security result. The main reason for this loss is that we have
to avoid off-line dictionary attacks against an adversary who
can corrupt up to (t−1) clients in the subgroup S G (|S G| = t)
by invoking the Register-queries. In Fig. 3, we depict the
simulation abstraction of Theorem 1 where at least one un-
corrupted client Ci exists in the subgroup S G and all mes-
sage exchanges are completely controlled by adversary A.
We leave the complete proof of Theorem 1 in Appendix.

Theorem 2: The TAP+ protocol provides unconditional
client anonymity against a semi-honest server.

Proof. Consider server S who honestly follows the TAP+

protocol, but it is curious about clients’ identities (in S G)
involved with the protocol. It is obvious that server S can-
not get any information about the clients’ identities of S G
since, for each i (1 ≤ i ≤ n), the X∗i has a unique discrete
logarithm of g and, with the randomly-chosen number xi, it
is the uniform distribution over Gp. This also implies that
the server cannot distinguish X∗i (of Ci ∈ S G) from X∗j (of
C j ∈ C\S G) since they are completely independent each
other. Note that the subgroup’s authenticator VC does not
reveal any information about the clients’ identities from the
fact that the probability, for any subgroup S G and S̃ G con-
sisting of t or more than t clients, to get the secret gs′ is
equal. Therefore, Dist[P(S G, S )] = Dist[P(S̃ G, S )] for any
two subgroups S G and S̃ G where (S G, S̃ G) ⊂ C. �

5. Several Discussions

In this section, we give several discussions related to the
threshold anonymous PAKE (including TAP+) protocols.

5.1 Another Threshold Anonymous PAKE Protocol from
VEAP

As a natural extension, we show another threshold anony-
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Fig. 4 Another threshold anonymous PAKE (ThresholdVEAP) protocol secure against insider attacks
where the threshold t > 1 and trans = t‖{A∗i }1≤i≤n‖X‖{Bj,Z j,V j}1≤ j≤n.

mous PAKE (called, ThresholdVEAP) protocol that is se-
cure against insider attacks. The ThresholdVEAP proto-
col is directly constructed by applying our Rationale of
Sect. 4.1 to the (non-threshold) anonymous PAKE (VEAP)
protocol [23]. Remember that the VEAP protocol is the
most efficient among their kinds in terms of computation
and communication costs.

Like the TAP+ protocol of Sect. 4.1, client group C con-
sists of n clients Ci (1 ≤ i ≤ n). For simplicity, we as-
sign the clients consecutive integer i (1 ≤ i ≤ n) so that Ci

can be regarded as the i-th client of C = {C1,C2, · · · ,Cn}.
Here, we assume that each client Ci of the group C has
registered his/her password pwi to server S and the latter
stores the password verification data Wi, for 1 ≤ i ≤ n,
where Wi = G1(i, pwi). In the ThresholdVEAP protocol,
any subgroup S G composed of at least t (t > 1) clients wants
to share an authenticated session key with server S anony-
mously (see Fig. 4). Below are descriptions of the Thresh-

oldVEAP protocol.

Step 0 [Pre-computation of server S ]

0.1 At first, server S chooses two random numbers

(x, s) from
(
Z
�
p

)2
and computes its Diffie-Hellman

public value X ≡ gx. For j (1 ≤ j ≤ n), the server
computes the corresponding key Kj ≡

(
Wj

)x
to

client C j.

Step 1

1.1 Each Ci ∈ S G: Each client Ci, who belongs to the
subgroup S G, chooses a random number ai from
Z
�
p and computes the Diffie-Hellman public value

Ai ≡ gai . The client Ci also computes the pass-
word verification data Wi ← G1(i, pwi), and
(i, pwi) are the index and the password of Ci, re-
spectively. The Wi is used to mask Ai so that its
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resultant value A∗i can be obtained in a way of
A∗i ≡ Ai × Wi. The exponent ai is kept secret by
client Ci.

1.2 Subgroup S G: By collaborating with one another,

subgroup S G chooses A∗j
R← Gp for each client

C j (1 ≤ j � i ≤ n), who belongs to the group C
but not to the subgroup S G. Then, the subgroup
sends the threshold t and {A∗i }1≤i≤n, to the server,
together with the group C of all clients’ identities.

Step 2

2.1 The server S distributes the secret s as shares by
using Shamir’s (t, n) secret sharing scheme [18].
Specifically, server S generates the respective
share f ( j), for all clients, from a polynomial
f (x) ≡ ∑t−1

k=0 uk · xk with u0 = s and coefficients
uk (1 ≤ k ≤ t − 1) randomly chosen from Z�p .

2.2 For the received A∗j (1 ≤ j ≤ n), server S com-

putes Bj ≡
(
A∗j

)x
and Zj. The Zj is derived

from XORing gs j and the hashed output of G2:
Zj ← G2(A∗j , X, Bj,Kj)

⊕
gs j where s j ← f ( j).

For each client C j, an authenticator Vj is gener-
ated as follows: Vj ← H1(C j‖A∗j‖X‖Bj‖Zj‖Kj).

2.3 Also, server S generates an authenticator VS

← H2(C‖S ‖t‖{A∗i }1≤i≤n‖X‖{Bj,Zj,Vj}1≤ j≤n‖gs)
for subgroup S G. Then, the server sends its
identity S , the Diffie-Hellman public value X,
{Bj,Zj,Vj}1≤ j≤n and the authenticator VS to sub-
group S G.

Step 3

3.1 Each Ci ∈ S G: Each client Ci, who belongs to
the subgroup S G, first looks for the triplet
{Bj=i,Zj=i,Vj=i} and computes the key Ki with
ai: Ki ≡ Bi/Xai . If the received Vi is not
valid (i.e., Vi � H1(Ci‖A∗i ‖X‖Bi‖Zi‖Ki)), client
Ci terminates the protocol (and deletes all tem-
poral secrets as well). Otherwise, the client ex-
tracts gsi from Zi in an obvious way (i.e., gsi =

Zi

⊕G2(A∗i , X, Bi,Ki)), and then outputs gsi for
the subgroup S G.

3.2 Subgroup S G: By collaborating with one an-

other, subgroup S G reconstructs gs′ from the
t shares gsi by Lagrange interpolation: gs′ ≡
g
∑t

k=1 λk ·sk where λk ≡ ∏
1≤m≤t,m�k

m
m−k mod

p. If the received VS is not valid (i.e.,
VS � H2(C‖S ‖t‖{A∗i }1≤i≤n‖X‖{Bj,Zj,Vj}1≤ j≤n‖
gs′ )), the subgroup terminates the protocol. Oth-
erwise, subgroup S G generates an authenticator
VC ← H3(C‖S ‖t‖{A∗i }1≤i≤n‖X‖{Bj,Zj,Vj}1≤ j≤n‖gs′ )
and its session key S K←H4(C‖S ‖t‖{A∗i }1≤i≤n‖X‖
{Bj,Zj,Vj}1≤ j≤n‖gs′ ). The authenticator VC is sent
to server S .

Step 4

4.1 If the received VC is not valid (i.e.,

VC�H3(C‖S ‖t‖{A∗i }1≤i≤n‖X‖{Bj,Zj,Vj}1≤ j≤n‖gs)),
server S terminates the protocol (and deletes
all temporal secrets as well). Otherwise,
the server generates a session key S K ←
H4(C‖S ‖t‖{A∗i }1≤i≤n‖X‖{Bj,Zj,Vj}1≤ j≤n‖gs).

Though the ThresholdVEAP protocol is based on the
most efficient anonymous PAKE (VEAP) protocol [23], it
does not have advantages in terms of server’s computation
costs (without pre-computation) and communication costs
over the TAP+ protocol of Sect. 4.1. See the next subsection,
for more detailed comparison.

Note that the ThresholdVEAP and TAP+ protocols
are similar because they follow the same Rationale in
Sect. 4.1. However, the actual constructions (including their
efficiency) of ThresholdVEAP and TAP+ are different since
the former’s core primitive is the PAKE protocol [1] and the
latter’s is the blind signature scheme [3], [5].

5.2 Efficiency Comparison

In this subsection, we show the efficiency comparison be-
tween the TAP+ protocol of Sect. 4.1 and the Threshold-
VEAP protocol of Sect. 5.1 in terms of computation and
communication costs (see Table 3). Note that they are the
only secure threshold anonymous PAKE protocols against
active attacks as well as insider attacks.

In general, the number of modular exponentiations is a
major factor to evaluate efficiency of a cryptographic proto-
col because that is the most power-consuming operation. So,
we count the number of modular exponentiations as compu-
tation costs of each client Ci ∈ S G and server S . In Table 3,
“Total” means the total number of modular exponentiations
and “Remaining” is the remaining number of modular ex-
ponentiations after excluding those that are pre-computable.
In terms of communication costs, |p| and |H| indicate the
bit-length of group order p and of hash functionH , respec-
tively.

With respect to computation costs in the TAP+ pro-
tocol, each client Ci (resp., server S ) is required to com-
pute 3 (resp., 2n + 2) modular exponentiations. When pre-
computation is allowed, the remaining costs of each client
Ci (resp., server S ) are 2 (resp., 2n) modular exponentiation.
With respect to communication costs, the TAP+ protocol re-
quires a bandwidth of ((2n + 1)|p| + (n + 2)|H|)-bits except
the length of identities C and S . From Table 3, we can eas-
ily see that the TAP+ protocol is more efficient in terms of
server’s computation costs (without pre-computation) and
communication costs than the ThresholdVEAP protocol.

5.3 Security Consideration

As we showed in Sect. 4.2.2, the AKE security of the
TAP+ protocol has a reduction to the computational Diffie-
Hellman problem (i.e., weak assumption). However, we get
a security loss of factor n in the probability of on-line dic-
tionary attacks (see Eq. (4)).



SHIN et al.: THRESHOLD ANONYMOUS PAKE SECURE AGAINST INSIDER ATTACKS
2105

Table 3 Efficiency comparison of threshold anonymous PAKE protocols, secure against active attacks
and insider attacks, where n is the number of clients.

Number of modular exponentiations
Each client Ci ∈ S G Server S Communication costs ∗1

Protocols Total Remaining Total Remaining

TAP+ (Section 4.1) 3 2 2n + 2 2n (2n + 1)|p| + (n + 2)|H|
ThresholdVEAP (Section 5.1) 2 1 3n + 2 2n (3n + 1)|p| + (n + 2)|H|
*1: The bit-length of identities is excluded

If n is relatively small compared to N, the security loss
can be not considered significant. For example, N = 237 for
MS-Windows passwords. According to [16], it would take
about 90 years to carry out 225.5 trials with one minute lock
out for 3 failed trials. Therefore, if n ≈ 210 we can get a
reasonable security margin.

If n is large (n � 210), the security loss would be
in trouble. For that, there may be two possible solutions.
The first (somewhat impractical) solution is that each client
chooses a longer password from the large password space.
The second is to reduce the loss of n to the threshold t by re-
designing the TAP+ protocol. The reason we have such a se-
curity loss is that any adversary, who impersonates the sub-
group S G, can try n passwords in the first message {X∗i }1≤i≤n

and verify these passwords with the authenticators {Vj}1≤ j≤n

of the second message. In order for an adversary to test
only t passwords, we have to send t X∗i and subsequently the
server S should respond with (t×n) Zj and Vj. Of course, the
resultant protocol is quite inefficient and, in fact, we have
a trade-off between the security loss and efficiency of the
TAP+ protocol.

5.4 Implementation Issue

In order to reduce computation costs (i.e., modular exponen-
tiations) in the TAP+ and ThresholdVEAP protocols, one
can consider using a finite cyclic subgroup Gp,q of prime or-
der q of the multiplicative group Z∗p where p = aq + 1 is a
prime, a is an integer, and g is a generator of Gp,q. In this
case, one should be careful to implementing FDH functions

G,G1,G2 and selecting X∗j
R← Gp,q (resp., A∗j

R← Gp,q) in
the TAP+ (resp., ThresholdVEAP) protocol since they need
additional computation costs for the group membership test.

6. Conclusions

After analyzing the D-NAPAKE protocol [26], we showed
that it is completely insecure against insider attacks unlike
the authors’ claim. Specifically, only one legitimate client
can freely impersonate any subgroup of clients (the thresh-
old t > 1) to the server. In order to capture insider attacks,
we gave a formal model where an adversary can control
less than the threshold number of clients by invoking the
Register-query. Also, we proposed a threshold anonymous
PAKE (called, TAP+) protocol that provides security against
insider attacks. Moreover, we proved that the TAP+ proto-
col is AKE-secure against active attacks as well as insider
attacks under the computational Diffie-Hellman problem,

and provides client anonymity against a semi-honest server,
who honestly follows the protocol. Finally, several discus-
sions were followed: 1) We also showed another threshold
anonymous PAKE protocol by applying our Rationale to the
(non-threshold) anonymous PAKE (VEAP) protocol [23];
and 2) We gave the efficiency comparison, security consid-
eration and implementation issue of the TAP+ protocol.

As we discussed in Sect. 5.3, an open (and challenging)
problem is to design a threshold anonymous PAKE protocol
that is secure against insider attacks and has a tight security
reduction (independent of the number of clients n) in the
probability of on-line dictionary attacks. We also leave it as
an open issue to deal with potential Denial-of-Service (DoS)
attacks to the client group because, if an adversary imper-
sonates any client in a threshold anonymous PAKE proto-
col, the server cannot identify the client exactly as well as
restrict his/her further access.
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Appendix: Proof of Theorem 1

In this proof, we define a sequence of games starting at
game G0 (i.e., the actual TAP+ protocol) and ending up at
G5 where the hash functions are modelled as random ora-
cles. We use Shoup’s difference lemma [19], [20] to bound
the probability of each event in these games. Let Si be an
event where an adversary correctly guesses the bit b, in-
volved in the Test-query, in Game Gi. For visual simplicity,
we denote {X∗i }1≤i≤n and {Zj,Vj}1≤ j≤n by {X∗i } and {Zj,Vj},
respectively, in the following proof.

Game G0: This is the real protocol in the random oracle

model. By AKE-security definition,

Advake
P (A) = 2 Pr[S0] − 1 . (A· 1)

Game G1: In this game, we simulate the hash oracles
(G, G2 and Hk, but as well additional hash functions
H′k : {0, 1}� → {0, 1}lk , for k = 1, 2, 3, 4) as usual by
maintaining these hash lists ΛG, ΛG2, ΛH and ΛH′ (see
below). We also simulate all the instances, as the real
parties would do, for the Send-queries and for the Ex-
ecute, Reveal, Register and Test-queries (see further
below).

Simulation of the hash functions: G, G2 andHk

• For a hash-query G(q), such that a record (q, r)
appears in ΛG, the answer is r. Otherwise, one

chooses a random element r
R← Z�p , answers with

it, and adds the record (q, r) to ΛG.
• For a hash-query G2(q), such that a record (q, r)

appears in ΛG2 , the answer is r. Otherwise, one

chooses a random element r
R← Gp, answers with

it, and adds the record (q, r) to ΛG2 .
• For a hash-query Hk(q) (resp., H′k(q)), such that

a record (k, q, r) appears in ΛH (resp., ΛH′), the
answer is r. Otherwise, one chooses a random el-

ement r
R← {0, 1}lk , answers with it, and adds the

record (k, q, r) to ΛH (resp., ΛH′).

Simulation of the TAP+ protocol
Setup
First, we prepare for the public parameter (Gp, p, g)

as usual and generate another generator h as follows:

• For h, we apply the following rule:
� Rule Setup(1)

Choose a random element b
R← Z�p and

compute h ≡ gb.

Send-queries to S G
We answer to the Send-queries to a S G-instance as

follows:

• A Send(S Gμ, Start)-query is processed by first
setting the threshold t (t > 1) and randomly se-
lecting t indices from the set C. We apply the fol-
lowing rules:
� Rule SG1(1)

For Ci ∈ S G, choose a random element

θi
R← Z�p , and compute Xi ≡ gθi , Wi ≡

hwi and X∗i ≡ Xi ×Wi where wi ←
G(i, pwi).

� Rule SG2(1)

For C j ∈ C\S G, choose a random

element X∗j
R← Gp.

Then, the query is answered with (C, t, {X∗i }), and
the instance goes to an expecting state.



SHIN et al.: THRESHOLD ANONYMOUS PAKE SECURE AGAINST INSIDER ATTACKS
2107

• If the instance S Gμ is in an expecting state, a
query Send(S Gμ, (S ,Y, {Zj,Vj},VS )) is processed
by reconstructing the secret gs′ and by computing
the authenticator and the session key. We apply
the following rules.
� Rule SG3(1)

For Ci ∈ S G, compute Ki ≡ Yθi and
V ′i ← H1(Ci‖X∗i ‖Y‖Zi‖Ki‖Wi). If V ′i
= Vi, compute gsi = Zi

⊕G2(X∗i ,Y,
Ki,Wi).

If V ′i � Vi, the instance terminates.
� Rule SG4(1)

Compute V ′S ← H2(C‖S ‖t‖{X∗i }‖Y‖
{Zj,Vj}‖gs′ ). If V ′S = VS , compute
the expected authenticator and the
session key:
VC ← H3(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs′ ),
S KS G ← H4(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs′ ).

If V ′S � VS , it terminates. Otherwise, the query
is answered with VC , and the instance accepts and
terminates.

Send-queries to S
We answer to the Send-queries to a S -instance as

follows:

• A Send(S ν, (C, t, {X∗i }))-query is processed ac-
cording to the following rule:
� Rule S1(1)

Choose two random elements (ϕ, s)
R←(

Z
�
p

)2
and compute Y ≡ gϕ.

Then, the instance computes the authenticators af-
ter generating the shares s j of s by (t, n)-threshold
secret sharing scheme [18]. We apply the follow-
ing rules:
� Rule S2(1)

For j (1 ≤ j ≤ n), compute Xj ≡
X∗j/Wj, Kj ≡

(
Xj

)ϕ
and Zj ← G2(X∗j ,

Y,Kj,Wj)
⊕

gs j .
� Rule S3(1)

For j (1 ≤ j ≤ n), compute Vj ← H1

(C j‖X∗j ‖Y‖Zj‖Kj‖Wj). Also, compute
VS ← H2(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs).

Then, the query is answered with (S ,Y, {Zj,Vj},
VS ), and then the instance goes to an expecting
state.

• If the instance S ν is in an expecting state, a query
Send(S ν,VC) is processed as follows:
� Rule S4(1)

Compute V ′C ← H3(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs). If V ′C = VC , compute the
session key:
S KS ← H4(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs).

If V ′C � VC , it terminates. Otherwise, the instance
accepts and terminates.

Other queries

• An Execute(S Gμ, S ν)-query is processed us-
ing successively the above simulations of the
Send-queries: (C, t, {X∗i }) ← Send(S Gμ, Start),
(S ,Y, {Zj,Vj},VS )← Send(S ν, (C, t, {X∗i })), VC ←
Send(S Gμ, (S ,Y, {Zj,Vj},VS )), and then out-
putting the transcript ((C, t, {X∗i }), (S ,Y, {Zj,Vj},
VS ),VC).

• A Reveal(I)-query returns the session key (S KS G

or S KS ) computed by the instance I (if the latter
has accepted).

• A Register(Ci, pwi)-query is processed as fol-
lows: compute Wi ≡ hwi , where wi ← G(i, pwi),
and stores Wi as the verification data for Ci.

• A Test(I)-query first gets S K from Reveal(I), and
flip a coin b. If b = 1, we return the value of
the session key S K, otherwise we return a random
value drawn from {0, 1}l4 .

From the above simulation, we can easily see that the
game is perfectly indistinguishable from the real attack.

Pr[S1] ≈ Pr[S0] . (A· 2)

Game G2: In this game, we consider collisions that is the
difference from Game G1. Let Coll2 be an event where
some collisions are going to happen.

• Collisions on the partial transcripts ((C, t, {X∗i }),
(S ,Y, {Zj})): An adversary tries to find out a pair
((t, {X∗i }), (Y, {Zj})), coinciding with the challenge
transcript, and then obtain the corresponding ses-
sion key using the Reveal-query. However, at
least one party involves with the transcripts, and
thus one of (t, {X∗i }) and (Y, {Zj}) is truly uniformly
distributed. Note that the adversary can control at
most (t − 1) clients by the Register-query.

• Collisions on the output of G and G2

• Collision on the output ofH
These probabilities are upper-bounded by the birthday
paradox:

Pr[Coll2] ≤ (qexecute + qsend)2

2|Gp| ×
(
1 +

1
|Gp|

)

+
q2

hashG + q2
hashG2

2|Gp| +
q2

hashH

2l+1
. (A· 3)

Note that the first term is the maximum upper-bound of
collisions on the partial transcripts.

Game G3: In this game, we make the authenticators and
the session key unpredictable to any adversary by using
the private oracles H′k instead of Hk, for k = 1, 2, 3, 4.
For that, we apply the following rules:
� Rule SG3(3)

For Ci ∈ S G, compute Ki ≡ Yθi and V ′i ←H′1(Ci‖X∗i ‖Y‖Zi). If V ′i = Vi, compute gsi

= Zi

⊕G2(X∗i ,Y,Ki,Wi).
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� Rule SG4(3)

Compute V ′S ← H′2(C‖S ‖t‖{X∗i }‖Y‖{Zj,
Vj}). If V ′S = VS , compute the expected
authenticator and the session key:
VC ← H′3(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}),
S KS G ← H′4(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}).

� Rule S3(3)

For j (1 ≤ j ≤ n), compute Vj ← H′1(C j‖X∗j
‖Y‖Zj). Also, compute VS ← H′2(C‖S ‖t‖
{X∗i }‖Y‖{Zj,Vj}).

� Rule S4(3)

Compute V ′C ← H′3(C‖S ‖t‖{X∗i }‖Y‖{Zj,
Vj}). If V ′C = VC , compute the session key:
S KS ← H′4(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}).

Note that we do not need to use the key Kj and the se-
cret gs in the computation of H′k. Accordingly, we can
simplify the following rules:
� Rule S1(3)

Choose a random element ϕ
R← Z�p and

compute Y ≡ gϕ.
� Rule S2(3)

For j (1 ≤ j ≤ n), choose a random element
Zj ← Gp.

For an uncorrupted Ci, we use the homomorphic prop-
erty of Gp so that the generation of X∗i is simplified as
follows:
� Rule SG1(3)

For an uncorrupted Ci ∈ S G, choose a

random element θi
R← Z�p and compute X∗i

≡ gθi .
The games G3 and G2 are indistinguishable unless
some specific hash queries are asked, denoted by event
AskH3 = AskH123 ∨ AskH3w123 ∨ AskH4w1233:

• AskH123: H1(C j‖X∗j ‖Y‖Zj‖Wj‖Kj) and
H2(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs) have been queried
byA toH1 andH2, respectively, for some execu-
tion transcripts ((C, t, {X∗i }), (S ,Y, {Zj}));

• AskH3w123: H3(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs) has
been queried by A to H3 for some execu-
tion transcripts ((C, t, {X∗i }), (S ,Y, {Zj})), but event
AskH123 did not happen;

• AskH4w1233: H4(C‖S ‖t‖{X∗i }‖Y‖{Zj,Vj}‖gs) has
been queried by A to H4 for some execution
transcripts ((C, t, {X∗i }), (S ,Y, {Zj})), where some
party has accepted, but events AskH123 and
AskH3w123 did not happen;

The above obviously leads to the following (these prob-
abilities are computed at the Game G5):

Pr[AskH3] ≤ Pr[AskH123] + Pr[AskH3w123]

+ Pr[AskH4w1233] .

Since the authenticators are computed with the private
oracles, they cannot be guessed by the adversary, better
than at random for each attempt, unless the same partial
transcript ((C, t, {X∗i }), (S ,Y, {Zj})) appeared in another

session with real instances S Gμ and S ν. But such a case
has already been excluded in Game G2. Similarly, the
session key cannot be distinguished by the adversary
better than 1/2:

Pr[S3] ≤ qsendSG

2l1+l2
+

qsendS

2l3
+

1
2
. (A· 4)

When collisions of the partial transcripts have been ex-
cluded, the event AskH12 can be split into three dis-
joint sub-cases:

• AskH12-Passive3: the transcript ((C, t, {X∗i }),
(S ,Y, {Zj})) comes from an execution between in-
stances of S G and S (Execute-queries or forward
of Send-queries, relay of part of them). This
means that both (t, {X∗i }) and (Y, {Zj}) have been
simulated;

• AskH12-WithSG3: the execution involved an in-
stance of S G, but (Y, {Zj}) has not been sent by any
instance of S . This means that (t, {X∗i }) has been
simulated†, but (Y, {Zj}) has been produced by the
adversary;

• AskH12-WithS3: the execution involved an in-
stance of S , but (t, {X∗i }) has not been sent by any
instance of S G. This means that (Y, {Zj}) has been
simulated, but (t, {X∗i }) has been produced by the
adversary.

Game G4: In order to evaluate the above events, we
show how to embed a random Diffie-Hellman instance
(P,Q), where both P and Q are generators of Gp, and
simulate with that. First, we introduce the element Q
as follows:
� Rule Setup(4)

Set h← Q.
Next, we embed P of the Diffie-Hellman instance in the
simulation of the party S .
� Rule S1(4)

Choose a random element y
R← Z�p and

compute Y ≡ Py.
Note that we excluded the case Y ≡ 1. From the above
simulation, we can easily see that

Pr[S4] ≈ Pr[S3] . (A· 5)

Game G5: In this game, we first bound the probability of
the event AskH5 (or, the sub-cases). At the end of this
game, we analyze on-line dictionary attacks by simply
using cardinalities of some sets because the password
is never used during the simulation.
Let us consider a communication between an instance
S ν and either the adversary or an instance S Gμ. For
some pairs ((t, {X∗i }), (Y, {Zj})), there are two events (de-
noted by Guess5 and CollW5) to be explained below.

|Pr[AskH5]− Pr[AskH4]| ≤ Pr[Guess5]+ Pr[CollW5] .

The Guess5 is an event to correctly guess the secret gs

†At least one X∗i for uncorrupted Ci has been simulated.
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from VS , and it is clearly bounded by:

Pr[Guess5] ≤ qhashH2

|Gp| . (A· 6)

Now, we consider the event CollW5 that there are two
distinct elements Wj0 and Wj1, such that the tuple
(C j, X∗j ,Y,Zj,CDHg,Gp (X∗j/Wj,Y),Wj) is in ΛH . The
event CollW5 can be upper-bounded by the following
lemma:

Lemma 1: If for any pair (X∗j ,Y) ∈
(
Gp

)2
, in-

volved in a communication with an instance S ν, there
are two elements Wj0 and Wj1 such that the tuple

(C j, X∗j ,Y,Zj,Kjm
def
= CDHg,Gp (X∗j/Wjm,Y),Wjm) is in

ΛH , one can solve the computational Diffie-Hellman
problem:

Pr[CollW5] ≤ q2
hashH1 × Succcdh

g,Gp
(t1 + τe) . (A· 7)

Proof. We prove this lemma by showing the reduction
to the CDH problem when event CollW5 happens. We

assume that there exist (X∗j ,Y ≡ Py) ∈
(
Gp

)2
involved

in a communication with an instance S ν, and two ele-
ments Wj0 ≡ Qw j0 and Wj1 ≡ Qw j1 such that the tuple

(C j, X∗j ,Y,Zj,Kjm
def
= CDHg,Gp (X∗j/Wjm,Y),Wjm) is in

ΛH , for m = 0, 1. Then,

Kjm = CDHg,Gp (X∗j/Wjm,Y)

= CDHg,Gp (X∗j × Q−w jm ,Y)

= CDHg,Gp (X∗j ,Y) × CDHg,Gp (Q,Y)−w jm

= CDHg,Gp (X∗j ,Y) × CDHg,Gp (P,Q)y(−w jm) .

As a consequence,

Kj1/Kj0 = CDHg,Gp (P,Q)y(w j0−w j1)

and thus CDHg,Gp (P,Q) = (Kj1/Kj0)ψ where ψ is the
inverse of y(w j0 − w j1) in Z�p . The latter exists since
Wj0 � Wj1 and y � 0. By guessing the two queries
asked to theH1, one concludes the proof. �

In order to complete the proof, we separately bound
the three sub-cases of AskH125, AskH3w125 and
AskH4w1235.

• AskH12-Passive5: About the passive transcripts
(in which both (t, {X∗i }) and (Y, {Zj}) have been
simulated), one can state the following lemma:

Lemma 2: If for any pair (X∗j ,Y) ∈
(
Gp

)2
,

involved in a passive transcript, there is an

element Wj such that (C j, X∗j ,Y,Zj,Kj
def
=

CDHg,Gp (X∗j/Wj,Y),Wj) is in ΛH , one can solve
the computational Diffie-Hellman problem:

Pr[AskH12-Passive5]

≤ qhashH1 × Succcdh
g,Gp

(t1 + 2τe) . (A· 8)

Proof. We prove this lemma by showing the re-

duction to the CDH problem when event AskH12-
Passive5 happens. We assume that there exist

(X∗j ≡ gxj ,Y ≡ Py) ∈
(
Gp

)2
involved in a pas-

sive transcript and Wj ≡ Qw j such that the tuple

(C j, X∗j ,Y,Zj,Kj
def
= CDHg,Gp (X∗j/Wj,Y),Wj) is in

ΛH . As above,

Kj = CDHg,Gp (X∗j ,Y) × CDHg,Gp (Q,Y)−w j

= Pxjy × CDHg,Gp (P,Q)−yw j .

As a consequence, CDHg,Gp (P,Q) = (Kj/Pxjy)ψ

where ψ is the inverse of −yw j in Z�p . The latter
exists since we have excluded the cases where y =
0 and w j = 0. By guessing the query asked to the
H1, one can get the above result. �

• AskH12-WithSG: This corresponds to an attack
where the adversary tries to impersonate S to S G.
But, each authenticator Vj (sent by the adversary)
for client C j has been determined from only one
corresponding w j ← G( j, pwj). Therefore, the
maximal probability for the adversary (who con-
trols up to (t−1) clients by invoking the Register-
queries) over a random password can be obtained
by

Pr[AskH12-WithSG5] ≤ qsendSG

N
. (A· 9)

• AskH12-WithS: The above Lemma 1, applied to
games where the event CollW5 did not happen,
states that for a pair (X∗j ,Y), involved in a tran-
script with an instance S ν, there is at most one
element Wi= j, such that for Wi ≡ hwi and wi ←
G(i, pwi) the corresponding tuple is in ΛH . When
t = n, the maximal probability for the adversary
over random passwords can be obtained by

Pr[AskH12-WithS5] ≤ nqsendS

N
. (A· 10)

About AskH3w12 and AskH4w123, it means that only
executions with an instance of S (and either S G or the
adversary) may lead to acceptance. We can apply the
same analysis as for AskH12-Passive and AskH12-
WithS with the exception that the random space is Gp

instead of N. This leads to

Pr[AskH3w125] + Pr[AskH4w1235]

≤ 2qhashG2 × Succcdh
g,Gp

(t1 + 2τe)

+
2nqsendS

|Gp| . (A· 11)

As a conclusion, we get an upper-bound for the proba-
bility of AskH5 by combining all the cases:

Pr[AskH5]

≤ 3qhashG2 × Succcdh
g,Gp

(t1 + 2τe)

+
qsendSG + nqsendS

N
+

2nqsendS

|Gp| . (A· 12)
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Note that qhashH1 ≤ qhashG2 since a H1-query can in-
voke a G2-query with the partial query input.
By combining Eq. (A· 2), (A· 3), (A· 4), (A· 5), (A· 6),
(A· 7) and (A· 12), one gets

Pr[S0] ≤ qsendSG + nqsendS

N
+ 3qhashG2 × Succcdh

g,Gp
(t1 + 2τe)

+ q2
hashH1 × Succcdh

g,Gp
(t1 + τe)

+
2nqsendS

|Gp| +
qhashH2

|Gp|
+

qsendSG

2l1+l2
+

qsendS

2l3
+

1
2

+
(qexecute + qsend)2

2|Gp| ×
(
1 +

1
|Gp|

)

+
q2

hashG + q2
hashG2

2|Gp| +
q2

hashH

2l+1

≤ qsendSG + nqsendS

N
+

1
2

+ 3q2
hashG2 × Succcdh

g,Gp
(t1 + 3τe)

+
2nqsendS + qhashH2

|Gp|
+

(qexecute + qsend + qhashG + qhashG2)2

|Gp|

+
qsendSG

2l1+l2
+

qsendS

2l3
+

q2
hashH

2l+1
. (A· 13)

Finally, the security result as desired is obtained by not-
ing Eq. (A· 1). �
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