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SUMMARY A buffer overflow attack occurs when a program writes
data outside the allocated memory in an attempt to invade a system. Ap-
proximately forty percent of all software vulnerabilities over the past sev-
eral years are attributed to buffer overflow. Taint tracking is a novel tech-
nique to prevent buffer overflow. Previous studies on taint tracking ran
a victim’s program on an emulator to dynamically instrument the code for
tracking the propagation of taint data in memory and checking whether ma-
licious code is executed. However, the critical problem of this approach is
its heavy performance overhead. Analysis of this overhead shows that 60%
of the overhead is from the emulator, and the remaining 40% is from dy-
namic instrumentation and taint information maintenance. This article pro-
poses a new taint-style system called Embedded TaintTracker to eliminate
the overhead in the emulator and dynamic instrumentation by compressing
a checking mechanism into the operating system (OS) kernel and mov-
ing the instrumentation from runtime to compilation time. Results show
that the proposed system outperforms the previous work, TaintCheck, by at
least 8 times on throughput degradation, and is about 17.5 times faster than
TaintCheck when browsing 1 KB web pages.
key words: software security; buffer overflow; taint tracking

1. Introduction

The first buffer overflow attack, the Morris Worm, appeared
in 1988, and caused a disruption never seen before. Over the
last two decades, buffer overflow has become a well-known
software vulnerability, and is still a serious threat to com-
puter system security. According to vulnerability statistics
from US-CERT, approximately 40% of vulnerabilities in re-
cent years are buffer overflow problems [1].

A buffer overflow attack occurs when a program writes
data outside the allocated memory in an attempt to control
a system. To launch a buffer overflow attack, an attacker
must inject attack code to the address space of a victim pro-
gram by any legitimate form of input, and then corrupt a
code pointer in the address space by overflowing a buffer to
make the code pointer point to the injected code. The most
common and simplest type of attack, called stack smashing,
hijacks a program by overflowing the buffer on the stack
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with the malicious code and changing the address to the start
of the malicious code. This modifies the return address,
causing the program to jump to the malicious code when
it tries to return to its caller. More complex attacks[2], [3]
may not change the return address, but attempt to corrupt
other code pointers, including function pointers, global off-
set table (GOT) entries, and longjmp buffers, causing the
program to execute malicious code.

Researchers have proposed many methods of defend-
ing against buffer overflow attacks using both static and dy-
namic approaches. Static approaches, such as Splint [4], an-
alyze potential buffer overflow vulnerabilities without exe-
cution. Dynamic approaches usually inject some code at
compilation time to protect the code pointer or perform
bounds checking to detect attacks at run-time. For exam-
ple, StackGuard [5] prevents stack smashing attacks by plac-
ing a canary word before the return address and checking if
the canary word is changed when the subroutine returns to
the original instruction location. CRED [6] replaces every
pointer value with the address of a special object that per-
forms bounds checking before it is dereferenced. However,
these approaches have various drawbacks. Static approaches
produce a lot of false alarms and miss certain vulnerabilities
due to run-time information leakage, such as path reacha-
bility and variable aliases [7]. Dynamic approaches that ap-
ply detection at run-time can achieve better accuracy than
static approaches, but they also suffer from a heavy perfor-
mance overhead to protect against all forms of buffer over-
flow attacks. This heavy performance overhead means that
dynamic approaches are only applied at testing time, and are
impractical for detecting buffer overflow attacks. This is be-
cause the payload of such attacks is usually a particular and
complicated pattern that is difficult to be generated in testing
time.

This article proposes a run-time lightweight system
called Embedded TaintTracker to defend against all forms
of buffer overflow attacks. Embedded TaintTracker is based
on a well-known dynamic technique called taint tracking,
which defends against attacks by prohibiting the execution
of the attack code. Based on this technique, TaintCheck [8]
and TaintTrace [9] run the victim’s program on an emula-
tor to monitor all its operations. These programs also track
the propagation of taint data, which refers to data originat-
ing from untrusted sources, such as the Internet. When a
program executes a piece of taint data as part of its code,
these methods immediately freeze the program and trigger
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an alarm to indicate a possible instance of malicious code
execution before a suspected attack. At the same time, these
methods are able to extract the signature of the attack for
intrusion prevention system (IPS) analysis, and record the
complete program status to help developers fix the hole.
However, these methods impose heavy performance over-
head.

Embedded TaintTracker proposed in this paper imple-
ments a novel taint tracking approach that retains the advan-
tages of the original taint tracking system while boosting its
performance to acceptable levels for practical use. It mainly
adopts three techniques: (1) inserting taint-tracking codes
into the original program at compilation time, (2) maintain-
ing taint information by paging tables, and (3) using a kernel
module to reduce the frequency of checking malicious exe-
cution from each jump-instruction to each switch between
user mode and kernel mode. Although these techniques are
not new, using them in the field of taint tracking still has
some novelties and can actually obtain significant perfor-
mance improvement.

The rest of this article is organized as follows. Section
2 presents the background, including buffer overflow attacks
and some tools to defend against them. Section 3 describes
the design concept and implementation of Embedded Taint-
Tracker in detail. Next, Sect. 4 demonstrates this system’s
ability to detect known buffer overflow attacks, showing ex-
cellent performance. Finally, Sect. 5 concludes this article
with discussion and directions for future research.

2. Background

Buffer overflow vulnerabilities and attacks come in a vari-
ety of forms, and many tools have been proposed to defend
against them. This section introduces buffer overflow vul-
nerabilities, steps to launch an attack on these vulnerabili-
ties, and some solutions to detect against these attacks.

2.1 Buffer Overflow Attack

Buffer overflow occurs when a program fails to check if
the data exceeds its memory buffer size and copies the ex-
cess data into a location adjacent to the buffer. This mainly
happens in string functions supported by the standard C li-
brary, such as strcpy(), strcat(), sprintf(), gets()
and so on. Programmers should avoid using these un-
safe functions and replace them with ”safe” string functions
like strn*(). However, these ”safe” functions still have
many pitfalls. For instance, strncpy() is inconsistent with
strncat() at handling string termination, leading to an off-
by-one bug, which is a form of buffer overflow vulnerability.
strncpy(dst, src, n), which copies a string of at most
n bytes from buffer src to dst, may leave dst untermi-
nated if there is no null character among the first n bytes of
src. This is unlike strncat(), which always appends a
null terminator in the destination buffer. Additional pitfalls
are discussed in [10].

Careless programmers may easily encounter these pit-

falls and expose their computers to denial of service attacks
or even arbitrary code execution. This allows attackers to
control the host, which is the major goal of a buffer over-
flow attack.

To launch a buffer overflow attack, an attacker must in-
ject attack code to the address space of a victim program by
any legitimate form of input, and then corrupt a code pointer
in the address space by overflowing a buffer to make the
code pointer point to the injected code. The stack smashing
attack mentioned in Sect. 1 is a common and simple way
to corrupt a code pointer. This attack overflows the return
address and jumps to the attack code when the function re-
turns. Other ways to change the control flow include cor-
rupting the function pointer, longjmp buffer, or entries in
the global offset table (GOT). If the function pointer is redi-
rected to the attack code by overflowing, the attack code
will be executed when the function pointer is dereferenced.
Another method is overflowing the longjmp buffer. When
setjmp()is executed, the longjmp buffer stores the current
stack content such as a code pointer and local variables for
rollback later. The attacker can overflow the code pointer in
this buffer, and make the program jump to attack code when
longjmp() is called. Yet another attack targets entries in
the GOT. The GOT stores the absolute address of a function
call symbol used in dynamically linked code. The attacker
can replace the address in GOT with the address of the at-
tack code, causing the program to jump to the attack code
when the function with the overwritten address is called.

2.2 Solutions for Buffer Overflow Attacks

Tools for detecting buffer overflow operate in either a static
or dynamic manner. Static tools used in development time
analyze potential buffer overflow vulnerabilities without ex-
ecuting the program. These tools do not incur run-time
overhead, but have theoretical and practical limits on ac-
curacy. For example, precise analysis of arbitrary C pro-
grams depends on several undecidable problems, includ-
ing path reachability and variable aliases [7], and all static
tools face a tradeoff between precision and scalability. Dy-
namic tools used in runtime do not have these limits, but
their performance overhead will be a critical problem. Table
1 compares static solutions and a variety of dynamic solu-

Table 1 Techniques for buffer overflow detection.

Criteria Static
Solutions

Dynamic Solutions

Pointer
Protection

Bound
Checking

Taint
Tracking

Accuracy � © © ©
Coverage � � © ©
Bug Fixing © � � ©
Signature
Generation

× � � ©

Performance
Overhead*

0 ∼0 0.9x 4.7x

©: Complete �: Partial ×: Not supported
* The performance overhead is evaluated with Apache web server.
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tions. The following subsections introduce some static and
dynamic tools.

2.2.1 Static Detector

Wanger et al. [11] formulated buffer overflow detection as
an integer range analysis problem. Their approach models
a C string as a pair of integer ranges for allocated size and
its length. They further model vulnerable functions in the C
standard library as operations on the integer ranges. Their
tool checks whether its inferred string length is less than the
allocated size in each string operation. However, the tool
is impractical to use because it produces a lot of false posi-
tives along with some false negatives due to imprecise range
analysis. Splint [4] is an annotation-based analysis tool ex-
tended from LCLint [12] with introducing new annotations
which allow the declaration of a set of preconditions and
postconditions in each function. Experimental results show
that Splint still produces a number of false positives that are
impossible to eliminate because of undecidability in static
analysis.

2.2.2 Dynamic Detector

Dynamic approaches can be classified into bounds check-
ing, pointer protection, and taint tracking, according to what
technologies they use. Table 2 shows a summary of them.

Bound checking provides perfect protection against
buffer overflows via complex analysis and patch on source
codes. However, tools based on bounds checking incur a
substantial cost in compatibility with existing codes and per-
formance. The tool proposed by Jones and Kelly [13] is
based on the principle that an address computed from an
in-bounds pointer must have the same referent object as the
original pointer. This tool maintains a run-time object table
that collects all the base addresses and size information for
all static, heap, and stack objects. The performance over-
head of this tool is high, causing an approximately ten to
thirty-fold slowdown. CCured [14] is a hybrid language de-
signed to be a safer version of the C programming language.
It transforms unsafe C codes into safe codes through static

Table 2 Dynamic buffer overflow detector.

Class Tool Coverage Performance
overhead

Bounds
checking

J & K Complete 10X - 30X

CCured Complete 2X - 3X
CRED Complete 0 - 1.2X

Pointer
protection

StackGuard Adjacency overflow-
ing in activation records

∼0

PointGuard Pointers integrity 0 - 0.2X
LibsafePlus String function in C

library when attack-
ing activation records

0 - 1X

Taint
tracking

TaintCheck Executing malicious
code

25X

TaintTrace Executing malicious
code

5X

analysis. Programs that cannot be represented in safe codes
are instrumented with run-time checks to monitor the safety
of executions. Performance overhead is still high at approx-
imately two to three times the normal overhead. CRED [6]
replaces every out-of-bounds (OOB) pointer value with the
address of a special OOB object created for that value. The
OOB object maintains the actual pointer value and informa-
tion on the referent object. Any pointer derived from the
address is bounds checked before it can be dereferenced.
CRED has the best performance of all bounds checking
tools, but still slows down performance by 1.2-fold in some
cases.

Pointer protection tools confine the pointer manipula-
tion or modify the behavior of reference to and dereference
from a pointer. These tools have excellent performance, but
they do not leave any useful clues for developers to patch
the holes. Developers must spend a lot of time on finding
the bug to fix, and the victim program will remain vulner-
able to the attack during this period, leading to denial of
service. StackGuard [5] is perhaps the most well-referenced
tool. This tool prevents stack smashing attack by placing
a canary word prior to the return address, and verifying
whether the canary word is changed when the subroutine
returns to the original instruction location. PointGuard [15]
provides integrity for pointers by encrypting pointers stored
in memory, and decrypting them only when loading them
into the CPU. When an address is overwritten to a mali-
cious address, it decrypts the address to a random value that
crashes the program. LibsafePlus [13] uses a dynamic li-
brary to provide wrapper functions for unsafe C library func-
tions. A wrapper function determines the source and the tar-
get buffer sizes, provided by the GCC debugging option -g,
and makes sure that invocation of the wrapper function does
not result in an overflow.

Taint tracking is the third dynamic defense against
buffer overflow. This technique keeps track of the propa-
gation of untrusted (taint) data during program execution.
Taint data represents any data from an untrusted source such
as a network or some specific devices. When a program exe-
cutes a piece of code derived from an untrusted source, a tool
based on this technique will produce an alarm to indicate a
possible instance of malicious code execution. TaintCheck
performs taint tracking for a program by running the pro-
gram in an emulator Valgrind [16], which allows TaintCheck
to monitor and control the program’s execution. Figure 1 il-
lustrates how TaintCheck keeps track of taint data and exam-
ines how an attack code is executed. When the program is
loaded into the Valgrind emulator, the instrumentation de-
termines the kind of the instruction, and inserts codes for
taint information maintenance and instruction pointer (IP)
examination if needed. However, this way of implementing
taint tracking imposes a heavy overhead up to thirty times,
which is due to runtime instrumentation, a high frequency of
checking malicious execution, and the emulator itself. An-
other solution, TaintTrace, is designed to decrease this over-
head by leveraging DynamoRIO [17], which is a dynamic
code modification system that includes a number of opti-
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Fig. 1 TaintCheck system architecture.

mization techniques to maintain low overhead. However,
experimental results show that TaintTrace still causes a 5-
fold slowdown.

Therefore, some researches, which can be classified
three directions, tried to raise the performance on taint track-
ing. One direction is adopting a hardware-oriented ap-
proach [18]–[20]. However, adding or changing hardware
components will increase the cost and sometimes are hardly
achieved. Another direction is limiting the amount of taint
data, so the overhead of taint tracking is reduced [21], [22].
These researches define the taint data as some user-centric
security or privacy information. However, this approach can
not protect the system from various types of security attacks.
The third direction reduces the number of dynamic instru-
mentation and well manages taint information to speedup
the process on taint tracking [23], [24]. However, the be-
havior of using an emulator still causes a significant high
overhead.

3. Embedded TaintTracker

Taint tracking tracks taint data propagation and examines if
a program is executing a piece of taint data. Previous meth-
ods, including TaintCheck and TaintTrace, achieve these
goals by executing the program on an emulator to monitor
each instruction at runtime, but this causes a heavy over-
head from the emulator, runtime instrumentation, and fre-
quent malicious execution examinations. The proposed Em-
bedded TaintTracker architecture avoids this increased over-
head by interacting with the protected program differently
through its three components, Static Instrumentation, Taint
Recorder, and Exploit Inspector, as Fig. 2 indicates. Static
Instrumentation and Taint Recorder track taint propagation
and maintain taint information table, respectively. Exploit
Inspector produces an alarm if arbitrary code is executed.
The following subsections first give a system overview and
then elaborate these components in detail.

3.1 System Overview

Figure 2 shows that Static Instrumentation inserts taint-
tracking codes into the original program at compilation
time. Taint Recorder maintains the taint information table

Fig. 2 Architecture of Embedded TaintTracker and the interaction with
protected program.

and provides a set of functions for the inserted codes to track
taint propagation through the taint information table. Ex-
ploit Inspector is a kernel module that provides a checking
subroutine to examine whether or not the program is exe-
cuting code from a piece of tracked taint data. The first two
components move the injection of taint-tracking code from
execution time to compilation time. The last component re-
duces the frequency of checking malicious execution from
each jump-instruction to each switch between user mode
and kernel mode. We assume that a piece of malicious code
will invoke system calls when invading or damaging a sys-
tem. The rationale behind this assumption is the observation
that malicious code will read, write, or execute the system
files to obtain the system’s information and privileges. This
type of operations will use system calls, such as open, read,
write, execve and so on. For example, to add a new user, an
attacker must invoke open, write, and close system calls. To
execute an external program, an attacker must invoke fork,
vfork, or clone system calls. Some previous papers also con-
firmed this assumptions [25].

To enable detection mechanism of the proposed system
in a program, the source code of a program must be injected
at compilation time with a sequence of function calls near
the memory copy operations to maintain taint information,
so that the taint information is dynamically updated in run-
time. These functions are provided by the Taint Recorder li-
brary, which should be linked to the instrumented program.
When the program is executing and invoking a system call,
Exploit Inspector will be triggered to examine the IP. If the
IP points to taint data, then an arbitrary code execution is im-
plicated. Exploit Inspector will terminate the victim’s pro-
cess, provide an alarm of the attack to the administrator, and
dump some useful information for further analysis.

3.2 Static Instrumentation

Static Instrumentation discovers copy operations and injects
taint propagation tracking codes near these copy operations
at compilation time. Several stages in source code transfor-
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mation during compilation offer opportunities for discover-
ing copy operations. Figure 3 shows four major compila-
tion phases in GCC: the pre-processor, parser, code gener-
ator, and architecture-dependent optimizer. Since we did
not want to modify the compiler, discovery at stages C and
D inside the compiler was not considered. The prepro-
cessed stage, stage B, was finally chosen because source
code at this stage has been processed by the preproces-
sor. Thus cleaner source has been yielded, as macros and
comments have already been expanded and deleted, respec-
tively. Moreover, the context required for optimization is
still present at this stage. For example, any variable used
in a loop as the increment counter is always untainted, so
it is not necessary to set taint status repeatedly in each loop
body. It is easier to discover such variables in the prepro-
cessed stage than in the machine code stage, i.e. stage E.

Taint data propagation at the preprocessed stage oper-
ates in two ways: undefined function invocations and assign-
ment operations. A function in a program is either a defined
function, which is defined within the project and the source
code is available, or an undefined function, which is defined
in another library and the source code is unavailable. Taint
propagation tracking code can be inserted into a defined
function, while it has no way to be inserted into an undefined
function. Thus, alternatively, a pre-defined taint propagation
behavior can be associated with each undefined function.
For example, memcpy(void *dest, const void *src,
size t n) is an undefined function that propagates n byte
data from src to dest with no return value. Therefore, this
study defines this propagation behavior by a pseudo code
where the three parameters of memcpy are named $1, $2
and $3:
memcpy($1,$2,$3): taint copy($1,$3,$2)
The subroutine taint copy provided by Taint

Recorder copies the taint status from address $2 to address
$1 for length $3. This pre-defined behavior will be concate-
nated with memcpy, and $1, $2 and $3 will be mapped to
actual parameters in memcpy upon injection.

Assignment operations appear with a special identifier
’=’, and the taint data propagates from the RHS (right-hand
side) operand address to the LHS (left-hand side) operand
address. The LHS operand address is retrieved simply with
address-of operator ’&’, but determining the taint status of
the RHS operand is complicated because the RHS operand
has many forms. Table 3 (a) summarizes common forms

Fig. 3 Major compilation phases of GCC.

of the RHS operand and their corresponding processing of
taint propagation. The first form of taint propagation, where
the RHS is a constant value, sets the taint status of the LHS
variable address to false. The second form, where the RHS
operand is a variable, copies taint status of the address of
the RHS variable to that of the LHS variable. In the third
form, the RHS operand is a series of arithmetic operations,
and the taint status of the LHS address is set true if any con-
stituent operand of the RHS operations is tainted. The last
form features a function call on the RHS. This form of prop-
agation has different processes depending on the function
type. When the function is a defined function, the taint sta-
tus of the LHS variable is transferred from a global variable
that stores the address for return variable in each function;
otherwise, a pre-defined behavior for an undefined function
determines the taint status of the LHS variable.

Table 3 covers most processes of taint propagation
through assignments. However, an exception transpires
when data are propagated via deliberate control transfer. For
example, codes like such as if (x==1) y=1; else if
(x==2) y=2;. . . use tainted data x to influence the value
of y. This problem is also faced by similar approaches pro-
posed by earlier works. In this case, the system proposed in
this study requires users to modify related code manually.

To fix bugs easily, we adopt a global variable that pre-
serves the IP and inject code for updating that value be-
fore each function invoked. The value can be translated
to indicate the function in which the attack took place by
addr2line, which is a tool in the GNU toolchain that can
convert an address into a file name and line number in source
code.

Table 3 (a) RHS variable forms and their corresponding processing of
taint propagation; (b) exported functions in the Taint Recorder library.

(a)
Variable
forms

Example of
operation

Propagation Description

Constant D = ’A’ Set taint status of LHS to be un-
tainted.

Variable D = S Transfer taint status from RHS
to LHS

Arithmetic
operations

D = S1 + S2 LHS will be set to taint if any
operands in RHS are tainted.

Function
call

D = func() If the function is defined, copy
taint status from the address of
return value; otherwise, append
a pre-defined behavior.

(b)
Function prototype Description
set taint(void *to, size t len) Set taint status to

true from address
to to to+len-1.

clear taint(void *to, size t len) Set taint status to
false from address
to to to+len-1.

taint copy(void *to, size t len,

void *from)

Copy taint status from
address from address
to address to for
length len.
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3.3 Taint Recorder

Taint Recorder provides a set of functions and a taint infor-
mation table for the victim program to record taint memory
in its address space. The library exports three basic func-
tions for operating taint information table, summarized in
Table 3 (b). set taint(void *to, size t len) sets the
taint status to be true from address to to to+len-1, which
is used when reading data from socket. clear taint(. . .)
performs the opposite function, setting the taint status of
a range of memory to be false. taint copy(void *to,
size t len, void *from) copies length of len bytes
taint status from address from to address to when copy op-
erations are found in source code.

Another component of the Taint Recorder, taint infor-
mation table, records the taint status of each memory block.
Bitmap data structure, which maps each byte of memory
to one bit in taint information table, can be used. How-
ever, bitmap data structure requires an enormous amount of
memory; for example, the table requires 4 GB/8=512 MB
runtime memory in a 32-bit architecture. Since a program
usually only uses a small portion of the entire 4 GB mem-
ory space when it is executed, the proposed approach adopts
a page-table-like structure that dynamically allocates a new
page when taint propagation happens. Figure 4 illustrates
the page-table-like structure and how it acquires the taint
status from an address. The taint information table con-
sists of a page directory and a number of bitmap pages. The
page directory keeps 1024 32-bit page addresses, so the size
required is the same as the default page size 4 KB used in
Linux memory management, and the size of a bitmap page
is 219 Bytes = 512 KB. After acquiring the taint status from
an address, Taint Recorder splits the address into three parts.
The first part includes a 10 bit prefix of the address, which
is used to look up the corresponding bitmap page location
in the page directory. The next 19 bit segment addresses the
byte in the referred page, while the 3 bit suffix is the bit off-
set within the referred byte. Figure 4 shows the procedure
of deriving the taint status from an address. The 10 bit prefix
of the address is indexed to the bitmap page at 0x08500000.
The next 19 bit segment addresses the byte in 0x08500000,

Fig. 4 Obtaining taint status from the page information table.

where the byte is (11100011)2. The 3 bit suffix (110)2 of the
address indicates that the 5th bit of (11100011)2 is untainted
for the given address.

3.4 Exploit Inspector

Exploit Inspector is a kernel component that examines
whether or not a program is executing code from a piece of
tracked taint data. It consists of a checking subroutine and a
cache of page directories for different processes to decrease
the frequency of communication between the user space and
the kernel space. After a system call is invoked, the check-
ing subroutine will be triggered to examine whether the IP
of user space points to taint data. The checking subroutine
acquires the taint status of IP in the user-space, as Fig. 4 il-
lustrates. To decrease the communication overhead between
the user space and kernel space, the kernel caches the page
directories accessed by IP for subsequent use. If the check-
ing subroutine determines the pointed address is innocent,
the system call will be invoked as usual; otherwise, the sub-
routine will terminate the process and dump the process sta-
tus for analysis and defense as the memory near the IP value
may be populated by the exploit’s execution code. If the
execution code can be isolated, it can be used in IPS as an
attack signature.

Implementing Exploit Inspector requires a communi-
cation channel between the user and kernel spaces and an
IP retrieval mechanism which greatly depends on the ma-
chine architecture and operation system. We implemented
the proposed system on IA-32 architecture with Linux ker-
nel 2.6.22-9. The communication channel between the user
and kernel spaces adopts pseudo-filesystem /proc and ker-
nel API copy from user(. . .). Retrieving IP is compli-
cated and requires a series of modifications to the ker-
nel. When Linux switches from the user mode to kernel
mode, the extended instruction pointer (EIP) register and
other registers which relate execution status are pushed au-
tomatically to stack. To access these registers correctly,
the kernel defines a constant offset for each register. For
example, it defines PT TIP for register eip at line 78 in
arch/i386/kernel/asm-offset.c, as Fig. 5 (b) shows.
As Fig. 5 (c), in the entry point of a Linux system call
located at line 376 in arch/i386/kernel/entry.S, we
added two lines following the syscall call label. These
codes copy the user-space eip into the thread structure
thread info, and thus the checking subroutine can access
user-space eip. Figure 5 summarizes the codes added to the
kernel.

3.5 Portability and Implementation Cost

The implementation of Embedded TaintTracker depends on
used programming language of the testing program and OS
facilities. We realized it with C language on Linux 2.6.22. It
is possible to perform on other architectures with other lan-
guage, as long as the user program is executing in the user
space and accessing hardware resources via system calls.
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Fig. 5 Kernel modification: (a) a new variable user-eip in thread-info
structure; (b) a constant offset for variable user-eip of thread-info structure
and register EIP; (c) store EIP of user space into thread-info structure when
a system call is invoked.

This model can be applied to most general-purpose opera-
tion systems including Windows and Linux.

The heaviest work to implement this system is to write
a C language parser for Static Instrumentation. In practice,
Static Instrumentation takes 3500 lines of code, whereas
Taint Recorder and Exploit Inspector only take about 600
lines of C code. Of course, the cost of Static Instrumenta-
tion can be further reduced if it can be combined with the
GCC parser. However, since we didn’t want to modify the
parser itself to enhance the portability of our system, the cost
of implementing Static Instrumentation is thus heavier.

4. Evaluation

This study evaluates Embedded TaintTracker in terms of ef-
fectiveness and performance. In effectiveness evaluation,
we first reproduce a return address smashing attack against a
vulnerable echo server. Then the accuracy of identifying at-
tacks for Embedded TaintTracker is evaluated. Performance
evaluation uses the most widely-used web server, Apache,
as a testing target and evaluates latency, throughput, and the
sustainable number of requests per second.

4.1 Effectiveness

A buffer overflow attack must first inject malicious code
into a victim’s memory space, and then corrupt different
types of code pointers, including return address, function
pointer, longjmp buffer, and GOT. Programmers have pro-
posed many solutions for buffer overflow defense to pre-
vent code pointer corruption. The effectiveness of these ap-
proaches should be evaluated for enumerated code pointer
types. However, the proposed system, which is based on the
taint tracking technique, does not prevent code pointer cor-
ruption, but avoids malicious code execution since the final
target of any type of corrupt code pointer is to execute ma-
licious code. Thus, we first verify whether our system can

Fig. 6 The log from Embedded TaintTracker after detecting an attack.

block malicious code execution to demonstrate its ability to
defend against buffer overflow attacks.

The test program in this study was an echo server with
a synthetic vulnerability that copies the string received from
the client into the local buffer without bound checking, and
then sends it back to client. This vulnerability is exploited
when the copied string exceeds the size of the local buffer,
allowing an attacker to inject malicious code and overflow
return address, and the malicious code adds a new account
for the attacker. Figure 6 shows the system log after the
attack was launched. As the figure indicates, Embedded
TaintTracker successfully identified the attack and logged
the system call, and where it was invoked. Besides, the log
also recorded the value of IP pointing to the last invoked
function for bug fixing and dumped the memory near the
address of the system call invocation for signature genera-
tion.

Then we conducted a small-scale experiment to com-
pare the accuracy of our proposed system with TaintCheck
for the Apache application. The experiment includes twelve
attacks, which have different attack targets, including return
address, function pointer, longjmp buffer, and GOT. The
results show that Embedded TaintTracker and TaintCheck
both can completely detect these attacks. Although Em-
bedded TaintTracker only checks the malicious execution
when each system call is invoked, its accuracy at detecting
buffer overflow attacks is not affected by the reduction of the
checking frequency.

4.2 Performance

This study measured the performance degradation of Em-
bedded TaintTracker on an Apache web server, which is the
most widely used server on the Web. This performance eval-
uation uses three key criteria, including latency, throughput,
and sustainable number of requests per second. Evaluation
was performed on a system with an Intel Core 2 Duo T5600
(1.86 GHz) CPU and 2 GB of RAM, running Ubuntu 7.10
on Linux kernel 2.6.22.

To compare with previous work, TaintCheck, and pro-
file the source of overhead, this study also measures Apache
performance with the kernel component of Embedded Taint-
Tracker, Valgrind Nullgrind, and MemCheck. Figure 7 de-
notes these as Embedded TaintTracker-Kernel, Nullgrind,
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and MemCheck, respectively. Embedded TaintTracker-
Kernel measures the performance overhead when the mech-
anism, which only examines the execution on taint data,
is enabled. Nullgrind and MemCheck, like TaintCheck,
are extensions of the Valgrind emulator. These extensions
have diverse degrees of instrumentation that can represent
two primary sources of overhead in TaintCheck. Nullgrind
does not instrument any additional instructions, which im-
plies that the extra execution time is caused by the Val-
grind emulator itself. MemCheck replaces TaintCheck in
this experiment since the TaintCheck source code is unavail-
able, so we don’t know the details of its implementation.
MemCheck looks for memory leaks and illegal memory ac-
cess using the same data structure as TaintCheck to trace
the status of memory and instrumentation on all memory
operations. Furthermore, MemCheck performs better than
TaintCheck because TaintCheck requires extra interception
of each jump-instruction. The author of TaintCheck has
also demonstrated that MemCheck offers superior perfor-
mance [8].

To evaluate latency, the experiment requested differ-
ently sized web pages (from 1 KB to 10 MB) and timed how
long it took to connect, send the request, receive the re-
sponse, and disconnect from the server. To prevent resource
contention in the test bed, the server was connected to an-
other machine running the testing program. The testing pro-
gram was executed five rounds, and each round requested
the same page 60 times. The result is the average median in
each testing round.

Figure 7 (a) shows the latency result with the slowdown
factor, which is defined as the execution time of the tar-
get divided by the Apache execution time. The slowdown
factor decreases as the requested page size grows because
the server becomes less CPU-bound and more I/O bound.
Embedded TaintTracker generates a 1.37 slowdown when a
1 KB page is requested and almost no overhead when the
size of the accessed page exceeds 100 KB. MemCheck per-
formance is much worse than the proposed system, espe-
cially when the page size is less than 100 KB. According to
the latency ratios between MemCheck and TaintCheck de-
scribed in [8], the slowdown factors of TaintCheck when
accessing 1 KB, 10 KB, 100 KB, 1 MB, and 10 MB pages
can be estimated as about 24, 5, 2.3, 1.2 and 1, respectively.
Thus, Embedded TaintTracker is about 24/1.37=17.5 times
faster than TaintCheck at accessing 1 KB pages.

Figure 7 (b) and 7 (c) show the results of evaluating the
throughput and sustainable number of requests per second
for different numbers of clients with WebBench. On aver-
age, the proposed system imposes only 9.3% (73.48 KB/sec)
performance degradation which outperforms, by 8-fold, the
75.2% (592.08 KB/sec) performance degradation caused by
MemCheck. Running Apache under Valgrind already brings
a great 60% (358.78 KB/sec) overhead in the degradation of
MemCheck. Dynamic instrumentation of all memory ac-
cess operations and memory information maintenance con-
tributes the remaining 40% (233.3 KB/sec) overhead. This
overhead increases in proportion to the number of instru-

(a)

(b)

(c)

Fig. 7 Experimental performance evaluation: (a) latency in different
page sizes requested; (b) and (c) are degradation on throughput and re-
quests per second for different numbers of clients. The native results are
listed in parentheses below the X-axis.

mented operations. Also the overhead of TaintCheck is
larger than MemCheck. For example, when there are twenty
clients, memory access and jump represent 31% and 8% of
the total operations, respectively. TaintCheck imposes extra
overhead from instrumentation of the additional 8% jump
operations for checking malicious execution. Therefore, we
can reasonably deduce that Embedded TaintTracker outper-
forms TaintCheck by at least 8-fold on throughput degrada-
tion.

Figure 7 also shows that Embedded TaintTracker - Ker-
nel slightly influences performance, meaning that the major-
ity of overhead in the proposed system is not from examin-
ing the execution on taint data, but from maintaining taint
information. Thus we further measured the time consumed
for maintaining taint information table. When 1 KB pages
are requested 1000 times, 61% of the extra time is spent on
the bit-copy subroutine, which is used to copy taint status
from one bit to another, and another 36% is spent on ad-
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dress translation for page tables. The overhead from these
subroutines may be further reduced. For example, the time
required for address translation can be diminished by chang-
ing the structure of taint information table to bitmap.

5. Conclusions and Future Works

This article proposes Embedded TaintTracker, a lightweight
taint-style system to defend against buffer overflow at-
tacks. This program is able to protect against various forms
of buffer overflow attacks and achieves acceptable perfor-
mance. An analysis of previous methods shows that 60%
of the performance overhead arises from the emulator, and
40% from dynamic instrumentation and taint information
maintenance. The proposed system successfully diminishes
these two main sources of performance overhead by com-
pressing the emulator mechanism into a kernel and moving
instrumentation from runtime to compilation time. Exper-
imental results demonstrate that the proposed system only
imposes 9.3% throughput degradation, which outperforms
TaintCheck by at least 8-fold. This approach is also faster
than TaintCheck by about 17.5-fold when browsing 1 KB
pages.

Embedded TaintTracker is able to dump system and
program status, providing logs to help developers analyze
the attack and generate an attack signature. Currently, it
dumps a block of memory as a possible piece of attack code.
However, when the block of memory is used as the signature
of an attack for an IPS, the exact part of the memory repre-
senting the attack should be analyzed and refined. Future
research should extend this approach by automating and in-
tegrating it with an IPS, so that the attack may be temporar-
ily filtered out until the vulnerability is patched.

Currently, Embedded TaintTracker can detect all buffer
overflow attacks in our small-scale experiment. However,
we found that it can not detect the A-B attacks, which copy
the code in location A to some other untainted location B
without calling any system call. Fortunately, present buffer
overflow attacks seldom have this type of attacks. If we
want to completely avoid the A-B attacks, Embedded Taint-
Tracker should be extended to insert the tracking codes near
these copy operations. Since the amount of these operations
shall not be large, the extra overhead of preventing from A-
B attacks shall be limited. We shall investigate this in the
future.
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