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Analysis of Recurrence Relations Generalized from the 4-Peg
Tower of Hanoi∗

Akihiro MATSUURA†a), Member

SUMMARY In this paper, we analyze recurrence relations generalized
from the Tower of Hanoi problem of the form T (n, α, β) = min1≤t≤n{α T (n−
t, α, β) + β S (t, 3)}, where S (t, 3) = 2t − 1 is the optimal total number of
moves for the 3-peg Tower of Hanoi problem. It is shown that when α
and β are natural numbers, the sequence of differences of T (n, α, β)’s, i.e.,
{T (n, α, β)−T (n−1, α, β)}, consists of numbers of the form β2iα j (i, j ≥ 0)
lined in the increasing order.
key words: Tower of Hanoi, 4-peg, recurrence relation, integer sequence

1. Introduction

The Tower of Hanoi puzzle with 3 pegs was invented by
E. Lucas in 1883 [9]. He also presented 4-peg puzzle in
1889. In 1907, Dudeney reproduced the 4-peg puzzle as
“The Reve’s Puzzle” [3]. These problems and their vari-
ants have been used as an introductory example of recur-
sive algorithms and they have also been studied widely in
computer science and discrete mathematics [2], [5], [7], [8],
[11]–[14]. Stockmeyer’s survey [13] lists more than 300
references, not included textbooks and articles in other re-
search areas such as psychology. In the simplest case of
using 3 pegs and n disks, the algorithm of first moving the
upper n−1 disks to the intermediate peg, moving the bottom
disk to the peg of destination, and finally moving the remain-
ing n−1 disks to the destination, is the best possible and the
total number of moves is 2n − 1. Somewhat surprisingly, the
optimal solution for the general Tower of Hanoi problem us-
ing k (≥ 4) pegs and n disks is not known yet. The best upper
bound is obtained by the algorithms by Frame [5] and Stew-
art [11]. Their algorithms are rediscovered many times ([12]
lists them). Furthermore, Klavžar et al. showed that seven
different approaches to the multi-peg Tower of Hanoi prob-
lem, which include the ones by Frame and Stewart, are all
equivalent [8]. On the other hand, the subexponential lower
bound was first proved by Szegedy [14] and it was improved
by Chen et al.[2]. Since the upper bound is believed to be
the optimal, it is called the “presumed optimal” solution.

The Stewart’s recursive algorithm for the 4-peg Tower
of Hanoi is written as follows. For 1 ≤ t ≤ n, consider
the procedures of first moving the upper n − t disks to the
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intermediate peg using the 4 pegs, moving the remaining t
disks to the destination using the available 3 pegs, and then
moving the n− t disks to the destination with the 4 pegs. The
algorithm chooses the minimum one among them. When the
total number of moves is denoted by S (n, 4), the recurrence
relation is written as

S (n, 4) = min
1≤t≤n

{
2 S (n − t, 4) + S (t, 3)

}
.

This recurrence relation is solved with the difference

S (n, 4) − S (n − 1, 4) = 2i−1

for ti−1 < n ≤ ti, where ti is the triangular number, i.e.,
ti = i(i + 1)/2.

To clarify the combinatorial structures latent in this
type of recurrence relation and to cope with a wider range
of problems such as the Tower of Hanoi variants on graphs
later discussed in Sect. 5, we investigate the general recur-
rence relation of the form

T (0, α, β) = 0,

T (n, α, β) = min
1≤t≤n

{
αT (n − t, α, β) + βS (t, 3)

}
(n ≥ 1),

where α and β are arbitrary natural numbers. S (n, 4) is then
written as S (n, 4) = T (n, 2, 1).

The main contribution of this paper is to exactly solve
this relation for all natural numbers α and β. Suppose that
{an}n≥1 is the integer sequence which consists of numbers of
the form 2iα j (i, j ≥ 0) lined in the increasing order. Then
for α ≥ 2, the difference of T (n, α, β)’s is written using this
sequence as

T (n, α, β) − T (n − 1, α, β) = βan.

T (n, α, β) is then computed by summing up the differences.
We note that when α = 3, an increases as follows.

an = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, · · · .
These numbers are called “3-smooth numbers” and are ex-
plored extensively in number theory in relation to the dis-
tribution of prime numbers [6] and new number representa-
tions [1], [4], [10].

The remaining of the paper is organized as follows: In
Sect. 2, we state the main results. In Sect. 3, some funda-
mental properties on the sequence {2iα j} are investigated.
In Sect. 4, a proof of the main theorem is given. Tower of
Hanoi variants on graphs are discussed in Sect. 5. Finally,
concluding remarks are given in Sect. 6.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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2. Main Results

2.1 Linearity of T (n, α, β) on β

We first show that T (n, α, β) is linear on the parameter β.

Theorem 1: For any natural numbers α and β, T (n, α, β) is
linear on β. Namely,

T (n, α, β) = βT (n, α, 1)

holds.

Proof. By induction on n. When n = 0, T (0, α, β) = 0 =
βT (0, α, 1). Therefore, the equality holds.

Next, suppose that for n ≤ k, the equality holds. Then
by this assumption,

T (k + 1, α, β)

= min
1≤t≤k+1

{
αT (k + 1 − t, α, β) + βS (t, 3)

}
= min

1≤t≤k+1

{
αβT (k + 1 − t, α, 1) + βS (t, 3)

}
= β min

1≤t≤k+1

{
αT (k + 1 − t, α, 1) + S (t, 3)

}
= βT (k + 1, α, 1).

Therefore, the linearity of T (n, α, β) also holds for n = k+1.
This completes the proof. �

We note that the linearity of T (n, α, β) also holds for
any real number β.

2.2 Explicit Formulas for T (n, α, 1) and ΔT (n, α, 1)

Owing to Theorem 1, it is enough to compute T (n, α, 1) in-
stead of T (n, α, β). We consider the following recurrence
relation for T (n, α, 1).

T (0, α, 1) = 0,

T (n, α, 1) = min
1≤t≤n

{
αT (n − t, α, 1) + S (t, 3)

}
(n ≥ 1). (1)

Tables 1 and 2 show values of T (n, 3, 1) and T (n, 4, 1)
for 1 ≤ n ≤ 10. In the tables, tmin is the value of the argu-
ment with which the right-hand side of the recurrence rela-
tion (1) takes the minimum, and ΔT (n, α, 1) is the difference
of T (n, α, 1)’s. When α = 3, we observe that all the numbers

Table 1 The values of tmin, T (n, 3, 1), and ΔT (n, 3, 1).

n 1 2 3 4 5 6 7 8 9 10
tmin 1 2 2 3 3 4 4 4 5 5

T (n, 3, 1) 1 3 6 10 16 24 33 45 61 79
ΔT (n, 3, 1) 1 2 3 4 6 8 9 12 16 18

Table 2 The values of tmin, T (n, 4, 1), and ΔT (n, 4, 1).

n 1 2 3 4 5 6 7 8 9 10
tmin 1 2 2,3 3 3,4 4 4,5 4,5 5 5,6

T (n, 4, 1) 1 3 7 11 19 27 43 59 75 107
ΔT (n, 4, 1) 1 2 4 4 8 8 16 16 16 32

of the sequence {2i3 j}i, j≥0 appear in the increasing order as
differences of T (n, 3, 1)’s. When α = 4, T (n, 4, 1) takes the
minimum at two values of tmin for some n, which is different
from the case of α = 3.

For understanding the characteristics of ΔT (n, α, 1)’s
in a unified manner, we consider the following set of se-
quences. Let p and q be natural numbers and let {an}n≥1 be
the sequence of numbers of the form piq j (i, j ≥ 0) which
are lined in the increasing order. Here, we note that when
q = pl for some integer l, piq j’s such that piq j = pi′q j′

and (i, j) � (i′, j′) appear successively. Then the sequence
of differences {ΔT (n, α, 1)} is exactly of this form {piq j} for
p = 2 and q = α. Namely, we show the following theorem.

Theorem 2: Let α be a natural number and let {an}n≥1

be the number sequence which consists of numbers of the
form 2iα j (i, j ≥ 0) lined in the increasing order. Then
the sequence of difference of T (n, α, 1)’s is equal to {an}n≥1.
Namely, for n ≥ 1, the difference is written as

T (n, α, 1) − T (n − 1, α, 1) = an.

Combining Theorems 1 and 2 leads to the following
corollary.

Corollary 1: Using the same sequence {an}n≥1, for any nat-
ural numbers n, α, and β, T (n, α, β) is computed as

T (n, α, β) = β
n∑

i=1

ai.

3. Properties of Sequence {2iα j}

In this section, we show some lemmata on the properties of
the sequence {an} = {2iα j}.
Lemma 1: Let α be any natural number such that α ≥ 2
and let {an}n≥1 be the sequence of numbers of the form 2iα j

(i, j ≥ 0) lined in the increasing order. Then the following
statements hold.

(i) When α � 2l for any integer l, for any integer j ≥ 0,∣∣∣{an |α j < an < α
j+1}∣∣∣ = max{i | i ∈ N, 2i < α j+1}.

(ii) When α = 2l for some integer l, for any integers j and k
such that j ≥ 0 and 0 ≤ k ≤ l − 1,∣∣∣{an | an = 2kα j(= 2 jl+k)}∣∣∣ = j + 1.

Proof. (i) By induction on j. For j ≥ 0, we define

I j := {an |α j<an<α
j+1} and i j := max{i | i ∈ N, 2i<α j+1}.

When j = 0,

I0 = {an | 1 < an < α} = {2i | i ∈ N, 2i < α}.
Therefore, |I0| = i0.

Next, assume that |I j| = i j. Since I j+1 = {an |α j+1 <
an < α

j+2} is the disjoint union of two sets {αan | an ∈ I j}
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and {2i | i ∈ N, α j+1 < 2i < α j+2},
|I j+1| =

∣∣∣{αan | an ∈ I j}
∣∣∣ + ∣∣∣{2i |α j+1 < ak < α

j+2}∣∣∣
= |I j| +

∣∣∣{2i | i ∈ N, α j+1 < 2i < α j+2}∣∣∣
= max{i | i ∈ N, 2i < α j+1}
+
∣∣∣{2i | i ∈ N, α j+1 < 2i < α j+2}∣∣∣

=
∣∣∣{2i | i ∈ N, 2i < α j+2}∣∣∣

= i j+1.

Therefore, (i) is shown.

(ii) When α = 2l for some positive integer l, the numbers in
the sequence {2iα j}i, j≥0 are written as

2iα j = 1, 2, 22, · · · , 2l−1,

2l, 2l, 2l+1, 2l+1, · · · , 22l−1, 22l−1,

· · · ·
2 jl, · · · , 2 jl, · · · , 2 jl+k, · · · , 2 jl+k, · · · , 2( j+1)l−1,

· · · · .
For any k such that 0 ≤ k ≤ l − 1, there are j + 1 ways to
obtain 2 jl+k using 2 and α (= 2l). Therefore, for any k, 2 jl+k

appears exactly j + 1 times. Namely, the following holds.∣∣∣{an | an = 2kα j = 2 jl+k}∣∣∣ = j + 1.

This completes the proof of Lemma 1. �

Using Lemma 1, we show the following lemma which
plays an important role to prove the main theorem.

Lemma 2: Let α be any natural number such that α ≥ 2
and let {an}n≥1 be the sequence of numbers of the form 2iα j

(i, j ≥ 0) lined in the increasing order. Then the following
statements hold.

(i) When α � 2l for any integer l, for any n such that 2i <
an < 2i+1, an = αan−(i+1).

(ii) When α = 2l for some integer l, for any i and n such that
an = 2i, an+1 = αan−i.

Proof. (i) By induction on i. Let i0 be the integer such that
2i0−1 < α < 2i0 . Then since α > 2, α is the only number
in {an} such that 2i0−1 < an < 2i0 . Furthermore, ai0+1 = α
holds.

The base case is when i = i0 − 1. In this case,

αa(i0+1)−i0 = αa1 = α.

Therefore, ai0+1 = αa(i0+1)−i0 holds.
Next, assume that for all n such that 2t−1 < an < 2t and

1 ≤ t ≤ i, an = αan−t holds. We show that for any N such
that 2i < aN < 2i+1, aN = αaN−(i+1) holds. We divide into
the following two cases: When aN = α

j for some integer j
(Case 1); and otherwise (Case 2).

Case 1. When aN = α
j, by Lemma 1(i), there exist i an’s

between α j−1 and aN = α
j. So, aN−(i+1) = α

j−1. Therefore,
aN = αaN−(i+1) holds.

Case 2. When aN � α j for any integer j ≥ 0, aN is divisible

by 2. So, there exists some M such that 2i−1 < aM < 2i and
aN = 2aM . Then by assumption of induction, aM = αaM−i.
Therefore,

aN = 2aM = 2(αaM−i) = α(2aM−i).

To prove aN = αaN−(i+1), it is enough to show that 2aM−i =

aN−(i+1). By the definition of {an} and since aM < 2i < aN ,∣∣∣{an | aM/α < an < aN/α}
∣∣∣

=
∣∣∣{an | aM < an < aN}

∣∣∣ − 1

= (N − M − 1) − 1

= N − M − 2.

We note that at the first equality, −1 comes from the dele-
tion of 2i. Using this equality with aM/α = aM−i, aN/α is
computed as

aN/α = a(M−i)+(N−M−2)+1 = aN−(i+1).

Therefore, aN = αaN−(i+1) holds.
This completes the proof for (i).

(ii) Suppose that α = 2l for some positive integer l. For
j ≥ 0 and 0 ≤ k ≤ l − 1, let G j,k be the subsequence of {an}
which consists of all of the identical 2 jl+k’s. Namely,

G j,k =
{
2 jl+k, 2 jl+k, · · · , 2 jl+k}.

By Lemma 1(ii), |G j,k | = j+1 for any j and k such that j ≥ 0
and 0 ≤ k ≤ l − 1. We further define the subsequence G j for
j ≥ 0 by the union of subsequence G j,k’s over 0 ≤ k ≤ l − 1.
Namely,

G j =

l−1⋃
k=0

G j,k

=
{
2 jl, · · · , 2 jl, · · · , 2 jl+k, · · · , 2 jl+k, · · · , 2( j+1)l−1}.

Now, it is enough to show that for any an = 2 jl+k in G j,
an+1 = αan−( jl+k) holds.

Suppose that an = 2 jl+k is an arbitrary element in G j.
Then there is some h, 1 ≤ h ≤ j + 1 such that an = 2 jl+k

is the hth element in the sequence G j,k. (Recall that all the
elements in G j,k are the same numbers.) In this case, n and
n − ( jl + k) are expressed as follows.

n =
j∑

m=1

|Gm| + ( j + 1)k + h

=

j∑
m=1

ml + ( j + 1)k + h

=
l j( j + 1)

2
+ ( j + 1)k + h.

n − ( jl + k) =
l j( j + 1)

2
+ ( j + 1)k + h − ( jl + k)

=
l( j − 1) j

2
+ jk + h

=

j−1∑
m=1

|Gm| + jk + h.
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Since the subsequence where an−( jl+k) is located differs ac-
cording to the value of h, we divide into the following two
cases: When 1 ≤ h ≤ j (Case 1); and when h = j + 1
(Case 2).

Case 1. When 1 ≤ h ≤ j, an−( jl+k) is the hth element in
G j−1,k. So, an−( jl+k) = 2( j−1)l+k. Therefore,

αan−( jl+k) = 2l2( j−1)l+k = 2 jl+k = an+1.

Case 2. When h = j + 1, an is the last element in G j,k.
Then, an−( jl+k) is the first element in G j−1,k+1, i.e., 2( j−1)l+k+1,
except for the case an = 2( j+1)l−1 is the last element in G j.
We consider this exceptional case later. Since an−( jl+k) =

2( j−1)l+k+1,

αan−( jl+k) = 2l2( j−1)l+k+1 = 2 jl+k+1 = an+1.

The last equality holds because an is the last element (2 jl+k)
in G j,k.

We finally consider the exceptional case, that is, when
an = 2( j+1)l−1 is the last element in G j. In this case, k = l−1,
so an−( jl+k) = an+1−( j+1)l. Since |G j| = ( j + 1)l and an+1 is the
first element in G j+1, an+1−( j+1)l is the first element in G j,
i.e., 2 jl. Therefore,

αan−( jl+k) = 2l2 jl = 2( j+1)l = an+1.

This completes the proof of Lemma 2. �

4. Proof of Theorem 2

In this section, we prove Theorem 2.
First, when α = 1, {an}n≥1 = {2i1 j}i, j≥0 = {1}. Namely,

an = 1 for all n ≥ 1. On the other hand, T (n, 1, 1) =
min1≤t≤n

{
1T (n− t, 1, 1)+S (t, 3)

}
takes the minimum at t = 1

for all n and it is computed as

T (n, 1, 1) = T (n− 1, 1, 1)+ S (1, 3) = T (n− 1, 1, 1)+ 1.

Therefore, T (n, 1, 1)−T (n−1, 1, 1) = an holds for all n ≥ 1.
When α ≥ 2, the proof is divided into the following

two cases: When α is not of the form 2l for any positive
integer l (Case 1); and otherwise (Case 2).

Case 1. By induction on n.
When n = 1, a1 = 20α0 = 1. On the other hand,

since T (0, α, 1) = 0 and T (1, α, 1) = αT (0, α, 1) + S (1, 3) =
0 + (21 − 1) = 1, T (1, α, 1) − T (0, α, 1) = 1. Therefore,
T (1, α, 1) − T (0, α, 1) = a1 holds.

When n ≥ 2, for i ≥ 0, let ki be the integer such that
aki = 2i. We assume that the following equations hold for
all n such that 1 ≤ n ≤ ki.

T (n, α, 1) − T (n − 1, α, 1) = an. (2)

We show that the same equation holds for each of n’s such
that ki + 1 ≤ n ≤ ki+1. For brevity, we define

Tn,t := αT (n − t, α, 1) + S (t, 3).

Then T (n, α, 1) = min1≤t≤n
{
Tn,t
}
.

We first clarify with which argument Tn,t is minimized.

Lemma 3: Under the assumption of the induction, for all
n such that ki ≤ n < ki+1, T (n, α, 1) = min1≤t≤n

{
Tn,t
}

takes
the minimum at t = i + 1.

Proof. The difference Tn,t+1 − Tn,t is computed as follows.

Tn,t+1 − Tn,t

=
{
αT (n − (t + 1), α, 1) + S (t + 1, 3)

}
− {αT (n − t, α, 1) + S (t, 3)

}
= −α{T (n − t, α, 1) − T (n − t − 1, α, 1)

}
+ (2t+1 − 1) − (2t − 1)

= −αan−t + 2t (by Assumption (2)). (3)

(i) When ki ≤ n < ki+1 − 1, we first show that for t < i + 1,
Tn,t is monotonically decreasing. At Eq. (3), when t < i + 1,
both −an−t and 2t take the maximums at t = i. Therefore,

Tn,t+1 − Tn,t ≤ −α an−i + 2i

< −αaki−i + 2i (since ki ≤ n)

= −aki+1 + aki (by Lemma 2(i))

< 0.

Thus, Tn,t is monotonically decreasing when t < i + 1. We
note that in showing this, Lemma 2 in the previous section
is used.

When t ≥ i + 1, both −an−t and 2t take the minimums
at t = i + 1. Therefore,

Tn,t+1 − Tn,t ≥ −αan−(i+1) + 2i+1

≥ −αaki+1−1−(i+1) + aki+1 (since n < ki+1)

= −aki+1−1 + aki+1 (by Lemma 2(i))

> 0.

Thus, Tn,t is monotonically increasing when t ≥ i + 1. Con-
sequently, when ki ≤ n < ki+1, Tn,t takes the minimum at
t = i + 1.

This completes the proof of Lemma 3. �

Now we are ready to prove Case 1 of Theorem 2. It is
further divided into two subcases: When ki + 1 ≤ n < ki+1

(Case 1-1); and when n = ki+1 (Case 1-2).

Case 1-1. By Lemmata 2 and 3, T (n, α, 1)− T (n− 1, α, 1) is
computed for ki + 1 ≤ n < ki+1 as follows.

T (n, α, 1) − T (n − 1, α, 1)

= Tn,i+1 − Tn−1,i+1

= α
{
T (n − (i + 1), α, 1) − T (n − 1 − (i + 1), α, 1)

}
+ S (i + 1, 3) − S (i + 1, 3)

= αan−(i+1) (by Assumption (2))

= an (by Lemma 2(i)).

Thus, Case 1-1 is shown.

Case 1-2. When n = ki+1, we should prove T (ki+1, α, 1) −
T (ki+1 − 1, α, 1) = aki+1 (= 2i+1). By Lemma 3, T (ki+1, α, 1)
and T (ki+1 − 1, α, 1) take the minimums at t = i + 2 and
t = i + 1, respectively. Therefore,
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T (ki+1, α, 1) − T (ki+1 − 1, α, 1)

= Tki+1,i+2 − Tki+1−1,i+1

= α
{
T (ki+1 − (i + 2), α, 1) − T (ki+1 − 1 − (i + 1), α, 1)

}
+ S (i + 2, 3) − S (i + 1, 3)

= (2i+2 − 1) − (2i+1 − 1) = 2i+1.

Thus, Case 1-2 is shown.
This completes the proof for Case 1.

Case 2. Now α = 2l for some integer l ≥ 1. Similarly to
Case 1, we proceed by induction on n. For i ≥ 0, let ki be
the largest index n such that an = 2i.

When n = 0, the proof is exactly the same with Case 1.
When n ≥ 1, we assume that the following equation

holds for all n such that 1 ≤ n ≤ ki.

T (n, α, 1) − T (n − 1, α, 1) = an.

We again extend these equations to ki+1 ≤ n ≤ ki+1; namely,
for all n such that an = 2i+1. Similarly to Lemma 3, we clar-
ify with which argument Tn,t is minimized by the following
lemma.

Lemma 4: Under the assumption of induction, the follow-
ing statements hold.

(i) When n = ki, T (n, α, 1) = min1≤t≤n
{
Tn,t
}

takes the mini-
mum at t = i + 1.

(ii) When ki + 1 ≤ n < ki+1, T (n, α, 1) = min1≤t≤n
{
Tn,t
}

takes
the minimum at t = i + 1 and t = i + 2.

Proof. Similarly to Lemma 3, we compute the difference
Tn,t+1 − Tn,t = −αan−t + 2t.

(i) When n = ki, we first show that when t < i + 1, Tn,t is
monotonically decreasing. When t < i + 1, both −an−t and
2t take the maximums at t = i. Therefore,

Tki,t+1 − Tki,t ≤ −α aki−i + 2i

= −aki+1 + aki (by Lemma 2(ii))

< 0.

Thus, Tki,t is monotonically decreasing when t < i + 1.
When t ≥ i + 1, both −an−t and 2t take the minimums

at t = i + 1. Therefore,

Tki,t+1 − Tki,t ≥ −αaki−(i+1) + 2i+1

> −αaki−i + 2i+1

= −aki + 2i+1 (by Lemma 2(ii))

= −2i + 2i+1

> 0.

Thus, Tki,t is monotonically increasing when t ≥ i+1. In all,
when n = ki, Tki,t takes the minimum at t = i + 1.

(ii) When ki+1 ≤ n < ki+1, we note that an = 2i+1 constantly
by definition of ki. When t < i + 1, both −an−t and 2t take
the maximums at t = i. Therefore,

Tn,t+1 − Tn,t ≤ −α an−i + 2i

= −an+1 + 2i (by Lemma 2(ii))

< −aki + 2i

= 0.

Thus, Tn,t is monotonically decreasing when t < i + 1.
When t = i + 1, Tn,t+1 − Tn,t is computed as

Tn,i+2 − Tn,i+1 = −αan−(i+1) + 2i+1

= −αa(n−1)−i + 2i+1

= −an + 2i+1 (by Lemma 2(ii))

= 0.

Therefore, Tn,i+2 = Tn,i+1 holds.
When t > i + 1, both −an−t and 2t take the minimums

at t = i + 2. Therefore,

Tn,t+1 − Tn,t ≥ −αan−(i+2) + 2i+2

> −αan−i + 2i+2

= −an+1 + 2i+2 (by Lemma 2(ii))

≥ 0.

Thus, Tn,t is monotonically increasing when t > i+ 1. In all,
when ki + 1 ≤ n < ki+1, Tki,t takes the minimum at t = i + 1
and t = i + 2.

This completes the proof of Lemma 4. �

Now we are ready to prove Case 2 of Theorem 2, that
is, T (n, α, 1) − T (n − 1, α, 1) = an for ki + 1 ≤ n ≤ ki+1.

When ki + 1 ≤ n ≤ ki+1, by Lemma 4, Tn,t takes the
minimum at least at t = i + 2 and Tn−1,t takes the minimum
at least at t = i + 1. Therefore, for ki + 1 ≤ n ≤ ki+1,

T (n, α, 1) − T (n − 1, α, 1)

= Tn,i+2 − Tn−1,i+1

= α
{
T (n − (i + 2), α, 1) − T (n − 1 − (i + 1), α, 1)

}
+ (2i+2 − 1) − (2i+1 − 1)

= 2i+1.

Thus, the proof for Case 2 is shown.
This completes the proof of Theorem 2. �

5. Tower of Hanoi Variants on Graphs

One of the motivation for considering the recurrence rela-
tion for T (n, α, β) is that they appear in the Tower of Hanoi
variants on graphs. For example, let us consider the Tower
of Hanoi problems on the graphs shown in Fig. 1. Now pegs

Fig. 1 Tower of Hanoi variants on graphs.
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are located on the vertices and a topmost disk of a peg is
allowed to be moved to another peg only when there is an
edge between the two pegs. The purpose of the problem for
the graph in Fig. 1 (a) (Fig. 1 (b), resp.) is to move all the n
disks from A to C (A to B, resp.). Then these problems ad-
mit algorithms with the following recurrence relations, re-
spectively.
{

T1(0, 3, 2) = 0
T1(n, 3, 2) = 3 T1(n − 1, 3, 2) + 2 (n ≥ 1)

{
T2(0, 3, 1) = 0
T2(n, 3, 1) = min1≤t≤n

{
3 T2(n − t, 3, 1) + S (t, 3)

}
(n ≥ 1)

At the first example, smaller n − 1 disks are moved by
the procedure using T1(n−1, 3, 2) moves three times and the
largest disk needs two more moves, so the recurrence rela-
tion for T1 having α = 3 and β = 2 holds in this case. At the
second example, the procedure using T2(n−t, 3, 1) moves are
applied three times and the procedure using S (t, 3) moves is
applied once. Then the recurrence relation for T2 having
α = 3 and β = 1 holds. Thus, the method and results for
T (n, α, β) in the previous sections can be used for analyzing
algorithms for the Tower of Hanoi variants on graphs.

6. Concluding Remarks

We made exact analysis of recurrence relations generalized
from the 4-peg Tower of Hanoi problem. The differences
of T (n, α, β)’s are shown to have unexpectedly simple form
such as {2iα j}. It has to be noted that the results of this pa-
per are not the one to improve the bounds of the original
multi-peg Tower of Hanoi problem. Rather, the contribution
should lie on clarifying some combinatorial structures of re-
currence relations generalized from the recursive algorithm
for the Tower of Hanoi problem. Relationships of the re-
sults of this paper with number theory, especially on smooth
numbers and on the sequences {piq j}, should be of further
interest.
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