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Indoor Positioning System Using Digital Audio Watermarking

Yuta NAKASHIMA†a), Student Member, Ryosuke KANETO†∗, Nonmember, and Noboru BABAGUCHI†, Fellow

SUMMARY Recently, a number of location-based services such as
navigation and mobile advertising have been proposed. Such services re-
quire real-time user positions. Since a global positioning system (GPS),
which is one of the most well-known techniques for real-time positioning,
is unsuitable for indoor uses due to unavailability of GPS signals, many
indoor positioning systems (IPSs) using WLAN, radio frequency identi-
fication tags, and so forth have been proposed. However, most of them
suffer from high installation costs. In this paper, we propose a novel IPS
for real-time positioning that utilizes a digital audio watermarking tech-
nique. The proposed IPS first embeds watermarks into an audio signal to
generate watermarked signals, each of which is then emitted from a corre-
sponding speaker installed in a target environment. A user of the proposed
IPS receives the watermarked signals with a mobile device equipped with
a microphone, and the watermarks are detected in the received signal. For
positioning, we model various effects upon watermarks due to propaga-
tion in the air, i.e., delays, attenuation, and diffraction. The model enables
the proposed IPS to accurately locate the user based on the watermarks de-
tected in the received signal. The proposed IPS can be easily deployed with
a low installation cost because the IPS can work with off-the-shelf speakers
that have been already installed in most of the indoor environments such
as department stores, amusement arcades, and airports. We experimentally
evaluate the accuracy of positioning and show that the proposed IPS locates
the user in a 6 m by 7.5 m room with root mean squared error of 2.25 m on
average. The results also demonstrate the potential capability of real-time
positioning with the proposed IPS.
key words: indoor positioning system, real-time, digital audio watermark-
ing, particle filter

1. Introduction

As wireless networks become ubiquitous, a variety of
location-based services (LBS) such as navigation and mo-
bile advertising have been proposed [1], [2]. This strongly
motivates development of positioning systems that accu-
rately locate or track a service user in real-time. One of
the most well-known techniques for positioning is a global
positioning system (GPS); however, GPS cannot be used in
indoor environments because GPS signals are unavailable.

Accordingly, many indoor positioning systems (IPSs)
using WLAN [3]–[6], radio frequency identification (RFID)
tags [7], [8], ultrasonic [9]–[11], audible sound [12], and so
forth have been proposed [13], [14]. However, some of
them require special devices dedicated only for positioning,
which result in high installation costs.

Recently, Nakashima et al. and Lazic et al. have
proposed IPSs that use digital audio watermarking tech-
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niques [15], [16]. Although such techniques has been ex-
tensively used for applications such as copyright protec-
tion, broadcast monitoring, and authentication, their at-
tempts have developed a new application domain, i.e., po-
sitioning. These IPSs use detection strengths (DSs) calcu-
lated to detect spread spectrum-based watermarks for posi-
tioning. They first embed a watermark into a host signal
(HS) to generate a watermarked signal (WS), and the WS is
emitted from a speaker. Propagating in the air delays and
attenuates the WS according to its propagation path, conse-
quently changing DSs that are defined as cross-correlations
of a signal received by a microphone and pseudo-random
sequences (PRSs) used to embed the watermarks. The dig-
ital audio watermarking-based IPSs utilize these changes as
cues for positioning.

The main advantage of these IPSs is that they are eas-
ily deployed with low installation costs because they use
only commercially available speakers that have been al-
ready installed in target environments and user’s mobile de-
vice equipped with a microphone, making the digital audio
watermarking-based IPSs viable. However, each of them
has a drawback: The IPS [15], which uses delays of WSs
measured based on DSs, requires the mobile device to con-
stantly receive WSs from at least three speakers. This is a
severe restriction for real-time positioning because the WSs
attenuate rapidly as the user recedes from the speakers, and
the delays cannot be measured from the attenuated WSs.
The IPS [16] only provides the speaker position that is near-
est to the user position based on attenuation of WSs instead
of an estimate of the user position; therefore, the accuracy
can be insufficient for some applications of the IPS.

In this paper, we propose an IPS based on [15] aim-
ing at applications such as indoor navigation that requires
accurate and real-time user positions (Fig. 1). To this end,

Fig. 1 An overview of the proposed IPS.
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we adopt a novel approach that leverages both delays and
attenuation of WSs in the positioning algorithm [17]. This
approach enables our proposed IPS to pinpoint the user even
when the microphone does not receives WSs from three
speakers constantly because the attenuation of WSs provides
additional constraints on the user position. We also reduce
the computational cost compared with our previous IPS [17]
so that our proposed IPS can be used with low spec devices.

The following is the main contributions of this paper:

• We propose a new watermarking algorithm that is ro-
bust against excessive noises based on [18] so that wa-
termarks can be detected even in noisy environments
such as amusement arcades, considering that degrada-
tion of acoustic quality is negligible in such noisy en-
vironments.
• To leverage both delays and attenuation of WSs, we

explicitly model DSs taking into account delays and
attenuation of WSs. We also introduce an assumption
that noises on DSs are independent and identically dis-
tributed to reduce the computational cost.
• We experimentally evaluate the accuracy of the pro-

posed IPS in actual environments of a 45.5 m2 rectan-
gle room and a 435.8 m2 octagonal cafeteria, and verify
that real-time positioning is possible. The accuracy and
processing time of the proposed IPS are compared with
those of our previous IPS [17].

The rest of this paper is organized as follows: In the
next section, we introduce related works. We provide an
overview of the proposed IPS in Sect. 3. Sections 4 and
5 describe the watermarking algorithm and the positioning
algorithm, respectively. Experimental results are given in
Sect. 6. Section 7 concludes this paper.

2. Related Work

Many IPSs have been proposed using WLAN, RFID tags,
ultrasonic, audible sound, and so forth [13], [14]. For exam-
ple, Yim et al. developed an IPS that uses received signal
strengths of WLAN [4]. Ni et al. proposed an RFID-based
IPS that uses reference RFID tags deployed in target en-
vironments [7]. An ultrasonic-based IPS called Cricket is
proposed by Priyantha et al. [10]. They installed ultrasonic
senders in target environments and receive the signals by
an inexpensive dedicated ultrasonic receiver. Compared to
these techniques, our proposed IPS is characterized by its
easiness of installation; it uses commercially available mi-
crophones and speakers that have been already installed in
many indoor environments. In addition, IPSs that perform
positioning in a remote device can suffer from a privacy is-
sue because real-time positions of a specific user can be ag-
gregated without the user’s consent [19]–[21]. The privacy
issue does not arise in our proposed IPS because positioning
is done in the user’s mobile device.

Various digital audio watermarking algorithms have
been proposed. Yeh and Kuo proposed to modify least
significant bits for embedding watermarks [22]. Bassia et

al. proposed to adopt the spread spectrum technique in the
time domain [23] for watermarking. Cvejic and Seppänen
developed a spread spectrum-based algorithm in the fre-
quency domain to improve robustness against low pass fil-
tering and compression [24]. Tachibana et al. [18] as well as
Kirovski and Malvar [25] proposed spread spectrum-based
algorithms in the time-frequency space for further improv-
ing robustness against various attacks on WSs. Our pro-
posed IPS adopts a digital audio watermarking algorithm
based on [18] as watermarks based on this algorithm sur-
vive even after propagating in the air although other spread
spectrum-based algorithms are potentially applicable.

Such digital audio watermarking techniques are
adopted in a wide range of applications, e.g., copyright pro-
tection, broadcast monitoring, authentication, and so forth.
We use them for a very different purpose: Without water-
marking, the positioning from a received signal (RS) that are
mixture of multiple signals from speakers is a very tough
problem if we have no knowledge on the original signals.
The spread spectrum-based watermarking technique makes
the problem easy because it converts the problem of posi-
tioning from the RS into the problem of positioning from
DSs of which waveform is known.

Several positioning systems that use digital audio wa-
termarking techniques have been proposed. Lazic and
Aarabi proposed a digital audio watermarking algorithm and
they introduced a positioning system as its application [16].
Their system provides the speaker position that is nearest to
the user based on attenuation of WSs. Nakashima et al. pro-
posed to use delays of WSs for accurate positioning [15],
[26]–[28], aiming at a countermeasure of movie piracy in
theaters. We have proposed an IPS that extends [15], which
uses both attenuation of WSs and delays for real-time and
accurate positioning [17]. In this paper, we construct a sim-
plified model of DSs based on [17] for further speeding up
so that the proposed IPS can work even in low spec devices.

3. An Overview of the Proposed IPS

Figure 1 shows an overview of the proposed IPS. First, a
spread spectrum-based watermark derived from [18] is em-
bedded into an HS to generate a WS. We use a music piece
as an HS because our target indoor environments such as
shopping malls and amusement arcades often play back-
ground music. The WS is emitted into the air from the cor-
responding speaker installed in a target environment, and
received by a user’s mobile device equipped with a micro-
phone. Therefore, the RS is a mixture of the WSs from the
speakers around the user. From the RS, DSs of each wa-
termark are calculated. The proposed IPS locates the user
using a model of the DSs given the user position and di-
rection. To track the user position and direction, we adopt
particle filter [29] because it can control the computational
cost by changing the number of particles and can improve
the accuracy by Bayesian updating.

The basic idea for positioning using the model of the
DSs is to utilize the property of the spread spectrum-based
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Fig. 2 An illustrative example of (a) a WS, (b) an RS, and (c) DSs.

watermarking technique that the DSs of the watermark,
which are defined as a cross-correlation between PRSs and
the RS in a transformed domain, form peaks as in Fig. 2 (c).
The heights and positions of the peaks depend on, e.g., de-
lays and attenuation of WSs due to propagation in the air
from the speakers to the microphone; therefore, the heights
and positions of the peaks can be used for positioning.

4. Digital Audio Watermarking for IPS

In our watermarking algorithm, we generate a WS in the
time-frequency plane of the HS constructed using the dis-
crete Fourier transform (DFT). The energy of the watermark
is spread on a region in the time-frequency plane called a
pattern block (Fig. 3 (a)) that consists of WB × HB smaller
regions called tiles as shown in Fig. 2 (a), where a tile con-
sists of 2 × HT Fourier coefficients (Fig. 3 (b)), i.e., the am-
plitudes of Fourier coefficients in a tile at (w, h) are modified
according to a PRS ωc(w, h) for the c-th WS. Considering
that degradation of acoustic quality of the WSs is not a crit-
ical problem in noisy environments, we modify the original
watermarking algorithm [18] to cut off the high frequency
part of the HS so that they can be robust against noises.

4.1 Watermark Embedding

The c-th WS is generated as follows:

1. The HS x(t) is divided into frames, each of which con-
sists of N samples, using the sine window defined as

win(t) =

{
sin(πt/N) for 0 ≤ t < N
0 otherwise

. (1)

Adjacent frames are overlapped with each other by N/2
samples to avoid discontinuities. The t-th sample of the
f -th frame is given by

x̃( f , t) = x(t + f N/2)win(t). (2)

2. A frame is transformed into the frequency domain us-
ing the DFT. The k-th Fourier coefficient of the f -th

Fig. 3 (a) A pattern block consisting of WB × HB tiles. (b) A tile
comprised of HT amplitude spectra of two successive frames.

frame, X( f , k), is obtained as

X( f , k) = DFT[x̃( f , t)](k). (3)

The amplitude and phase of the Fourier coefficient are
denoted by XA( f , k) and XP( f , k), respectively.

3. The amplitude modification sign sign( f , k), which in-
dicates whether an amplitude in the tile at (w, h) is in-
creased or decreased, is calculated as

signc( f , k) = ωc(w, h) m( f mod 2), (4)

where ( f , k) is replaced with corresponding (w, h);
m0 = +1 and m1 = −1 are introduced to alleviate
degradation of the watermark due to the HS assuming
that the amplitudes of Fourier coefficients in successive
frames give similar values.

4. The amplitude of the Fourier coefficient of the WS,
YA( f , k), is determined. For k corresponding to the fre-
quency lower than TH, the amplitude is set to

YA( f , k) = XA( f , k) + A( f , k)signc( f , k). (5)

where A( f , k) is an inaudible amount of amplitude
change obtained by the psychoacoustic model [30].
Otherwise, depending on signc( f , k), the amplitude is
cut off as

YA( f , k) =

{
XA( f , k) if signc( f , k) = +1
0 otherwise

. (6)

We empirically set TH to 6000 Hz because noises
higher than this frequency seem relatively inaudible.

5. The WS in the frequency domain is transformed into
time domain by the inverse DFT using the original
phases of the HS as

ỹ( f , t) = IDFT
[
YA( f , k) exp

{
jXP( f , k)

}]
(t), (7)

where j =
√−1.

6. The final WS, y(t), is generated by the overlap-and-add
using the sine window as follows:

y(t) =
∑

f

ỹ( f , t − f N/2)win(t − f N/2). (8)

4.2 Watermark Detection

In watermark detection, we calculate DSs for each WS in
the RS z(t) for every Δ samples as follows:
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1. The RS is divided into frames z̃i( f , t) by the sine win-
dow so that z̃i(0, t) starts at the iΔ-th sample of z(t), i.e.,

z̃i( f , t) = z(t + iΔ + f N/2)win(t). (9)

2. The frame is transformed into the frequency domain by
the DFT as

Zi( f , k) = DFT [z̃i( f , t)](k). (10)

3. The amplitude of Zi( f , k) is normalized as

Z̄A
i ( f , k) =

ZA
i ( f , k)

1
N/2

∑N/2−1
k=0 ZA

i ( f , k)
. (11)

4. The difference between log amplitudes of two frames
is calculated as

Di(w, k) = log Z̄i(2w, k) − log Z̄i(2w + 1, k). (12)

As mentioned in the previous section, this alleviates
degradation of the watermark due to the HS because
the amplitudes of the HS in the successive frames are
canceled while the watermark is enhanced.

5. The sum of Di(w, k) is computed by

ρi(w, h) =
∑

k

Di(w, k), (13)

where summation is computed for k in the tile at (w, h)
of the pattern block that is assumed to start at iΔ-th
sample of the RS.

6. The i-th DS for the c-th WS is calculated as

sc(i) =

WB∑
w=1

HB∑
h=1

ωc(w, h)
[
ρi(w, h) − ρ̄i

]
√√

WB∑
w=1

HB∑
h=1

{
ωc(w, h)

[
ρi(w, h) − ρ̄i

]}2 , (14)

where

ρ̄i =
1

WBHB

WB∑
w=1

HB∑
h=1

ρi(w, h). (15)

From the central limit theorem, sc(i) follows the Gaussian
distribution. If the RS does not contain the watermark em-
bedded with ωc(w, h), sc(i) asymptotically follows the stan-
dard Gaussian distribution because the standard deviation of
the numerator of (14) is given by the denominator.

5. Positioning

The DSs form a peak at the time position where a pattern
block starts as shown in Fig. 2 (c). This peak position is
determined by the delay of WS that is proportional to the
length of the propagation path as in Fig. 4. The peak height,
corresponding to the value of sc(i) at the peak position, de-
pends on attenuation of the WS due to the propagation in
the air and screening caused by the user body. In addition,
as well as background noises, WSs themselves behave like
noises that decrease the peak height. Based on these ob-
servations, we construct a DS model. The user is located
using the DS model and particle filter [29], which allows us
to control the computational cost and to improve accuracy.

Fig. 4 A propagation path of a WS.

5.1 Detection strength model

To construct a DS model, we first divide sc(i) into DS se-
quences so that a DS sequence has a single peak as in
Fig. 2 (c), i.e.,

sc
l = [sc(lΛ), sc(lΛ + 1), · · · , sc((l + 1)Λ − 1)]� (16)

where Λ is the length of a pattern block in sample divided
by Δ and � represents transpose.

The peak position in sc
l that depends on the length of

propagation path from the speaker for the c-th WS to the
microphone is modeled as follows. Let xsp

c = (xsp
c , y

sp
c ), xm =

(xm, ym), and θm denote the position of the speaker for the c-
th WS, the position of the user, and the user direction with
respect to the x-axis, respectively, as shown in Fig. 4. A WS
emitted from the speaker can be diffracted by the user body
when the user body is on the direct path from the speaker to
the microphone. Assuming that the user body is a plane with
the width of WU, we model the length of the propagation
path in the case of diffraction by

r′c(xm, θm) =

√{
rc(xm) − WUξ

2

}2
+

{WUζ

2

}2
+

WU

2
,

(17)

where rc(xm) = ‖xm − xsp
c ‖. ξ and ζ are obtained by

ξ = sin φc(xm, θm) (18)

and ζ = cos φc(xm, θm), (19)

where φc(xm, θm) = |θm − ϕc(xm)| and ϕc(xm) is the angle
between (xm − xsp

c ) and the x-axis. Considering that the WS
is not diffracted if the user faces to the speaker, the length
of the propagation path Rc(xm, θm) from the speaker for the
c-th WS to the microphone is given by

Rc(xm, θm) =

{
r′c(xm, θm) if φc(xm, θm) < π/2
rc(xm) otherwise

.

(20)

Using this length, we model the peak position in sc
l as

τc(xm, θm, τ0) =
FSRc(xm, θm)

VSΔ
+ τ0 (21)

where τ0 is a parameter that depends on when the reception
of the WSs is started; FS is the sampling frequency; and VS

is the speed of sound.
Next, we construct a model of the peak height hc

l . The
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peak height decreases due to propagation in the air and
screening caused by the user body. The WSs and back-
ground noises also decrease the peak height. Taking these
into account, we model the peak height as

hc
l (xm, θm) =

[αG(φc(xm, θm)) + β]/Rc(xm, θm)∑
c′�c 1/Rc′ (xm, θm) + ε

, (22)

where G(φ) represents the screening due to the user body
defined using a predetermined parameter ν as

G(φ) = e−ν(φ−π)
2
. (23)

In (22), we assume that the peak height for the c-th WS is in-
versely proportional to Rc(xm, θm). The effect of the screen-
ing by the user body is controlled by the parameters α and
β. The denominator of (22) represents the reduction of the
peak height: The first and second terms of the denominator
correspond to reduction of the peak height due to the WSs
and background noises, respectively.

Finally, we integrate the models of the peak position
and the peak height to construct a DS model. The character-
istic waveform of a DS sequence as in Fig. 5 (a) comes from
the watermarking algorithm, i.e., in watermark embedding,
a pseudo-random number in a PRS is embedded by modi-
fying the amplitudes of successive two Fourier coefficients
toward opposite signs, and this forms two valleys at the both
sides of the peak. We compute the averaged waveform of a
DS, a = [a0, a1, · · · , aΛ−1], as shown in Fig. 5 (b). Let a[τ]

denote the vector whose elements are the circular shift of
those of a by the floor of τ, i.e.,

a[τ] = [aΛ−	τ
+1, · · · , aΛ, a1, a2, · · · , aΛ−	τ
]. (24)

Assuming that noises on sc
l are independent and identically

distributed and follow a Gaussian distribution, sc
i can be

modeled as the multivariate Gaussian distribution of which
mean is given by μc

l (xm, θm, τ0) = hc
l (xm, θm)a[τc(xm,θm,τ0)],

i.e.,

p(sc
l | xm, θm, τ0) = N(sc

l | μc
l (xm, θm, τ0),Σ) (25)

whereN(·) represents the multivariate Gaussian distribution
and Σ = diag(σ2, · · · , σ2) is a Λ × Λ diagonal matrix.

5.2 Parameter Estimation

The DS model given by (25) depends on the parameters α,
β, ε, and σ2. We estimate the values of these parameters us-
ing a set of DS sequences for known xm and θm with various

Fig. 5 (a) An example of sc(i) and (b) the averaged waveform of a DS
sequence.

speaker arrangements. Let sc
n denote the n-th DS sequence

for the c-th WS in the set received at xm
n and θmn . The peak

position τ0,n is unknown even in the set because it depends
on the timing to start receiving that is hard to precisely con-
trol. Therefore, we estimate τ0,n by

τ̃0,n = arg max
τ0,n

∑
c

log p(sc
n | xm

n , θ
m
n , τ0,n). (26)

This estimation can be more accurate by concatenating DS
sequences that share the same value of τ0,n, i.e., DS se-
quences obtained from a single RS.

Using the estimates of the peak positions, we define a
log likelihood function L′

α, β, ε, σ2 of the set as

L′
α, β, ε, σ2 =

∑
n,c

log p(sc
n | xm

n , θ
m
n , τ̃0,n). (27)

We can estimate the parameters by maximizing L′
α, β, ε, σ2 .

However, our preliminary study indicated that the maximum
of L′

α, β, ε, σ2 cannot be uniquely determined; therefore, as-
suming that ε is small, we introduce a penalty term as

L′
α, β, ε, σ2 − λε2. (28)

For given ε, the maximization is reduced to a linear least
square problem with respect to α and β, which can be easily
solved because σ2 is irrelevant to α, β, and ε. Therefore, we
exhaustively search for ε that minimizes (28) with solving
the linear least square problem and then estimate σ2 that
maximizes L′

α, β, ε, σ2 .

5.3 Positioning Using Particle Filter

By applying the sampling importance resampling (SIR) par-
ticle filter [29], we estimate the distribution of xm, θm, and
τ0 from sc

l . Each particle has a state vector u = (xm, θm, τ0).
In each iteration, a particle is weighted by the likelihood

L(u) =
∏

c

p(sc
l |u) (29)

calculated using (25), and the state vector u is updated by

u′ = u + η (30)

where η is a Gaussian distributed noise whose mean is 0 and
variance is ΣU = diag(σ2

x, σ
2
y, σ

2
θ , σ

2
τ). We compute the aver-

age of xm and θm over all particles as an estimate. Compared
to our previous IPS [17], the proposed IPS is computation-
ally efficient: In [17], the weight for each particle requires
to calculate the logarithm, which is computationally expen-
sive, for each element in a DS sequence. In contrast, the
proposed IPS uses only the four arithmetic operations to cal-
culate (29) in our implementation using logarithms because
the variance of p(sc

l |u), which is a constant, can be ignored.
To improve the accuracy of positioning, we can use the

ensemble mean of sc
l instead of sc

l given by

〈sc
l 〉 =

1
Q

Q−1∑
q=0

sc
l−q, (31)
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with modification of σ2. This reduces the noises of sc
l if the

user is static. However, if the user rapidly moves, the en-
semble mean introduces extra noises; therefore, we should
set Q as small as possible for real-time positioning.

6. Experiments

We experimentally evaluated the accuracy of the proposed
IPS for the static and moving user cases.

6.1 Experimental Setup

We evaluated our IPS in the following two environments
with various speaker arrangements.

• ROOM: An office room of 6.5 m × 7.0 m (Fig. 6 (a)).
• CAFE: An octagon-shaped cafeteria each edge of

which is 9.5 m (Fig. 6 (b)).

We use EDIROL UA-101 as an audio interface from a PC
to speakers YAMAHA HS-50M. The microphone that re-
ceives WSs is SHURE SM63L and is connected to another
EDIROL UA-101. The RS is stored to a PC for evaluat-
ing the accuracy for various parameter setting. Two music
pieces are used for evaluation: popular music with a low
dynamic range (POP) and instrumental music with a high
dynamic range (INST). In both ROOM and CAFE environ-
ments, we played the WSs at the several sound volumes,
e.g., 0 dB, −3 dB, −6 dB, −9 dB, and −12 dB, and received
them at the predetermined positions and directions for pa-
rameter estimation. The value of λ is set to the number of
DS sequences used for parameter estimation, and the num-
ber of the particles are set to 1500. The other parameter
values are empirically determined as in Table 1.

Fig. 6 The experimental environments (a) ROOM and (b) CAFE with
examples of speaker arrangements. The intervals between dashed lines for
(a) and (b) is 1 m and 5 m, respectively.

Table 1 Parameter values used in our experiments.

WB HB HT N TH [Hz] Δ FS [Hz]
15 42 6 512 6000 8 44100

VS [m/sec] WU [m] ν σ2
x σ2

y σ2
θ σ2

τ

340 0.6 0.3 0.08 0.08 0.2 0.002Λ

6.2 Static User Case

We evaluated the estimation accuracy at the randomly cho-
sen positions and directions (R1–R9) listed in Table 2 in
ROOM to show influences of sound volumes, the number of
DS sequences Q for ensemble mean, and speaker arrange-
ments. The speaker arrangements used in this evaluation
are SPR1, SPR2, and SPR3 summarized in Table 4. These
speaker arrangements are different from those for parameter
estimation. We used excerpts of POP and INST whose dura-
tions are 10 seconds. Since the estimation results depend on
initial values of state vectors of particles that are randomly
chosen, we stored each RS and repeated applying position-
ing 100 times. The accuracy is evaluated by the root mean
squared error (RMSE) of the last estimate of each repetition.

Figures 7 (a)–(d) show the results. For POP, the RMSE
values for positions are approximately 1 m in SPR1, but in-
crease according to the number of the speakers decrease
as SPR2 and SPR3. For directions, differences among the
RMSE values for SPR1 and SPR2 are small although SPR3
gives larger RMSE values. The effects of the sound volume
and the value of Q are insignificant for both positions and
directions. For INST, most of the RMSE values exceed 2 m,
and they slightly increase along with decrement of the sound
volume. Especially for SPR1, the RMSE values are unsta-
ble in sound volume. These results indicate that our IPS is

Table 2 Positions and directions for evaluation in ROOM.

Label R1 R2 R3 R4 R5 R6 R7 R8 R9
xm [m] 2 1.1 2.5 3.2 2.4 3.3 4.3 3.6 4.5
ym [m] 1.9 2.2 2.5 1.3 4.2 3.5 3.3 4.1 4
θm [deg.] 205 115 270 175 105 210 0 340 90

Table 3 Positions and directions for evaluation in CAFE.

Label C1 C2 C3 C4 C5 C6 C7 C8
xm [m] 5.8 6.8 12.4 14.4 15.1 13.9 17.5 16.7
ym [m] 11.6 11.2 10.9 10.3 15.4 18.1 17.2 18.2
θm [deg.] 45 260 165 80 225 190 80 340

Table 4 Speaker arrangements. The values of θsp are the angles with
respect to the x-axis.

ROOM CAFE

SPR1 SPR2 SPR3 SPC1 SPC2

xsp
1 [m] 1.5 1.5 1.5 16.0 16.0

y
sp
1 [m] 0.0 0.0 0.0 19.0 19.0

θsp [deg.] 90 90 90 247 247

xsp
2 [m] 5.0 5.5 5.5 7.0 0.5

y
sp
2 [m] 0.0 2.5 3.0 19.0 12.5

θsp [deg.] 135 180 180 292 337

xsp
3 [m] 4.5 0.0 — 7.0 5.3

y
sp
3 [m] 5.0 5.0 — 8.5 0.0

θsp [deg.] 270 315 — 90 90

xsp
4 [m] 0.0 — — 17.0 12.5

y
sp
4 [m] 5.0 — — 8.5 0.0

θsp [deg.] 315 — — 135 90
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Fig. 7 RMSEs for (a) positions and (b) directions of POP; and (c) positions and (d) directions of INST
with respect to various sound volumes.

Fig. 8 Example distributions of estimates for SPR1.

Fig. 9 Example distributions of estimates for SPR2.

Fig. 10 Example distributions of estimates for SPR3.

suitable for low dynamic range music pieces and ensemble
means are useless to improve the accuracy.

Figures 8–10 are examples of distributions of estimates
for R3, R4, and R8 when Q = 1 and the sound volume is
−3 dB. The unit of each axis is meter. Red circles represent
speakers and white circles with arrows represent user posi-
tions and directions. To generate the distributions, we used
kernel density estimation with the kernel ker(x) = e−x·x/κ2

where κ = 0.25. As can be seen in these figures, the distri-
butions of estimates when the number of speakers is small
are elongated. One of the reasons can be as follows: When
the speakers are sparsely deployed, peak heights in DS se-
quences for WSs from speakers far from the microphone are

low, and thus, the peak positions are useless for positioning.
However, constraints subjected by peak heights, which are
expected to be useful in such a case, are insufficient to ac-
curately locate the user because there can be many xm and
θm that give the same value of hc

l (xm, θm). Therefore, to im-
prove accuracy, we need other constrains by, e.g., incorpo-
rating directionality of speakers in the peak height model.

To compare the proposed IPS with [17], we re-
implemented [17] so as to incorporate ensemble mean in
[17] and applied it to our stored RSs with the parameter
values listed in Table 1. The averaged RMSE values of
positions and directions when Q = 1 and 10 are shown in
Fig. 11. The averaged RMSE value of positions for [17] is
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Fig. 11 Averaged RMSE values of (a) positions and (b) directions for our
proposed IPS and IPS in [17]. The averaged RMSE values are calculated
for Q = 1 and 10.

larger than that in [17]. This is because that the RMSE value
in [17] is calculated using all estimates obtained from a sin-
gle RS without repetition. For both positions and directions,
the IPS in [17] for Q = 1 gives the largest RMSE. Therefore,
the simplified DS model proposed in this paper achieves bet-
ter accuracy. The main reason is that the IPS [17] uses a log
likelihood as a weight of each particle, which suppresses dif-
ferences among weights of particles, resulting in estimates
around the center of the target environment. Since the aver-
aged RMSE for Q = 10 is smaller than that for Q = 1, use
of larger Q alleviates the problem of log likelihood in [17].

To demonstrate the estimation accuracy in various en-
vironments, we asked two and four persons to walk around
and make noises in ROOM and CAFE, respectively. For
ROOM, we tested with SPR1 and SPR2. For CAFE, we
employ two speaker arrangements, i.e., SPC1 and SPC2, as
summarized in Table 4. In SPC1, four speakers are arranged
in relatively small area of CAFE while they are arranged in
large area of CAFE in SPC2. Positions and directions eval-
uated in CAFE are summarized in Table 3. We set Q and
sound volume to 10 and 0 dB, respectively.

Figures 12 and 13 show the results. The reduction of
accuracy due to noises is small for both POP and INST.
However, our proposed IPS gives large errors in CAFE.
We consider that the causes of these errors are categorized
into the following two cases: (1) For positions near a sin-
gle speaker and the user faces towards the speaker such as
C1, C2, and C8 in SPC1, the WS from the nearest speaker
dominates the RS and WSs from the other speakers are
masked, resulting in estimates around the nearest speaker as
in Figs. 14 (a) and (b). (2) For positions far from any speaker
such as C3 and C5 in SPC1 and most positions in SPC2,
DSs of any WSs have no significant peaks. In this case, the
distributions of estimates become elongated as Fig. 14 (c) or
broad as Figs. 14 (d), (e), and (f). This is caused by the same
reason as, e.g., Fig. 9 (b). In addition to this, auto- and cross-
correlations of PRSs used in watermark embedding can also
cause these errors. That is, the auto- and cross-correlations
form false peaks in DS sequences, resulting in local max-
ima of the likelihood (29). Therefore, we need to reduce
auto- and cross-correlations of PRSs. Since IPSs are not for
security purpose in contrast to existing applications of dig-
ital watermarking techniques that often uses PRSs as a key

Fig. 12 RMSEs for POP in various environments (sound volume and Q
are set to 0 dB and 10, respectively).

Fig. 13 RMSE for INST in various environments (sound volume and Q
are set to 0 dB and 10, respectively).

to detect watermarks, it is feasible to optimize PRSs with
respect to auto-and cross-correlations.

6.3 Moving User Case

To demonstrate our proposed IPS for moving user case un-
der various parameter settings in ROOM with SPR1, SPR2,
and SPR3, we asked a subject who holds a microphone to
stay at (4, 4) for 10 seconds and then to walk from (4, 4)
to (1, 1) for subsequent 10 seconds. We stored the RSs and
applied our proposed IPS for 100 times to each RS as in
the previous section. From the latter 10 seconds, we ex-
tracted a sequence of estimates. For each estimate in the se-
quences, we calculated a sample mean and sample variance-
covariance matrix over the 100 sequences. We also found
the sequences that give maximal and minimal RMSE values
assuming that the subjects walked in a constant speed.

Figures 15 and 16 show the results. The blue cir-
cles in each graph represent speaker positions. The sam-
ple variance-covariance matrices are represented by the el-
lipses in gray. For POP, we consider that the sequences of
estimates well trace the actual trajectory although there are
some erroneous sequences such as the sequence with max-
imal RMSE value in Fig. 15 (d). For INST, most of the se-
quences of estimates give large error. In addition, when esti-
mates at the initial positions give large errors, the proposed
IPS cannot recover them. This can be caused by the prob-
lem of sample impoverishment [29]; all particles are con-
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Fig. 14 Distributions of estimates in CAFE. (a)–(d) are in SPC1. (e) and (f) are in SPC2.

Fig. 15 Trajectories of estimates for POP where Q = 1. MEAN, MIN, and MAX represent sample
means, the sequence with maximum RMSE, and the sequence with minimum RMSE, respectively.

Fig. 16 Trajectories of estimates for INST where Q = 1. MEAN, MIN, and MAX represent sample
means, the sequence with maximum RMSE, and the sequence with minimum RMSE, respectively.

centrated at erroneous positions and lose their diversity to
find the actual position even after the user begin to walk.
The problem of sample impoverishment also occurs in the
static user case. We can overcome this problem by using
a larger variance ΣU of the noise in (30) and increasing the
number of particles. However, there is a trade-off between
the number of particles and the computational cost.

6.4 Verification of Real-Time Positioning

To verify that the proposed IPS works in real-time, we ap-
plied it for 10 times to a stored RS of which duration is
10 seconds and measured elapsed time on a laptop PC with
Intel Core2Duo L9300 1.6 GHz CPU, 2.0 GBytes memory,
and Microsoft Windows 7 (32 bit) OS. The average and
standard deviation are 6.0 seconds and 0.2 seconds, respec-
tively. Since the computational burden due to reception of
audio signal is low compared to watermark detection and
positioning, this result indicates that the proposed IPS works
in real-time. Actually, our real-time implementation using
Steinberg’s ASIO API† works properly.

For comparison, we also measured elapsed time of the

IPS [17] on the same PC. The average and standard devia-
tion are 11.2 seconds and 0.1 seconds, respectively. There-
fore, the modification on the likelihood (29) shorten the
elapsed time to 53%, enabling us real-time positioning even
on a relatively low spec PC.

7. Conclusion

In this paper, we proposed an indoor positioning system
(IPS) using a spread spectrum-based digital audio water-
marking technique, which is easily deployed by installing
several off-the-shelf speakers to target environments. The
experimental results indicated that our IPS is suitable for
uses in small environments; it locates user positions with
2.25 m of RMSE on average. In addition, our IPS can find
the speaker nearest to the user even in larger environments.
Although the estimates from our IPS is unstable in initial
states of particles and in high dynamics of host signals, the
IPS is promising because it works in real-time. We believe

†Currently found at http://www.steinberg.net/en/company/
developer.html
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that our IPS is potentially applicable to location-based ser-
vices that require accurate user positions. The future work
includes to construct a model of detection strengths stable
in dynamics of host signals and initial states of particles,
and to introduce other constraints such as directionality of
speakers.
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