
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.11 NOVEMBER 2011
2227

PAPER

A Supervised Classification Approach for Measuring Relational
Similarity between Word Pairs

Danushka BOLLEGALA†a), Yutaka MATSUO†, Nonmembers, and Mitsuru ISHIZUKA†, Member

SUMMARY Measuring the relational similarity between word pairs is
important in numerous natural language processing tasks such as solving
word analogy questions, classifying noun-modifier relations and disam-
biguating word senses. We propose a supervised classification method to
measure the similarity between semantic relations that exist between words
in two word pairs. First, each pair of words is represented by a vector of
automatically extracted lexical patterns. Then a binary Support Vector Ma-
chine is trained to recognize word pairs with similar semantic relations to
a given word pair. To train and evaluate the proposed method, we use a
benchmark dataset that contains 374 SAT multiple-choice word-analogy
questions. To represent the relations that exist between two word pairs, we
experiment with 11 different feature functions, including both symmetric
and asymmetric feature functions. Our experimental results show that the
proposed method outperforms several previously proposed relational simi-
larity measures on this benchmark dataset, achieving an SAT score of 46.9.
key words: relational similarity, supervised classification, support vector
machines, word analogies

1. Introduction

Relational similarity can be defined as the correspondence
between semantic relations that exist between words. For
example, the semantic relation, X is a large Y holds be-
tween the words in the word pair (lion, cat) and (ostrich,
bird), because lion is a large cat, whereas ostrich is a large
bird. Here, we use variables X and Y as placeholders for
words between which a relation exists. Consequently, the
two word pairs, (lion, cat) and (ostrich, bird), are consid-
ered to be relationally similar. If four words A, B, C, and D
form a proportional analogy A : B :: C : D, then we can ob-
serve a high degree of relational similarity between the two
word pairs (A, B) and (C,D).

Relational similarity measures are useful for numerous
tasks in natural language processing such as classification
of semantic relations in noun-modifier pairs, word sense
disambiguation (WSD) and automatic thesaurus generation.
Noun-modifier pairs such as flu virus, storm cloud, expen-
sive book, etc. are frequent in English language. In fact,
WordNet contains more than 26, 000 noun-modifier pairs.
Natase and Szpakowicz [1] classified noun-modifiers into
five classes according to the relations between the noun and
the modifier. Turney [2] used a relational similarity measure
to compute the similarity between noun-modifier pairs and
classify them according to the semantic relations that hold
between a noun and its modifier. In WSD [3] identifying the

Manuscript received May 6, 2011.
†The authors are with The University of Tokyo, Tokyo, 113–

8656 Japan.
a) E-mail: danushka@iba.t.u-tokyo.ac.jp

DOI: 10.1587/transinf.E94.D.2227

various relations that hold between an ambiguous word and
its context is vital. For example, the word “plant” can re-
fer to an industrial plant or a living organism. If the word
“food” appears in the immediate context of “plant”, then a
typical WSD approach is to compare the attributional simi-
larity between “food” and “industrial plant” to that of “food”
and “living organism” and to select the sense with higher
attributional similarity. Considering the fact that industrial
plants often produce food and living orgasms often serve as
food, the decision may not be very clear. However, if we can
identify the relation between “food” and “plant” as “food for
the plant” then it strongly suggests that the plant is a living
organism. On the other hand, a relation such as “food at the
plant” suggests the plant to be an industrial plant.

To accurately measure the relational similarity between
two word pairs, we must overcome several challenges. First,
the relations themselves are only implicitly stated by a word
pair. Therefor, we must first extract the relation that exists
between the two words in each of the word pairs. For exam-
ple, from the word pair (ostrich, bird), we must first identify
the relation X is a large Y. Second, there might exist more
than one relation between two words. For example, in addi-
tion to the relation X is a large Y, there exists the relation
X is a flightless Y between the two words ostrich and bird.
Third, we must identify how much each relation contributes
to the relational similarity between two word pairs. For ex-
ample, a general relation such as X and Y which holds be-
tween many words might contribute less towards relational
similarity, whereas a specific relation such as X is a large
Y might contribute more. However, it is not known a priori
as to how much each relation contributes to the relational
similarity between two given word pairs. In this paper, we
follow a supervised machine learning approach to measure
the relational similarity between two given word pairs.

We model the problem of detecting relational similarity
as a binary classification problem in which given two word
pairs, (A, B) and (C,D) the classifier must return a positive
or a negative decision depending on whether the word pair
(A, B) is relationally similar to the word pair (C,D) or oth-
erwise. We use Support Vector Machine (SVM)s [4] as the
binary classifier and converts the distance from the decision
hyperplane into a calibrated posterior probability, thereby
enabling us to measure degree of relational similarity be-
tween two given word pairs. Following previous work on
relational similarity, we represent the implicit semantic re-
lations that exist between two words using lexical patterns.
Specifically, we use the method proposed by Bollegala et

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

2228
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.11 NOVEMBER 2011

al. [5] to extract lexical patterns to represent semantic rela-
tions that exist between two given words using text-snippets
returned from a Web search engine. Snippets provide use-
ful information about the relations that hold between words.
For example, Google † returns the snippet ...the ostrich is the
largest bird in the world and can be found in South Africa...
for the conjunctive query ostrich AND bird. This snippet
alone suggests that ostrich is a large bird. We automatically
extract lexical patterns that describe the relations implied
by the two words in a word pair and compute the relational
similarity using a machine learning approach. Moreover, by
using snippets, we can obviate the need to download Web
pages which can be time consuming if those pages are large.

2. Related Work

Scholastic Aptitude Test (SAT) word analogy questions
have been used for evaluating relational similarity measures.
An SAT word analogy question consists of a word pair
(which we designate as the question word pair) and five can-
didate answer word pairs (which we designate as the candi-
date word pairs). Only one of the candidate word pairs is
analogous to the source word pair in an SAT word analogy
question. An examinee is required to select the analogous
word pair to the question word pair. An example is shown
in Fig. 1. The relatively low average human score of 57%
reported for the SAT word analogy questions indicates that
detecting the correct word pair among a given set of candi-
dates is difficult for even humans.

Turney et al. [6] combined 13 independent modules by
considering the weighted sum of the outputs of each indi-
vidual module to solve SAT analogy questions. The best
performing individual module was based on Vector Space
Model (VSM). In the VSM approach to measuring relational
similarity [7], first a vector is created for a word-pair (X,Y)
by counting the frequencies of various lexical patterns con-
taining X and Y. In their experiments they used 128 manu-
ally created patterns such as “X of Y”, “Y of X”, “X to Y”
and “Y to X”. These patterns are then used as queries to a
search engine and the number of hits for each query is used
as elements in a vector to represent the word pair. Finally,
the relational similarity is computed as the cosine of the an-
gle between the two vectors representing each word-pair.
This VSM approach achieves a score of 47% on college-
level multiple-choice SAT analogy questions. A SAT anal-
ogy question consists of a target word-pair and five choice
word-pairs. The choice word-pair that has the highest rela-
tional similarity with the target word-pair in the question is
selected by the system as the correct answer.

Fig. 1 An SAT word analogy question. Choice (b) is the answer.

Turney [2] proposes Latent Relational Analysis (LRA)
by extending the VSM approach in three ways: a) lexical
patterns are automatically extracted from a corpus, b) the
Singular Value Decomposition (SVD) is used to smooth the
frequency data, and c) synonyms are used to explore vari-
ants of the word-pairs. LRA achieves a score of 56% on
SAT analogy questions. Both VSM and LRA require a large
number of search engine queries to create a vector repre-
senting a word-pair. For example, with 128 patterns, VSM
approach requires at least 256 queries to compute relational
similarity. LRA considers synonymous variants of the given
word pairs, thus requiring even more search engine queries.
In contrast, our proposed method matches numerous pat-
terns among the text snippets retrieved from a Web search
engine for the two words in a word pair. We do not search
using each extracted pattern as done in VSM and LRA meth-
ods. Therefore, the number of Web search queries does not
increase with the number of patterns extracted. This enables
us to represent relations using a large number of patterns.

Veale [8] proposed a relational similarity measure
based on taxonomic similarity in WordNet. He evaluates
the quality of a candidate analogy A:B::C:D by looking for
paths in WordNet, joining A to B and C to D. Then, the
relational similarity is computed based on the similarity be-
tween the A:B paths and C:D paths. If the set of WordNet
relations that connects A to B and the set of WordNet rela-
tions that connects C to D has many relations in common
(i.e. a high overlap between the two sets), then the relational
similarity between two word pairs (A, B) and (C,D) is high.
His method achieves a score of 43 on the SAT word anal-
ogy questions. However, the dependence on the WordNet
means that this method cannot compute the relational simi-
larity when the word pairs have words that do not appear in
the WordNet.

Bollegala et al. [9] proposed a supervised metric learn-
ing approach to solve SAT word analogy questions. First,
they use SAT questions to induce pairwise distance con-
straints between word pairs. Next, a Mahalanobis distance
metric is learnt from the pairwise constraints. They use the
information theoretic metric learning (ITML) algorithm to
learn the Mahalanobis distance metric. Evaluations are con-
ducted both on SAT word analogy questions as well as on a
novel dataset (ENT dataset) that consists of named entities
frequently found on the Web. They use lexical patterns to
represent the relations that exist between two words. They
show that by clustering the lexical patterns that represent the
same semantic relation, one can improve the accuracy of the
relational similarity measurement. However, both cluster-
ing and learning distance metrics in high dimensional lexi-
cal pattern space is computationally expensive.

3. Method

The proposed method can be described in two main steps:
identifying the implicit relations between the two words in

†http://google.com

BOLLEGALA et al.: MEASURING RELATIONAL SIMILARITY BETWEEN WORD PAIRS
2229

Fig. 2 A snippet returned by Google for the query “lion * * * * * * *
cat”.

each word pair and learning a binary classification model to
recognize relationally similar word pairs. Next, we describe
each of those steps in detail.

3.1 Pattern Extraction

We use the subsequence lexical pattern extraction algorithm
first proposed by Bollegala et al. [9] for the task of rep-
resenting the implicit semantic relations that exist between
two words. For completeness, we briefly describe this algo-
rithm here. For further details refer the original paper.

To identify the implicit relations between two words X
and Y, we first query a web search engine using the phrasal
query “X * * * * * * * Y”. Here, the wildcard operator “*”
would match any word or nothing. This query retrieves snip-
pets that contain both X and Y within a window of 7 words.
For example, Google returns the snippet shown in Fig. 2 for
the word pair (lion, cat). We use PrefixSpan (i.e., prefix-
projected sequential pattern mining) [10] algorithm to ex-
tract frequent subsequences from snippets that contain both
X and Y. PrefixSpan extracts all word subsequences which
occur more than a specified frequency in snippets. We select
subsequences that contain both query words (eg. lion and
cat) and replace the query words respectively with variables
X and Y to construct lexical patterns. For example, some
of the patterns extracted by the proposed algorithm from the
snippet in Fig. 2 are X a large Y, X a large Y of and X, a
large social Y. PrefixSpan algorithm is particularly attrac-
tive for the current task because it can efficiently extract a
large number of lexical patterns. Moreover, its ability to
skip words when creating patterns enables us to capture re-
lations between words that appear at a distance in snippets.

3.2 Pattern Selection

We used the pattern extraction algorithm described in
Sect. 3.1 to extract lexical patterns for 374 SAT multiple-
choice analogy questions. This dataset was first proposed by
Turney and Littman [7] as a benchmark dataset to evaluate
relational similarity measures. Generally, there are six word
pairs in each question (i.e. one word pair for the question
and five choices) which amounts to 2176 (cf. some questions
have less than 5 candidates) word-pairs. For each word pair,
using Yahoo BOSS Search API†† we download 7000 snip-
pets on average. Yahoo BOSS Search API allows only 1000
snippets to be retrieved for a single query. To overcome this
limitation, we issue multiple contextual queries by varying
the number of asterisks between the two words in a query.
This process is repeated with the two words inter-changed.
Finally, duplicate snippets are removed from the retrieved
search results.

Table 1 Most frequent patterns in the corpus.

Rank Frequency Lexical Pattern

1 272892 Y and X
2 240802 X and Y
3 91720 X of Y
4 78125 Y or X
5 78011 X the Y
6 74428 Y to X
7 71260 X or Y
8 65470 Y of X
9 63986 X to Y

10 55062 X Y s
11 52106 X Y.
12 44049 X, Y
13 42708 Y the X
14 40434 Y X s
15 37608 X Y,
16 36678 X of the Y
17 34725 Y, X
18 33851 Y.X
19 33331 Y and X.
20 31484 Y X.

In addition to the snippets, we also select the titles of
pages (also returned by the Yahoo BOSS Search API along-
side with the search results) for extracting patterns. The cor-
pus of snippets and titles downloaded from all SAT word
pairs contains 412, 110, 644 tokens. We run the pattern ex-
traction algorithm described in the previous section on this
corpus and extract 12, 712, 608 lexical patterns. However,
this set of patterns is very sparse and most patterns occur
only a few times in the corpus. Consequently, we select
patterns that occur at least 50 times in the corpus for the
remainder of the experiments described in this paper. The
selected set contains 48, 253 lexical patterns. Top ranked 10
patterns are shown in Table 1 alongside with their frequen-
cies in the corpus.

3.3 Training

For given two pairs of words (A, B) and (C,D), we create a
feature vector using the patterns selected in Sect. 3.1. First,
we record the frequency of occurrence of each selected pat-
tern in snippets for each word pair. We call this the pat-
tern frequency. It is a local frequency count, analogous to
term frequency in information retrieval [11]. Second, we
combine the two pattern frequencies of a pattern (i.e., fre-
quency of occurrence in snippets for (A, B) and that in snip-
pets for (C,D)) using various feature functions to compute
the feature-values for training. The different feature func-
tions experimented in the paper are explained in Sect. 4.1.

We model the problem of computing relational simi-
larity as a one of identifying analogous and non-analogous
word pairs, which can be solved by training a binary clas-
sifier. Using SAT analogy questions as training data, we
train a two-class support vector machine (SVM) as follows.
From each question in the dataset, we create a positive train-
ing instance by considering (A, B) to be the word pair for

††http://developer.yahoo.com/search/boss/

2230
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.11 NOVEMBER 2011

the question (i.e. stem) and (C,D) to be the word pair for
the correct answer. Likewise, a negative training instance is
created from a question word pair and one of the incorrect
answers.

The trained SVM model can then be used to com-
pute the relational similarity between two given word pairs
(A, B) and (C,D) as follows. First, we represent the two
word-pairs by a feature vector F of pattern frequency-
based features. Second, we define the relational similar-
ity RelSim((A, B), (C,D)) between the two word-pairs (A, B)
and (C,D) as the posterior probability Prob(F|analogous)
that feature vector F belongs to the analogous-pairs (posi-
tive) class,

RelSim((A, B), (C,D)) = Prob(F|analogous).

Being a large margin classifier, the output of an SVM is
the distance from the decision hyper-plane. For the purpose
of solving SAT questions, we can directly use the distance
from the decision hyper-plane and rank the candidate an-
swers. However, distance from the decision hyper-plane is
not a calibrated posterior probability that lies between [0, 1]
range. We use sigmoid functions to convert this uncali-
brated distance into a calibrated posterior probability using
the method proposed by Platt [12].

4. Experiments and Results

For the experiments in this paper we used the 374 SAT
college-level multiple-choice analogy questions dataset
which was first proposed by Turney et al. [6]. We compute
the total score for answering SAT questions as follows,

score =
100 × no. correct

total no. of questions
. (1)

4.1 Feature Functions

In previous sections we described a method to represent a
word pair using a pattern frequency vector. However, we
are interested in measuring relational similarity between two
word pairs. Therefore, we must somehow represent two
word pairs using a single feature vector. It is not obvious
how to construct a single feature vector to represent two
word pairs using pattern frequencies that appear in two sep-
arate feature vectors representing each word pair.

Bollegala et al. [5] defined several functions to com-
bine features from two vectors to construct a feature vector
for two word pairs. However, they only evaluated symmetric
functions because previous results in psychological experi-
ments investigating similarity between words suggest that
although similarity is an asymmetric phenomenon, the de-
gree of asymmetry is less than 5%. However, this does not
limit us to use only symmetric feature functions. We ex-
tend the set of feature functions proposed in [5] to include
asymmetric feature functions and evaluate their effect em-
pirically. Next, we describe each of the feature functions we
investigate in this paper.

Let us assume the frequency of a pattern v in two word
pairs (A, B) and (C,D) to be fAB and fCD, respectively. We
compute the value assigned to the feature corresponding to
pattern v in the feature vector that represents the two word
pairs (A, B) and (C,D) using the following four symmetric
feature functions.

1. | fAB − fCD|: The absolute value of the difference of pat-
tern frequencies is considered as the feature value.

2. (fAB − fCD)2: The square of the difference of pattern
frequencies is considered as the feature value.

3. fAB+ fCD: The sum of pattern frequencies is considered
as the feature value.

4. fAB × fCD: The product of the pattern frequencies is
considered as the feature value.

5. JS divergence: Ideally, if two word pairs are analo-
gous we would expect to see similar distributions of
patterns in each word pair. Consequently, the close-
ness between the pattern distributions can be regarded
as an indicator of relational similarity. We define a fea-
ture function based on Jensen-Shannon divergence [13]
as a measure of the closeness between pattern distribu-
tions. Jensen-Shannon (JS) divergence DJS (P||Q), be-
tween two probability distributions P and Q is given
by,

DJS (P||Q) =
1
2

(DKL(P||M) + DKL(Q||M)). (2)

Here, M = (P + Q)/2 and DKL is Kullback-Leibler
divergence, which is given by,

DKL(P||Q) =
∑

v

P(v) log
P(v)
Q(v)
. (3)

Here, P(v) denotes the normalized pattern frequency of
a pattern v in the distribution P. Pattern frequencies
are normalized s.t.

∑
v P(v) = 1 by dividing the fre-

quency of each pattern by the sum of frequencies of
all patterns. We define the contribution of each pat-
tern towards the total JS-divergence in Formula 2 as its
feature value, JS (v). Substituting Formula 3 in 2 and
collecting the terms under summation, we derive JS (v)
as,

JS (v) =
1
2

(p log
2q

p + q
+ q log

2p
p + q

). (4)

Here, p and q respectively denote the normalized pat-
tern frequencies of fAB and fCD.

All of the above-described feature functions are sym-
metric in their arguments (i.e. we obtain the same feature
value even if we reverse the two feature vectors given as
arguments for the feature function). Next, we define asym-
metric feature functions.

1. fAB/ fCD: The ratio between the frequency of pattern v
in the two vectors is taken as the feature value. If fCD

is zero, then we set the feature value to zero.
2. fCD/ fAB: Same as above, except we consider the re-

BOLLEGALA et al.: MEASURING RELATIONAL SIMILARITY BETWEEN WORD PAIRS
2231

Table 2 Effect of feature functions and kernel functions.

Function Linear deg=2 deg=3 RBF Sigmoid

| fAB − fCD | 24 28 28 20 18
(fAB − fCD)2 22 20 24 24 18
fAB + fCD 26 32 36 10 12
fAB × fCD 44 50 46 58 50
JS divergence 24 26 28 24 22

fAB/ fCD 22 12 14 16 14
fCD/ fAB 26 22 14 16 14
fAB − fCD 26 26 24 20 22
fCD − fAB 26 26 24 20 22
DKL(fAB|| fCD) 46 50 52 36 20
DKL(fCD || fAB) 22 20 16 16 8

versed ratio. If fAB is zero, then we set the feature value
to zero.

3. fAB − fCD: We subtract frequencies of patterns in each
word pair and take it as the feature value.

4. fCD − fAB: Same as above, except we consider the re-
versed difference.

5. KL divergence, DKL(fAB|| fCD): Each term within the
summation in the definition for KL divergence given
by Eq. 3 can be considered as the contribution of a pat-
tern v towards the total divergence between the two dis-
tributions. This is an asymmetric measure. We use it
to compute an asymmetric feature function. Here, we
have used the notation DKL(·||·) to denote the contribu-
tion of a pattern v towards the total divergence. Note
that fAB and fCD are not distributions.

6. Reverse KL divergence, DKL(fCD|| fAB): Same as the
above, except we consider the reverse of the two pattern
frequencies.

There are 5 + 6 = 11 different feature functions. We
use those feature functions to construct feature vectors for
given two pairs of words. Next, we train a binary support
vector machine as described in Sect. 3.3. We use five pop-
ular kernels in our experiments: linear, quadratic (degree =
2), cubic (degree = 3), Radial Basis Functions (RBF), and
the Sigmoid kernel. To evaluate the effect of different ker-
nels with different feature functions, we use each feature
function separately with each kernel function to train and
test on SAT word analogy questions. We use svmlight†††
as the SVM implementation in our experiments. We do not
tune any of the parameters in SVM including the kernel pa-
rameters. All parameters are set to their default values in
svmlight. To avoid any bias towards the difference in the
range of absolute values of features, we normalize each fea-
ture to range [0, 1] by dividing from the maximum value of
that feature. There are 374 word analogy questions in the
SAT dataset. Each question typically has 5 candidate an-
swer pairs, whereas for a small number of questions there
are only 4 candidate answer pairs. There is only one correct
answer word pair for each SAT word analogy question. We
randomly select 50 questions for testing and the remaining
374 − 50 = 324 questions are used as training data. Experi-
mental results for are presented in Table 2.

From Table 2, we see that the combination of multi-

plicative feature function (fAB × fCD) with RBF kernel pro-
duces the maximum SAT score of 58% on the test dataset.
Among all asymmetric feature functions, the KL divergence
(DKL(fAB|| fCD)) reports the maximum SAT score when used
with the cubic kernel. The performance of fAB × fCD and
DKL(fAB|| fCD) are comparable across different kernel func-
tions, except in Sigmoid kernel where KL divergence per-
form poorly. Considering the fact that SVMs are sensitive to
the kernel parameters, we believe that the poor performance
observed with the Sigmoid kernel is a result of the sub-
optimal kernel parameter values. All kernels perform con-
sistently well when used with multiplicative feature function
even without any parameter tuning. Therefore, we can con-
clude that multiplicative feature function is robust against
different kernel choices when used in SVMs.

It is noteworthy that both subtraction and division of
feature values perform poorly with all kernel functions.
Considering the fact that random guessing on SAT dataset
yields an SAT score of 20% the performance of those asym-
metric feature functions is not significantly different from
the random baseline. KL divergence-based feature func-
tion clearly outperforms all other asymmetric feature func-
tions when used with any of the kernels considered in this
experiment. This shows that although asymmetric feature
functions are useful to detect relational similarity, naively
combining features to produce asymmetric feature functions
is not desirable. It is particularly interesting to note that
the KL divergence (DKL(fAB|| fCD)) outperforms its counter-
part, the reverse KL divergence (DKL(fCD|| fAB)). This result
shows that in SAT word analogy questions we must take into
consideration the fact that we are comparing a single ques-
tion word pair with multiple candidate answer pairs. Lex-
ical patterns that occur in a question word pair (i.e. (A, B))
define the relation that is considered by that question. In
DKL(fAB|| fCD), the log ratios are weighted by the probabili-
ties of patterns that occur in the question word pair. There-
fore, divergences from the patterns that occur frequently in
the question word pair are weighted higher than those that
occur less frequently in question word pair.

From Table 2, we can see that quadratic and cubic
kernels outperform the linear kernel in the best symmet-
ric (multiplicative) and asymmetric (KL divergence) feature
functions. Unlike the linear kernel, which considers each
feature independently, polynomial kernels consider combi-
nations of features. Therefore, the superior performance re-
ported by polynomial kernels against the linear kernel sug-
gests that the lexical patterns that we use as features are not
independent. This can be explained considering the fact that
there exist multiple lexical patterns that represent the same
semantic relation.

4.2 Comparison against Previous Work

Table 3 summarizes various relational similarity measures
proposed in previous work. All algorithms in Table 3 are

†††http://www.cs.cornell.edu/People/tj/svm light/

2232
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.11 NOVEMBER 2011

Table 3 Comparison against previous work.

Algorithm score Algorithm score
1. Phrase Vectors 38.2 2. Thesaurus Paths 25
3. Synonym 20.7 4. Antonym 24
5. Hypernym 22.7 6. Hyponym 24.9
7. Meronym:substance 20 8. Meronym:part 20.8
9. Meronym:member 20 10. Holonym:substance 20
11. Holonym:member 20 12. Similarity:dict 18
13. Similarity:wordsmyth 29.4 14. Combined [6] 45
15. Symmetric Features [5] 40.1 16. Proposed (RankSVM) 46.9
17. WordNet [8] 42.8 18. VSM [7] 47.1
19. Pertinence [14] 53.5 20. LRA [2] 56.1

evaluated on the same SAT analogy questions. Score (given
by Formula 1) is the percentage of correctly answered ques-
tions to the total number of questions (374) in the dataset.
An SAT question typically contain 5 choices. Therefore,
a random guessing algorithm would obtain a score of 20.
The score reported by average senior high-school student
is about 57 [7]. We performed 5-fold cross validation on
SAT questions to evaluate the performance of the proposed
method using the multiplicative feature function and the
RBF kernel, which we found to be the best combination in
Table 2. We do not tune any parameters in the RBF kernel
nor the SVM. The results reported in Table 2 must not be
directly compared against the SAT scores in Table 3 because
in Table 2 we do not perform a cross-validation over the en-
tire 374 questions instead use a randomly selected test set
of 50 questions for efficiency reasons when training with a
wide range of kernel functions and feature functions.

The first 13 algorithms were proposed by Turney et
al. [6], in which they combined these modules using a
weight optimization method. For given two word pairs, the
phrase vector (row 1) algorithm creates a vector of manually
created pattern-frequencies for each word-pair and compute
the cosine of the angle between the vectors. Algorithms in
rows 2-11 use WordNet to compute various relational sim-
ilarity measures based on different semantic relations de-
fined in WordNet. Similarity:dict (row 12) and Similar-
ity:wordsmith (row 13) respectively use Dictionary.com
and Wordsmyth.net to find the definition of words in word-
pairs and compute the relational similarity as the overlap of
words in the definitions. The proposed method outperforms
all those 13 individual modules reporting a score of 46.9,
which is comparable to the combined approach which has
an SAT score of 45.

The Symmetric Features (row 15) [5] only uses sym-
metric feature functions when generating a feature vector
to represent two pairs of words. However, as we already
discussed in Table 2, asymmetric feature functions such as
the KL divergence measure are more adapted for answering
SAT word analogy questions where there exist a distinction
between the question word pair and the candidate answer
word pairs. Moreover, the number of lexical patterns used
in our proposed method is much larger (48, 253) than the
Symmetric Features method which uses a relatively small
set of 9, 980. Therefore, we can represent a semantic re-
lation that exists between two words using a richer feature

representation.
The proposed method outperforms the WordNet-based

relational similarity measure [8]. One limitation of the
WordNet-based relational similarity measure is that it can-
not compute the relational similarity between word pairs
where at least one of the four words is not in the WordNet.
Because named entities are not well-covered by WordNet,
we believe that the proposed relational similarity measure
can be useful when computing relational similarity between
pairs that involve named entities. In future work, we intend
to evaluate the proposed method using named entities.

The SAT score reported by the proposed method is
comparable to the VSM method. However, the proposed
method is outperformed by the LRA method. One reason
for this might be that we only consider co-occurrences of
patterns in snippets, whereas VSM, pertinence and LRA use
co-occurrences of patterns in a large corpus. Therefore, it
is interesting to explore the possibility of supervised learn-
ing approaches to measuring relational similarity using co-
occurrences in a larger corpus. Although there are multiple
incorrect answers in an SAT question, they are not ranked
by their degree of relational similarity in the SAT bench-
mark dataset. If we can obtain some ranking information
for the incorrect answers, then we can use that to further
guide the learning process. One possibility is to rank each
incorrect answer according to the number of times it was se-
lected by examinees. If many examinees select an incorrect
answer, then it is likely that it is relationally similar to the
question word pair although it is not the correct answer to
the question.

5. Conclusion

We proposed a supervised binary classification approach to
measure the relational similarity between two given word
pairs. First, we represented a word pair using a feature vec-
tor where we select lexical patterns that co-occur with that
word pair in text snippets retrieved from a Web search en-
gine. Second, we use the SAT word analogy dataset to gen-
erative positive (relationally similar) and negative (relation-
ally dissimilar) training instances to train a binary support
vector classifier. The distance from the decision hyperplane
is transformed into a posterior probability to measure the
degree of relational similarity between two word pairs. Our
proposed method achieved an SAT score of 46.9 on a bench-

BOLLEGALA et al.: MEASURING RELATIONAL SIMILARITY BETWEEN WORD PAIRS
2233

mark dataset of 374 SAT word analogy questions. In our
future work, we intend to study the effectiveness of the pro-
posed method to measure the relational similarity between
named entities.

References

[1] V. Natase and S. Szpakowicz, “Exploring noun-modifier semantic
relations,” Proc. fifth int’l workshop on computational semantics
(IWCS-5), pp.285–301, 2003.

[2] P. Turney, “Similarity of semantic relations,” Computational Lin-
guistics, vol.32, no.3, pp.379–416, 2006.

[3] S. Banerjee and T. Pedersen, “Extended gloss overlaps as a measure
of semantic reladeness,” Proc. IJCAI’03, pp.805–810, 2003.

[4] V. Vapnik, Statistical Learning Theory, Wiley, Chichester, GB, 1998.
[5] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Www sits the sat: Mea-

suring relational similarity on the web,” ECAI 2008: Proc. 18th
European Conference on Artificial Intelligence, July, 2008, Patras,
Greece: Including Prestigious Applications of Intelligent, pp.333–
337, 2008.

[6] P. Turney, M. Littman, J. Bigham, and V. Shnayder, “Combining
independent modules to solve multiple-choice synonym and analogy
problems,” Proc. RANLP’03, pp.482–486, 2003.

[7] P. Turney and M. Littman, “Corpus-based learning of analogies and
semantic relations,” Mach. Learn., vol.60, pp.251–278, 2005.

[8] T. Veale, “Wordnet sits the sat: A knowledge-based approach to lex-
ical analogy,” Proc. 16th European Conference on Artificial Intelli-
gence (ECAI’04), pp.606–612, 2004.

[9] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring the similarity
between implicit semantic relations from the web,” WWW 2009,
pp.651–660, 2009.

[10] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen, U.
Dayal, and M. Hsu, “Mining sequential patterns by pattern-growth:
the prefixspan approach,” IEEE Trans. Knowl. Data Eng., vol.16,
no.11, pp.1424–1440, 2004.

[11] G. Salton and C. Buckley, Introduction to Modern Information Re-
treival, McGraw-Hill Book Company, 1983.

[12] J. Platt, “Probabilistic outputs for support vector machines and com-
parison to regularized likelihood methods,” Advances in Large Mar-
gin Classifiers, pp.61–74, 2000.

[13] C.D. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing, The MIT Press, Cambridge, Massachusetts,
2002.

[14] P. Turney, “Expressing implicit semantic relations without supervi-
sion,” Proc. Coling/ACL’06, pp.313–320, 2006.

Danushka Bollegala received his BS, MS
and Ph.D. degrees from the University of Tokyo,
Japan in 2005, 2007, and 2009. He is currently
an assistant professor at the Graduate School of
Information Science and Technology, the Uni-
versity of Tokyo. His research interests are nat-
ural language processing, Web mining and arti-
ficial intelligence.

Yutaka Matsuo is an associate professor at
Graduate School of Engineering, the University
of Tokyo, Japan. He received his BS, MS, and
Ph.D. degrees from the University of Tokyo in
1997, 1999, and 2002. He joined National Insti-
tute of Advanced Industrial Science and Tech-
nology (AIST) from 2002 to 2007. He is inter-
ested in social network mining, text processing,
and semantic web in the context of artificial in-
telligence research.

Mitsuru Ishizuka is a professor at Gradu-
ate School of Information Science and Technol-
ogy, the University of Tokyo, Japan. Previously,
he worked at NTT Yokosuka Laboratory and In-
stitute of Industrial Science, the University of
Tokyo. He was also a visiting associate pro-
fessor at Purdue University during 1980-1981.
He received his BS and Ph.D. degrees in elec-
tric engineering from the University of Tokyo in
1971 and 1976, respectively. His research in-
terests include artificial intelligence, Web intel-

ligence, semantic computing, and multimodal lifelike agents. He is the past
president of JSAI (Japanese Society for Artificial Intelligence).

