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PAPER

The Lower Bound for the Nearest Neighbor Estimators with
(p,C)-Smooth Regression Functions

Takanori AYANO†∗a), Student Member

SUMMARY Let (X,Y) be a Rd×R-valued random vector. In regression
analysis one wants to estimate the regression function m(x) := E(Y |X = x)
from a data set. In this paper we consider the convergence rate of the error
for the k nearest neighbor estimators in case that m is (p,C)-smooth. It
is known that the minimax rate is unachievable by any k nearest neighbor
estimator for p > 1.5 and d = 1. We generalize this result to any d ≥ 1.
Throughout this paper, we assume that the data is independent and identi-
cally distributed and as an error criterion we use the expected L2 error.
key words: regression, nonparametric estimation, nearest neighbor, rate
of convergence

1. Introduction

Regression analysis plays an important role in many
fields such as pattern recognition, data mining, economics,
medicine. For example, in pattern recognition, one wants to
estimate the posterior probability of a label given a pattern
(cf. [2], pp.44–46, and [9], pp.6–9). In economics, when a
bank lends a customer money, it wants to predict the profit
from the profile of the customer such as income, age. In
medicine, one wants to predict the survival time of a pa-
tient with a life-threatening disease from the type of dis-
ease, sex, age, therapy, etc. (cf. [9], pp.4–5). Recently, with
the development of computers, nonparametric methods are
attracting increasing interest. Many estimators are proposed
and the performance of them are researched actively from
theoretical and numerical aspects, for example, partitioning
([9], [15]), kernel ([9], [16], [26]), k-nearest neighbor ([4],
[7], [9], [15], [17]), local polynomial ([9], [26]), projection
estimators ([26]). In particular, the k-NN (nearest neighbor)
estimators can be implemented easily and have the good pre-
diction accuracy. So they are used in many practical appli-
cations very often. In this paper we analyze the performance
of the k-NN estimators theoretically. Now we will start to
state regression analysis.

Let (X,Y) be a Rd ×R-valued random vector. In regres-
sion analysis, one wants to predict the value of Y after hav-
ing observed the value of X, i.e. to find a measurable func-
tion f such that the mean squared error EXY ( f (X) − Y)2 is
minimized, where EXY denotes the expectation with respect
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to (X,Y). Let m(x) := E{Y |X = x} (regression function),
which is the conditional expectation of Y given X = x. Then
m(x) is the solution of the minimization problem. In fact,
one can check for any measurable function f ,

EXY ( f (X)−Y)2=EXY (m(X)−Y)2+EX ( f (X)−m(X))2 .

In statistics, only the data is available, (the distribution of
(X,Y) and m are not available), and one needs to estimate
the function m from the data {(Xi,Yi)}ni=1, which are inde-
pendently distributed according to the distribution of (X,Y).
We attempt to construct an estimator mn of m such that the
expected L2 error R(mn) := EXnYn EX (mn(X) − m(X))2 is as
small as possible, where EXnYn denotes the expectation with
respect to the data. In order to analyze the performance of
estimators theoretically, it is very important to evaluate how
fast the error R(mn) converges to zero as the data size n tends
to infinity. In this paper we analyze the convergence rate of
the k-NN estimators in case that m is (p,C)-smooth (cf. [9],
p.37).

The k-NN estimator is defined as follows. Given
x ∈ Rd, we rearrange the data (X1,Y1), . . . , (Xn,Yn) in
the ascending order of the values of ‖Xi − x‖. As a tie-
breaking rule, if ‖Xi − x‖ = ‖Xj − x‖ and i < j, we de-
clare that Xi is “closer” to x than Xj. We write the rear-
range sequence by

(
X1,x,Y1,x

)
, . . . ,

(
Xn,x,Yn,x

)
. Notice that

{(Xi,x,Yi,x)}ni=1 is expressed by {(Xπ(i),Yπ(i))}ni=1 using a per-
mutation π : {1, . . . , n} → {1, . . . , n} depending on x ∈ Rd.
Then for 1 ≤ k ≤ n, the k-NN estimator mn is defined by

mn(x) =
1
k

k∑
i=1

Yi,x .

For the details about the k-NN estimators, for example, see
Chapter 6 in [9]. Let K be the class of the k-NN estimators
such that k may depend only on n (i.e. k does not depend on
x and the data, given n).

Let p,C > 0, and express p by p = q+ r, q ∈ Z≥0, 0 <
r ≤ 1. We say that a function m : Rd → R is (p,C)-smooth
if for all q1, . . . , qd ∈ Z≥0 with q = q1 + · · · + qd, the partial
derivatives ∂qm

∂x
q1
1 ···∂x

qd
d

exist and for all x, z ∈ Rd the following

is satisfied:∣∣∣∣∣∣
∂qm

∂xq1

1 · · · ∂xqd

d

(x) − ∂qm

∂xq1

1 · · · ∂xqd

d

(z)

∣∣∣∣∣∣ ≤ C‖x − z‖r.

For p,C, σ > 0, let D(p,C, σ) be the class of distribu-
tions of (X,Y) such that:
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(I) X is uniformly distributed on [0, 1]d;

(II) Var(Y |X = x) ≤ σ2, ∀x ∈ Rd; and

(III) m is (p,C)-smooth,

where Var(Y |X = x) denotes the variance of Y given X = x.

The lower bound for the class D(p,C, σ) is known
(cf. [9], p.38), i.e. there exists C1 > 0 (which does not de-
pend on n) such that for any estimator {mn}n≥1 and any n

sup
(X,Y)∈D(p,C,σ)

R(mn) ≥ C1n−2p/(2p+d). (1)

For 0 < p ≤ 1, the minimax rate n−2p/(2p+d) is achieved
by a k-NN estimator in K (cf. [9], pp.93,99), i.e. for 0 <
p ≤ 1 there exist a k-NN estimator {mn}n≥1 in K and C2 > 0
(which does not depend on n) such that for any n

sup
(X,Y)∈D(p,C,σ)

R(mn) ≤ C2n−2p/(2p+d).

In another paper, the author showed that for 1 < p ≤ 1.5 the
minimax rate n−2p/(2p+d) is achieved by a k-NN estimator
in K (cf. [1]). For d = 1 and p > 1.5, it is shown that
the minimax rate n−2p/(2p+d) is unachievable by any k-NN
estimator in K (cf. [9], p.96). In this paper, we generalize
the above result to any d ≥ 1, i.e. for p > 1.5 we show that
there exists C3 > 0 (which does not depend on n) such that
for any k-NN estimator {mn}n≥1 in K and any n

sup
(X,Y)∈D(p,C,σ)

R(mn) ≥ C3n−3/(3+d).

Since for p > 1.5 we have n−2p/(2p+d) < n−3/(3+d), we find
that for p > 1.5 the minimax rate n−2p/(2p+d) is unachievable
by any k-NN estimator inK . The style of the proof is similar
to [9], but for d ≥ 2 the caluculation of the integral in the
proof is not easy, because for d = 1 we deal with intervals
but for d ≥ 2 we must deal with balls.

Throughout this paper we use the following notations
: R,R>0,Z≥0,N are the sets of reals, positive reals, nonneg-
ative integers, and positive integers. For a measurable set
D ⊂ Rd, vol(D) denotes the Lebesgue measure of D. For
x ∈ Rd, ‖x‖ denotes the Euclidean norm of x. For u, v ∈ Rd,
we define H(u, v) := {w ∈ Rd | ‖w − u‖ ≤ ‖v − u‖} and
G(u, v) := H(u, v) ∩ [0, 1]d.

2. Related Work

In this section, we overview the related work about consis-
tency and the rate of convergence. For consistency, it was
shown in [24] that the nearest neighbor estimators are uni-
versally consistent. Since then it was shown that many es-
timators share this property (cf. [5], [6], [8], [10], [13], [14],
[19], [20], [27]–[29]). For the rate of convergence, we know
several results as follows:

• [25] proved the lower bound (1);
• for the distributions satisfying (II)(III) with 0 < p ≤ 1

and the partitioning, kernel, and k-NN estimators, the

Table 1 The achievability of the minimax rate for the estimators and
D(p,C, σ).

achievable unachievable
partitioning 0 < p ≤ 1 p > 1
kernel 0 < p ≤ 1.5 p > 1.5
k-NN 0 < p ≤ 1.5 p > 1.5, d = 1

minimax rate n−2p/(2p+d) is achievable if X is bounded †
(cf. [7], [9], [17], [23]);
• [15], [16] proved the same statement later without as-

suming that X should be bounded;
• for the partitioning estimators and the class D(p,C, σ)

with p > 1, [9] proved that the minimax rate n−2p/(2p+d)

is unachievable for d = 1, but the generalization to any
d ≥ 1 is not difficult;
• for the kernel estimators, [9] proved the minimax rate

n−2p/(2p+d) is achievable for D(p,C, σ) with 0 < p ≤
1.5 and is unachievable for that with p > 1.5 and d = 1,
but the generalization to any d ≥ 1 is not difficult.

We summarize the above results in Table 1.

3. Main Result

Theorem (for d = 1, due to [9], p.96)

Let σ > 0. We consider a distribution such that

(A) X is uniformly distributed on [0, 1]d;

(B) Var(Y |X = x) = σ2, ∀x ∈ Rd; and

(C) m(x) = x(1), for x = (x(1), . . . , x(d)).

Then, there exists C3 > 0 (which does not depend on
n) such that for any k-NN estimator {mn}n≥1 in K and any n

EXnYn EX (mn(X) − m(X))2 ≥ C3n−3/(3+d).

Remark 1

There exists a distribution satisfying (A) (B) (C). In fact, let

f (x, y) :=
1√
2πσ

exp

(
− (y − x(1))2

2σ2

)
· 1[0,1]d (x),

where 1[0,1]d (x) :=

{
1 x ∈ [0, 1]d

0 x � [0, 1]d . Then, the distribution

which has the density function f (x, y) satisfies (A) (B) (C).

Remark 2

From (C), m is (p,C)-smooth with any p > 1 and C > 0,
thus any distribution satisfying (A) (B) (C) is included in
D(p,C, σ) with any p > 1 and C > 0. On the other hand,
for p > 1.5, we have n−2p/(2p+d) < n−3/(3+d). Hence, for
D(p,C, σ) with p > 1.5, the minimax rate n−2p/(2p+d) is un-
achievable by any k-NN estimator in K .

Proof. Suppose we are given X = x, X1 = x1, . . . , Xn = xn.
†for the k-NN estimators, the condition d > 2p is required as

well.
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We take the expectation with respect to Y1, . . . ,Yn. Then the
following bias-variance decomposition is derived:

EYn (mn(x) − m(x))2 = EYn

⎛⎜⎜⎜⎜⎜⎜⎝1
k

k∑
i=1

Yi,x − m(x)

⎞⎟⎟⎟⎟⎟⎟⎠
2

= EYn

⎛⎜⎜⎜⎜⎜⎜⎝1
k

k∑
i=1

(
Yi,x−m(xi,x)

)⎞⎟⎟⎟⎟⎟⎟⎠
2

+

⎧⎪⎪⎨⎪⎪⎩
1
k

k∑
i=1

m(xi,x)−m(x)

⎫⎪⎪⎬⎪⎪⎭
2

=
σ2

k
+

⎧⎪⎪⎨⎪⎪⎩
1
k

k∑
i=1

x(1)
i,x − x(1)

⎫⎪⎪⎬⎪⎪⎭
2

where xi,x = (x(1)
i,x , . . . , x

(d)
i,x ) and the last equality is obtained

from (B) and (C). We regard x1, . . . , xn as the random vari-
ables X1, . . . , Xn and take the expectation with respect to
X1, . . . , Xn. By Schwarz’s inequality

EXnYn (mn(x) − m(x))2 =
σ2

k
+ EXn

⎧⎪⎪⎨⎪⎪⎩
1
k

k∑
i=1

X(1)
i,x − x(1)

⎫⎪⎪⎬⎪⎪⎭
2

≥ σ2

k
+

⎧⎪⎪⎨⎪⎪⎩
1
k

EXn

k∑
i=1

X(1)
i,x − x(1)

⎫⎪⎪⎬⎪⎪⎭
2

. (2)

We evaluate EXn
∑k

i=1 X(1)
i,x to obtain the lower bound.

For k = n, since EXn
∑n

i=1 X(1)
i,x = EXn

∑n
i=1 X(1)

i = (1/2) · n
and (2), EXEXnYn (mn(X) − m(X))2 ≥ 1

12 . Therefore, in order
to prove Theorem, it is enough to consider the case 1 ≤ k ≤
n − 1.

Claim 1
For any x, x1, . . . , xn ∈ [0, 1]d,

k∑
i=1

x(1)
i,x ≥

k∑
i=1

x(1)
i,x′ ,

where for x = (x(1), . . . , x(d)) we put x′ = (0, x(2) . . . , x(d)).
For d = 1, since x′ = 0, Claim 1 is trivial but for d ≥ 2 it is
not easy. See Appendix for proof.

Let D := {(x1, . . . , xn) | ‖xi − x′‖ < ‖xk+1 − x′‖, i =
1, . . . , k, ‖x j − x′‖ > ‖xk+1 − x′‖, j = k + 2, . . . , n}.

We give an example of (x1, . . . , xn) ∈ D for d = 2,
n = 4 and k = 1 (see Fig.1).

Claim 2

EXn

k∑
i=1

X(1)
i,x′ =

n · · · (n − k)
k!

k∑
i=1

∫
D

x(1)
i dx1 · · · dxn ,

(see Appendix for proof).

From Claim 1 and Claim 2, we have

1
k
· EXn

k∑
i=1

X(1)
i,x ≥

n · · · (n − k)
k · k!

k∑
i=1

∫
D

x(1)
i dx1 · · · dxn

Fig. 1 The location of (x1, x2, x3, x4) ∈ D for d = 2, n = 4 and k = 1.

=
n · · · (n − k)

k!

∫
[0,1]d

{∫
G(x′,xk+1)

x(1)
1 dx1

}
·

vol[G(x′, xk+1)]k−1 {
1 − vol[G(x′, xk+1)]

}n−k−1 dxk+1 .

Claim 3
There exists c1 > 0 (depending only on d) such that∫

G(x′,xk+1)
x(1)

1 dx1 ≥ c1vol[G(x′, xk+1)](d+1)/d,

(see Appendix for proof).
From Claim 3, we have

1
k
· EXn

k∑
i=1

X(1)
i,x ≥ c1

n · · · (n − k)
k!

·

∫
[0,1]d

vol[G(x′, y)]k+ 1
d {1 − vol[G(x′, y)]}n−k−1dy.

For d = 1, since x′ = 0 and vol[G(x′, y)] = y, it is easy to
calculate the above integral directly, but for d ≥ 2 it is not
easy to represent vol[G(x′, y)] by x′ and y. So it is not easy
to calculate the above integral. We get over the problem
by the following way. Let φ : [0, 1]d → [0, 1] and ψ :
[0, 1] → [0, 1] be the maps defined by φ(y) = vol[G(x′, y)]
and ψ(u) = uk+ 1

d (1 − u)n−k−1. Let μ be the measure on [0, 1]
induced by φ and the Lebesgue measure on [0, 1]d. Then, by
the formula of change of variables (cf. [3], p. 216, Theorem
16.13), we have

∫
[0,1]d

ψ ◦ φ(y) dy =
∫ 1

0
ψ(u) μ(du) .

Let F(u) := vol[{y ∈ [0, 1]d | 0 ≤ vol[G(x′, y)] ≤ u}] for
0 ≤ u ≤ 1, then we have F(u) = u and F′(u) = 1. Note that
F′(u) is the density function of μ.

1
k
· EXn

k∑
i=1

X(1)
i,x

≥ c1
n · · · (n − k)

k!

∫ 1

0
uk+ 1

d (1 − u)n−k−1μ(du)

= c1
n · · · (n − k)

k!

∫ 1

0
uk+ 1

d (1 − u)n−k−1du .
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For α ∈ R>0 and β ∈ N, let

B(α, β) :=
∫ 1

0
uα−1(1 − u)β−1du (Beta function).

Then the following formula is well-known:

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

=
Γ(α) (β − 1)!

(α + β − 1) · · ·αΓ(α)

=
(β − 1)!

α · · · (α + β − 1)
,

where Γ is Gamma function.

On the other hand, by Stirling’s formula,

lim
n→∞

n!(
1 + 1

d

)
· · ·

(
n + 1

d

) · n 1
d

= lim
n→∞
Γ(n + 1) · Γ

(
1 + 1

d

)
Γ

(
n + 1 + 1

d

) · n 1
d

= lim
n→∞ Γ

(
1 +

1
d

) √
2πn

(
n
e

)n

√
2π

(
n + 1

d

) (
n+ 1

d

e

)n+ 1
d

· n 1
d

= Γ

(
1 +

1
d

)
.

Therefore, there exist c2, c3 > 0 (depending only on d) such
that

c2n−
1
d ≤ n!(

1 + 1
d

)
· · ·

(
n + 1

d

) ≤ c3n−
1
d .

Therefore,

1
k
· EXn

k∑
i=1

X(1)
i,x ≥ c1

n · · · (n − k)
k!

B

(
k + 1 +

1
d
, n − k

)

= c1
(k + 1) · · · n(

k + 1 + 1
d

)
· · ·

(
n + 1

d

)

= c1
n!(

1 + 1
d

)
· · ·

(
n + 1

d

)/ k!(
1 + 1

d

)
· · ·

(
k + 1

d

)

≥ c1c2

c3

(
k
n

)1/d

.

We can take c1 ≤ 1. From c2 ≤ c3, we have c1c2
c3

(
k
n

)1/d ≤ 1.
Let c4 := c1c2

c3
. From (2), we have

EXEXnYn (mn(X) − m(X))2 ≥ σ2

k
+

∫
0≤x1≤c4( k

n )
1
d ,0≤x2≤1,...,0≤xd≤1

⎧⎪⎪⎨⎪⎪⎩
1
k

EXn

k∑
i=1

X(1)
i,x − x(1)

⎫⎪⎪⎬⎪⎪⎭
2

dx

≥ σ2

k
+

∫
0≤x1≤c4( k

n )
1
d ,0≤x2≤1,...,0≤xd≤1

⎧⎪⎪⎨⎪⎪⎩c4

(
k
n

) 1
d

−x(1)

⎫⎪⎪⎬⎪⎪⎭
2

dx

=
σ2

k
+

c3
4

3

(
k
n

) 3
d

≥ C3n−
3

d+3 ,

where C3 is a positive constant (which does not depend on
n). We have got Theorem. �

4. Conclusion

In this paper we analyzed the convergence rate of the error
for the k-NN estimators in K in the case where the regres-
sion function is (p,C)-smooth. We showed that no matter
how smooth the regression function is, one can not achieve
the faster rate than n−3/(3+d) by any k-NN estimator inK (for
d = 1, due to [9]). Hence we obtained that for p > 1.5 the
minimax rate n−2p/(2p+d) is unachievable by any k-NN esti-
mator in K . On the other hand, in another paper, the author
showed for 0 < p ≤ 1.5 the minimax rate is achievable by a
k-NN estimator inK (for 0 < p ≤ 1, due to [9]). As a result,
for the classesD(p,C, σ) andK , the upper bound coincides
with the lower bound.
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Appendix A: Proof of Claim 1

Suppose
∑k

i=1 x(1)
i,x <

∑k
i=1 x(1)

i,x′ . Let

{xi1 , . . . , xit } = {xi,x}ki=1 −
(
{xi,x}ki=1 ∩ {xi,x′ }ki=1

)
and

{x j1 , . . . , x jt } = {xi,x′ }ki=1 −
(
{xi,x}ki=1 ∩ {xi,x′ }ki=1

)
.

Without loss of generality, we assume x(1)
i1
≤ · · · ≤ x(1)

it
and

x(1)
j1
≤ · · · ≤ x(1)

jt
. Then, from

∑k
i=1 x(1)

i,x <
∑k

i=1 x(1)
i,x′ , we get

x(1)
i1
< x(1)

jt
. From ‖xi1 − x‖ ≤ ‖x jt − x‖, we have 2

∑d
s=1(x(s)

jt
−

x(s)
i1

)x(s) ≤ ∑d
s=1

(
(x(s)

jt
)2 − (x(s)

i1
)2

)
. For x(1) = 0, Claim 1 is

trivial, so we assume x(1) > 0. From x(1)
i1

< x(1)
jt

, we have

2
∑d

s=2(x(s)
jt
− x(s)

i1
)x(s) <

∑d
s=1

(
(x(s)

jt
)2 − (x(s)

i1
)2

)
. Therefore,

‖xi1 − x′‖ < ‖x jt − x′‖. This is contradiction. Hence we get
Claim 1. �

Appendix B: Proof of Claim 2

Let h ∈ N := {1, . . . , n} and I, J ⊂ N\{h} such that 	I =
k, I ∩ J = {}, and I ∪ J = N\{h}, where 	 denotes the number
of the elements. Let D(I, J, h) := {(x1, . . . , xn) | ‖xi − x′‖ <
‖xh − x′‖, i ∈ I, ‖x j − x′‖ > ‖xh − x′‖, j ∈ J}. First, we show
vol

{
[0, 1]dn\⋃I,J,h D(I, J, h)

}
= 0. Let Ai j = {(x1, . . . , xn) ∈

[0, 1]dn | ‖xi − x′‖ = ‖x j − x′‖}. Then we have
⎧⎪⎪⎨⎪⎪⎩[0, 1]dn\

⋃
I,J,h

D(I, J, h)

⎫⎪⎪⎬⎪⎪⎭ ⊂
⋃

1≤i, j≤n, i� j

Ai j .

Let A = {(u, v) ∈ [0, 1]d × [0, 1]d | ‖u − x′‖ = ‖v − x′‖},
then we have vol(Ai j) = vol(A) for any i, j with i � j.
Given u(2), . . . , u(d) and v, let D(u(2), . . . , u(d), v) = {u(1) ∈
[0, 1] | ‖u − x′‖ = ‖v − x′‖}. Since 	D(u(2), . . . , u(d), v) ≤ 2,
we have vol

{
D(u(2), . . . , u(d), v)

}
= 0. Hence, by Fubini’s

theorem,

vol(A) =
∫

A
1dudv

=

∫
[0,1]2d−1

{∫
D(u(2),...,u(d),v)

1 du(1)

}
du(2) · · · du(d)dv = 0.

Hence,

vol

⎧⎪⎪⎨⎪⎪⎩[0, 1]dn\
⋃
I,J,h

D(I, J, h)

⎫⎪⎪⎬⎪⎪⎭ ≤
∑

1≤i, j≤n, i� j

vol(Ai j) = 0

Next, we show D(I, J, h) ∩ D(I′, J′, h′) = {} for (I, J, h) �
(I′, J′, h′). Assume D(I, J, h)

⋂
D(I′, J′, h′) � {}. Let

(y1, . . . , yn) ∈ D(I, J, h)
⋂

D(I′, J′, h′). First, suppose h � h′.
Since (y1, . . . , yn) ∈ D(I, J, h), yh is the (k + 1)-th near-
est element to x′ in {y1, . . . , yn}. On the other hand, since
(y1, . . . , yn) ∈ D(I′, J′, h′), yh′ is the (k + 1)-th nearest el-
ement to x′ in {y1, . . . , yn}, and yh is not. This is the con-
tradiction. Next, suppose h = h′. There exists s such
that s ∈ I and s ∈ J′. Since (y1, . . . , yn) ∈ D(I, J, h),
we have ‖ys − x′‖ < ‖yh − x′‖. On the other hand, since
(y1, . . . , yn) ∈ D(I′, J′, h′), we have ‖ys − x′‖ > ‖yh − x′‖.
This is the contradiction. Hence we obtain the assertion.
From the above two results, we have

EXn

k∑
i=1

X(1)
i,x′ =

∑
I,J,h

∫
D(I,J,h)

∑
i∈I

x(1)
i dx1 · · · dxn .

Finally, we show that for each (I, J, h) the above inte-
gral has the same value. For (I, J, h) and (I′, J′, h′), let
I = {i1, . . . , ik}, J = { jk+2, . . . , jn}, I′ = {i′1, . . . , i′k}, and
J′ = { j′k+2, . . . , j′n} (for k = n − 1, J and J′ are empty).
Let η be the permutation of {1, . . . , n} defined by η(i′s) = is,
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η(h′) = h and η( j′t) = jt for 1 ≤ s ≤ k and k + 2 ≤ t ≤ n.
Let Φ : [0, 1]dn → [0, 1]dn be the bijection defined by
Φ ((x1, . . . , xn)) = (xη(1), . . . , xη(n)). Let g : [0, 1]dn → R
be the function defined by g(x1, . . . , xn) =

∑
i∈I′ x(1)

i . Then
by the formula of change of variables we have∫

D(I′,J′,h′)

∑
i∈I′

x(1)
i dx1 · · · dxn

=

∫
Φ−1(D(I′,J′,h′))

g ◦ Φ (x1, . . . , xn) |det(JΦ)| dx1 · · · dxn

=

∫
D(I,J,h)

∑
i∈I

x(1)
i dx1 · · · dxn,

where JΦ is the Jacobian matrix of Φ. Hence we obtain the
assertion. Since the number of (I, J, h) is nCk · (n−k), we get
Claim 2.

�

Appendix C: Proof of Claim 3

Let e1 :=
∫
‖y‖≤1, y(1)≥0

y(1)dy, and e2 :=
∫
‖y‖≤1

dy, then for

any R ≥ 0,∫
‖y‖≤R, y(1)≥0

y(1)dy = e1Rd+1 and
∫
‖y‖≤R

dy = e2Rd.

Suppose ‖x′ − xk+1‖ ≤ 1/2. Let I := {i | 0 ≤ x′(i) ≤ 1/2, 1 ≤
i ≤ d} and M := {y | ‖y − x′‖ ≤ ‖x′ − xk+1‖, y(i) ≥ x′(i), i ∈
I, y( j) ≤ x′( j), j � I}. We give a figure of M for d = 2 and
0 ≤ x′(2) ≤ 1

2 (see Fig.A·1). We show M ⊂ G(x′, xk+1). Let
y ∈ M. Since ‖x′ − xk+1‖ ≤ 1/2, we have ‖y − x′‖ ≤ 1/2.
Hence, for any 1 ≤ i ≤ d, we have |y(i) − x′(i)| ≤ 1/2. For
i ∈ I, since y(i) ≥ x′(i) and 0 ≤ x′(i) ≤ 1/2, we have 0 ≤ y(i) ≤
1. For i � I, since y(i) ≤ x′(i) and 1/2 < x′(i) ≤ 1, we have
0 ≤ y(i) ≤ 1. Hence we have y ∈ [0, 1]d, and we obtain the
assertion.∫

G(x′,xk+1)
x(1)

1 dx1 ≥
∫

M
y(1)dy

=
1

2d−1

∫
‖y−x′‖≤‖x′−xk+1‖, y(1)≥0

y(1)dy

=
e1

2d−1
‖x′ − xk+1‖d+1

=
e1

2d−1e(d+1)/d
2

(e2‖x′ − xk+1‖d)(d+1)/d

≥ e1

2d−1e(d+1)/d
2

vol[G(x′, xk+1)](d+1)/d .

Suppose ‖x′ − xk+1‖ > 1/2. Let z ∈ Rd such that ‖x′ − z‖ =
1/2. By applying the proof of ‖x′ − xk+1‖ ≤ 1/2 for z, we
have∫

G(x′,z)
x(1)

1 dx1 ≥ e1

2d−1
‖x′ − z‖d+1 =

e1

2d−12d+1
.

Fig. A· 1 The domain of M for d = 2 and 0 ≤ x′(2) ≤ 1/2.

Hence, we have

∫
G(x′,xk+1)

x(1)
1 dx1 ≥

∫
G(x′,z)

x(1)
1 dx1 ≥ e1

2d−12d+1
.

From ‖x′ − xk+1‖ ≤
√

d, we have vol[G(x′, xk+1)] ≤ e2dd/2.
Therefore,∫

G(x′,xk+1)
x(1)

1 dx1

≥ e1

22de(d+1)/d
2 d(d+1)/2

vol[G(x′, xk+1)](d+1)/d.

We get Claim 3. �
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