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SUMMARY  This paper proposes likelihood smoothing techniques to
improve decision tree-based acoustic models, where decision trees are used
as replacements for Gaussian mixture models to compute the observation
likelihoods for a given HMM state in a speech recognition system. Deci-
sion trees have a number of advantageous properties, such as not imposing
restrictions on the number or types of features, and automatically perform-
ing feature selection. This paper describes basic configurations of decision
tree-based acoustic models and proposes two methods to improve the ro-
bustness of the basic model: DT mixture models and soft decisions for
continuous features. Experimental results for the Aurora 2 speech database
show that a system using decision trees offers state-of-the-art performance,
even without taking advantage of its full potential and soft decisions im-
prove the performance of DT-based acoustic models with 16.8% relative
error rate reduction over hard decisions.

key words: speech recognition, acoustic modeling, decision trees, proba-
bility estimation, likelihood computation

1. Introduction

The acoustic model in automatic speech recognition (ASR)
based on hidden Markov models (HMMs) provides the de-
coder with the likelihood of an observation given a specific
HMM state. State-of-the-art speech recognizers commonly
use Gaussian mixture models (GMMs) or artificial neural
networks (ANNSs) to compute the desired likelihoods [1].

While decision trees (DTs) are powerful statistical
tools and have been widely used for many pattern recog-
nition applications, their effective usage in ASR is limited
to state tying prior to building context-dependent acoustic
models [2]. Recently, some work has been reported in the
literature where DTs were used to perform the likelihood
computation [3], [4]. DTs determine the likelihood by ask-
ing a series of questions about the observation. Starting
from the root node of the tree, appropriate questions are
asked at each level. Based on the answer to the question, an
appropriate child node is selected and evaluated next. This
process is repeated until the selected node is a leaf node,
which provides the pre-computed likelihood of the observa-
tion given the DT model.

In this paper, we propose new methods to use DTs as
acoustic models instead of GMMs. The work here is closely
related to that in [3], but our approach and focus are dif-
ferent. In [3], Foote exploited DTs for improving vector
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quantization in discrete acoustic models and gave a training
method to binary trees with hard decisions. We view a deci-
sion tree as a tree-based model with an integrated decision-
making component. Decision tree-based acoustic models
have a number of drawbacks, and these have not been con-
sidered sufficiently [3],[4]. One of the most serious prob-
lems is vulnerability to noise or any mismatch in feature
statistics between training and recognition. A small change
in a feature value might result in a large change in the like-
lihood. The likelihood given by DTs is not smooth.

The motivation for using DTs as acoustic models
comes from a number of interesting properties of DTs that
might prove to be advantageous for speech recognition. For
instance:

e DTs do not impose any restrictions on the features or
on their distributions.

o Information from many different sources, ranging
from low-level acoustics to high-level grammar-related
sources, can be integrated efficiently.

e Automatic state-tying can be incorporated.

e Owing to the conditional nature of the evaluation pro-
cess of a DT, the subset of features actually used during
recognition depends on the input signal.

Our ultimate goal is to take advantage of the decision-
making aspect of decision tree acoustic models by providing
the model with high-level information capable of effectively
specializing the model for particular conditions. For exam-
ple, if a DT asks a question about the gender of the speaker,
then the child branches are in effect gender-dependent mod-
els. The question at a node can involve a scalar or a vector
value. Droppo et al. explored decision trees with vector-
valued questions [4]. We have dealt with scalar-valued ques-
tions [5] because we want to explore the advantages of the
above-mentioned DT-based acoustic model. It is difficult to
deal with categorical questions and the mix of categorical
and numerical questions in vector valued questions.

In this paper, we propose smoothing techniques for de-
cision tree-based acoustic models to improve the robustness
against noise. We describe basic configurations of DTs as
well as training of DT-based acoustic models. Then we pro-
pose two techniques to improve the robustness of the basic
model: DT mixture models and soft decisions for continu-
ous features. In the proposed methods, soft-decision trees
are created using two different methods: one that converts
hard decisions to soft ones and the other that trains soft-
decision trees from scratch.

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers
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The remainder of this paper is organized as follows.
Section 2 describes DT acoustic models and explains how
the models are trained and evaluated. Section 3 proposes
techniques to improve the robustness of DT acoustic mod-
els. Section 4 presents the experimental setup and re-
sults obtained using the Aurora 2 speech database. Finally,
Sect. 5 concludes this paper.

2. Decision Tree-Based Acoustic Models
2.1 Basic Configuration

As shown in Fig. 1, DT acoustic models are HMM-based
acoustic models that utilize decision trees instead of, for
instance, GMMs or ANNs to compute observation likeli-
hoods. A decision tree determines the likelihood of an ob-
servation by asking a series of questions about the obser-
vation. The decision tree is discriminative when it is used
as a classifier. However, we use decision trees in HMM
acoustic models instead of GMM to compute the likelihood.
Therefore, decision tree-based acoustic models are genera-
tive. Questions are asked at question nodes, starting at the
root node of the tree. Based on the result of the question, the
appropriate child node is selected and evaluated next. This
process is repeated until the selected node is a leaf node,
which contains the pre-computed likelihood of the observa-
tion given the model. The likelihood value is computed and
stored in each leaf during the training process.

Throughout this paper, we assume that decision trees
are implemented as binary trees. DTs can deal with multi-
ple target classes simultaneously [6] and this makes it pos-
sible to use a single DT for all HMM states. However, we
found from preliminary experiments that better results are
obtained by using a different tree for each HMM state.

In this configuration, each DT is trained to maximize
likelihoods for the training data that corresponds to the as-
sociated HMM state. The training samples corresponding to
the state are referred to as “true” samples and the other sam-
ples are referred to as “false” samples. Similar to training
conventional HMM acoustic models, discriminative train-
ing is possible for the DT-based acoustic models. How-
ever, we focus on maximum likelihood (ML) training in
this paper. Discriminative training is a subject for future
work. The scaled likelihood of the D dimensional observa-
tion X = (x1, X2, X4, ..., Xp) given state g can then be com-
puted using:

=0 (D
q

Fig.1 Decision tree-based acoustic models. Decision trees are used to
compute observation likelihoods for every state of the HMM.
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where P(g|X) is the posterior probability of state g given
observation X and P(g) is the prior probability of state g.
The likelihood given by the above equation is stored in each
leaf node.

2.2 Training of Decision Tree-Based Acoustic Models

The high-level training algorithm of DT acoustic models is
similar to that of standard GMM systems. It consists of
an initialization stage, followed by one or more stages that
change the complexity and/or structure of the model. The
initial model is created by using state-level forced align-
ments from an existing system, or by using a flat start ap-
proach [7]. The individual DT models are constructed using
an algorithm similar to the standard C4.5 algorithm [8] for
training decision trees. It consists of a growing stage and a
bottom-up pruning stage. A DT is grown by turning a leaf
node into a question node and producing two new child leaf
nodes. This is also referred to as splitting. The training algo-
rithm evaluates all possible splits of a node, i.e. evaluating
every feature and corresponding threshold, and selects the
split that maximizes the split criterion and meets a number
of other requirements. Specifically, splits must pass a chi-
square test and must result in leaves with a sufficiently large
number of samples. The split criterion is the total log likeli-
hood increase of the true samples. In other words, trees are
grown to maximize the total (scaled) log likelihood of the
true training samples. If the number of true samples reach-
ing a node (node d) is Ny and the total number of samples
(true and false) is Ny, the increase of the total log likelihood
AL from the splitting is described by

AL = Ny log L), + Nj log L)y — Ny log Ly 2)
Ny , N
Nai P(@)" ¢ N, PQ)’

NZ 1
Ly = i 3)
Ny P@)

where L, LZ, and L, are the likelihood at node d, at a child
node answering the split question with yes (denoted “child
ves”), and at the other child node answering with no (de-
noted “child no”), respectively. N;. and N’ are the number
of the true and all samples at child yes, Ny and N are the
number of the true and all samples at child no, respectively,
as shown in Fig. 2. P(q) is the prior probability of state g.
Once a tree is fully grown, the likelihood split criterion

Fig.2 A split based on a question that maximizes log likelihood in-
crease.
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is used to prune the tree in a bottom-up, worst-first fash-
ion to give the desired model complexity. Finally, Laplace
(or add-one) smoothing is used to increase the robustness of
the counts used to estimate the leaf values (i.e., the likeli-
hoods) [6].

After initial DTs are constructed from the training
alignments, the HMM transition parameters and DT leaf
values are re-estimated using several iterations of the Baum-
Welch algorithm [1]. Depending on the quality of the initial
alignments, the process of growing trees and re-estimating
the parameters can be repeated until a desired stopping cri-
terion has been reached, such as a maximum number of it-
erations.

3. Smoothness Improvement

One undesirable property of the DT acoustic models de-
scribed above is that the likelihood as a function of the fea-
tures is not smooth; a minute change in a feature value might
result in a large change in the likelihood. By using large
amounts of training data, robust features and big trees, this
problem can be alleviated, but in practice, the situation is
often less than ideal. We propose two techniques to remedy
this issue.

3.1 Mixture Models

A popular and very effective technique for improving the ro-
bustness and accuracy of DTs is to use an ensemble method,
such as boosting [9] or bagging [10]. The resulting ensem-
bles are also referred to as forests. A forest is evaluated
by combining (e.g., averaging) the results of all individual
trees. A small change in a feature value might still cause
a large change in the output of one tree, but generally not
in all trees at once. Consequently, the output of a forest is
much smoother than the output of any individual tree.

However, there is a downside to a method such as bag-
ging. Instead of a single tree, a bagging approach uses mul-
tiple trees to compute the likelihood as mentioned above.
Each tree is constructed to cover the entire acoustic space
and its size is the same as the original single tree. Therefore,
the bagging approach results in a greater number of param-
eters in general. Although it is possible to apply a certain
restriction such as using a much smaller number of param-
eters for each tree to control the total number of parameters
in the bagging, this would harm the performance.

To overcome this problem, we propose decision tree
mixture models, where each mixture component models a
different part of the acoustic space. The likelihood of the
mixture corresponds to the weighted sum of the likelihoods
of the individual components as follows:

LXig) = > wiL(xIMh) )

where N is the number of components, wy is the weight of
component k, and M* corresponds to the DT model of com-
ponent k for state g. Note that it follows from this formula-
tion that each component is trained to discriminate between
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data that corresponds to the component itself and all other
data, including data from the other components in the same
mixture. Mixture models benefit from the smoothing prop-
erty of ensemble methods and since each tree is responsi-
ble for only a portion of the acoustic space, the number of
components and the complexity of each component can be
traded off.

Initialization of a DT mixture model is non-trivial and
for our experiments, we used an ad hoc method that ran-
domly assigns true data samples to each component. Once
the initial components are constructed, the EM algorithm is
used to update the mixture weights and leaf values of the
components. The resulting mixture model is subsequently
used to create new component training data sets, which are
employed to re-train the components from scratch. This pro-
cess is repeated for a certain number of iterations. The algo-
rithm works as follows:

Create N partitions of the data D, belonging to State q. De-
note each partitioned data as D1 - - - Dy.

Foreachkinl... N, do:
Train the initial model M* using Dy as “true” samples
and all other data as “false” samples.
end
For iterations in 1...1, do:
For each data point X in D, do:
Compute the likelihoods of X given the DT models
M. MV,
Assign X to the DT model that provides maximum
likelihood as “true” samples.
end
Foreachkin 1...N do:
Train DT model MF using samples assigned as
“true” samples, and all other samples as “false”
samples.
end
end

3.2 Soft-Decision Trees

Another method that can be used to improve the robust-
ness of DTs is to make “soft” or “fuzzy” decisions, instead
of hard decisions [11]. The main idea is that in a region
around the decision threshold the weighted contribution of
both child branches is used. The weighting is a function
of the distance between the feature value and the decision
threshold.

Our approach is to treat a soft-decision result as a prob-
ability, the probability that the observation corresponds to
one child branch versus the other child branch. We model
this probability by using a sigmoid function given by

falx) = 1 )

1 + exp(sq(tg — x))

where 7, is the threshold of question at node d and s; is a
parameter that determines the smoothness of the decision.
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If this parameter is set to infinity, the decision reduces to a
hard, binary decision. The total likelihood of observation X
for given state g returned by the question at node d is given
by

Ly(Xlg) = fa(xd)Ly(Xlg) + (1 = fa(xa))Ly(Xlq) (6)

where x, is the feature value that node d asks about, L'Z(X l9)
is the likelihood that the child answering the question at
node d with yes (“child yes”) returns and L)}(X|q) is the like-
lihood that child no returns.

We explored two ways of training the parameters of
soft-decision trees. The following subsections explain these
two methods in detail.

3.2.1 Convert Hard to Soft-Decision Trees

Since the likelihood of any given node depends on the like-
lihoods of its children nodes for any observation, the esti-
mation of maximum likelihood (ML) parameters of node
d, (t; and s;) also requires likelihoods of children nodes.
The children likelihoods, in turn, require likelihoods further
down the tree. This means that for ML estimation of ques-
tion parameters of a soft DT, one has to traverse the tree
completely.

One way of tackling this problem is to convert hard
decisions to soft ones once hard decision trees are trained.
Keeping the tree structure unchanged, we re-estimate the
threshold parameter 7; and estimate the smoothness param-
eter s, using an iterative gradient-based optimization algo-
rithm that tries to maximize the total training data likeli-
hood. Our implementation is based on the RProp algo-
rithm [12] and automatically adapts the learning rate and
batch size for each parameter individually. All question pa-
rameters are re-estimated simultaneously. After every iter-
ation, the leaf values of the trees are re-estimated based on
the new parameter values 7; and s,;. The optimization steps
are as follows:

For i=1...I iterations do:
For b=1..B_i batches do:
For n=1..N tree nodes do:
Compute the derivative of the total log likeli-
hood with regard to smoothness and threshold
parameters, respectively
Update parameter by stepping in the direction
of the gradient (to maximize the total log like-
lihood). Step size (learning rate) is determined
by RProp.
Update learning rate and, if needed, batch size B_i.
Update all leaf parameters (assign data points to leaves ac-
cording to posterior probability of leaf given data point).

The derivatives of the log likelihood of Eq. (6) with regard
to the smoothness parameter s, and the threshold parameter
t; are given by
dlog(La(Xlq)) _ 1 9Li(Xlq)
sy Li(Xlg)  0Osa
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_ {L’:,(XW) - Lﬁ(X|61)} Afa(xy) o
Li(Xlq) 0sq
dlog(Ly(Xlq))
oty
B {LZ(leZ) - LZ(qu)} Afi(xq) @®
- Ly(Xlq) 0ty
where
Ofa(xa) _ (ta = Xa) exp(sa(ta = Xa)) ©)
0sq (1 + exp(sq(ta — xa)))?
Ofa(xa) _ _Sa - exp(salta = xa)) (10)
oty (1 + exp(sq(ta = xa)))*

Features that already represent a soft decision can be
incorporated directly into a DT by using pass-through ques-
tions. A pass-through question simply returns the feature
value itself as the soft answer. An example of such a feature
is a gender-classification feature that represents the proba-
bility that the speaker is female.

3.2.2 Train Soft-Decision Trees From Scratch

One problem with the approach in Sect.3.2.1 is that once
a hard decision tree is trained, the features to be evalu-
ated at different nodes are fixed and only the smoothness
and threshold parameters are re-estimated. It can be argued
though that a soft question based on another feature may
better split data at a particular node. Therefore, a soft DT
trained from scratch should be different from a soft DT con-
verted from a hard DT. This section shows how we can train
the soft DTs from scratch.

Similar to the training of hard DTs, all possible soft-
splits are evaluated at every node while growing the tree.
This means finding the best feature x, smoothness param-
eter s; and threshold #; at node d. The soft-question that
results in maximum log-likelihood increase of true samples
is selected for that node. As mentioned earlier, this requires
likelihood values of the two children nodes.

These likelihood values are estimated by accumulating
answers to the soft question for every training data point x;
as follows. First, posterior probabilities for true samples at
child nodes are given by

=1~ L,XI
P(yes|X € Dy) = ———=% 11
(vesl r) Now FGDL,(XIq) an

21 T Lok

Ny (=) LX)

2=l T LX)
P(nolX € Dr) = N (=i (12)

i=1 T Ly(Xig)

where f;(x;) is computed using Eq.(5). Nr and N, de-
note the number of true and all samples at node d, respec-
tively. Posterior probabilities for negative samples are com-
plementary to those of positive samples, i.e. P(-|X € Dp) =
1 - P(-|X € Dr).

The posterior probabilities are converted to scaled like-
lihoods by Bayes rule as follows:
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P(yes|X € Dr)

Lyl = 220 (13)
P(no|lX € D
Li(xlg) = 020 (14)

where P(q) is the prior probability of the given state.

Equations (11)-(14) show that the likelihood compu-
tation for children nodes is an iterative process and depends
on soft-question parameters of the parent node. These likeli-
hoods can then be used for updating smoothness parameter
sq and threshold parameter #; using RProp algorithm [12].
Let ¢ denote the current iteration (epoch). The smoothness
parameter s, and the threshold parameter ¢, are changed ac-
cording to:

salt + 1) = sa(t) — sign(w) .65, (15)
(9Sd

tat + 1) = 14(1) — sign(w) 6, (16)
oty

where the partial derivatives of the log likelihood at node
d with regard to smoothness and threshold parameters are
given by Eq. (7) and Eq. (8).

The individual step size J, is adapted based on the
change of sign of the derivative of the log likelihood with
regard to the corresponding parameter. The likelihoods of
children nodes LZ(X lg) and L)(X|q) in Eq.(7) and (8) are
computed from Eq. (13) and Eq. (14). The initial value of
threshold parameter 7, corresponds to the best hard split that
maximizes the total log likelihood of true data, and initial
value of smoothness parameter s, is decided based on the
standard deviation of feature values x;;i = 1,..., Ny;. The
above parameter updating and likelihood computation pro-
cesses are repeated for a number of iterations. The algorithm
works as follows:

At each node,
Fori=1...1iterations do:
For each data point X in D, do:
Compute posterior probabilities P(yes|X € Dr) and
P(no|lX € Dr) using Eq. (11) and (12), for true sam-
ples and complementary values for false samples, re-
spectively.
Compute likelihoods L'Z(X lg) and L3(X|q) using
Eq.(13) and (14), respectively.
Compute smoothness parameter sq4(t) and threshold
parameter ty(t) using Eq. (15) and (16), respectively.
end
end
If the total likelihood computed by Eq. (6) is bigger than that
at the upper node with a predetermined margin, split the
node with the selected question.
Else, end.

Once a soft question for node d is selected, the train-
ing data is split probabilistically among yes and no children
nodes. The split probability is given by Eq. (5). The children
nodes are then grown similarly in a depth-first fashion.

This process continues until:
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e The in-class and other-class separation of training
data at a node has minimum counts of both categories.

o This separation also follows the chi-square statistical
significance test.

It is possible that sometimes there is no good soft-
question for a node but the corresponding hard-question sat-
isfies the above-mentioned requirements. In this situation,
a hard question x < #; is used for that node. Therefore the
resulting tree has a mix of soft and hard questions.

4. Experiments and Results

All experimental results are based on the Aurora 2 speech
database [13]. The task is connected digit string recognition
under noisy conditions for the American-English language.
This speech database was selected, because the task is a pure
acoustic modeling problem, the baseline error rates are rel-
atively high and the database is small enough to be able to
quickly run experiments. The downside of using the Aurora
2 database is that some of the more interesting aspects of
DT acoustic models, such as integrated state-tying and in-
corporation of grammar-level features, cannot be explored
properly.

For all experiments, we used the multi-condition train-
ing data set, which contains a total of 8440 utterances at 5
different SNR levels (5dB - clean). There are 3 test sets:
set A contains noises seen in the training data, set B con-
tains unseen noises, and set C contains convolutional dis-
tortions applied to one noise condition from both set A and
B. The test data set contains data from 7 different SNR lev-
els (-5 dB - clean), but only results for SNR levels between
0dB and 20 dB are used to compute the average word accu-
racy numbers.

The HMM structure and model complexity is identical
for all systems. The model complexity of a DT is taken to
be equal to the total number of nodes in the DT, since each
question refers to a single threshold and each leaf stores a
single likelihood. There are 11 digit models (oh, zero, one,
..., nine) and 2 silence models (sil and sp). The digit models
are each composed of 16 states; sil has 3 states; sp consists
of a single state. The GMM baseline system uses 3 diagonal
Gaussians per GMM (6 Gaussians per GMM for silence).

4.1 DT Acoustic Models

Table 1 shows the average word accuracy of a standard
GMM system and a comparable DT system. Results for two
different feature sets are shown. One feature set consists of
12 static PLP features and log energy, together with their 1st
and 2nd derivatives, totaling 39 features. The static features
are normalized using cepstral mean normalization and the
static log energy feature is normalized with respect to the
maximum value in the utterance. This feature set is denoted
by “PLP + E”. The other feature set is similar, but instead
of 3 log energy-based features, it contains 8 log filter-bank
features plus their Ist, 2nd and 3rd derivatives. The total
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Tablel Average word accuracy of conventional GMM systems and pro-
posed DT systems for two different feature sets.

System (feature), Number of | Set A SetB Set C Ave.

parameters

GMM 1 (PLP+E), 44k 89.2 88.6 88.7 88.8

GMM 2 (PLP+FB), 88k 86.5 86.5 86.5 86.5

DT 1 (PLP+E), 44k 85.1 81.7 81.0 82.6

DT 2 (PLP+FB), 44k 89.1 87.8 89.1 88.7

number of features is 68 in this case. The decision to use the
filter-bank features instead of the energy features was taken
based on an analysis of the performance of PLP+E features
for DT-based acoustic models. The analysis is given later
in this section. The filter banks cover the whole frequency
range and are equally spaced in the mel scale.

The DT systems use a single tree per HMM state and
the model complexity of each tree is the same as that of
the corresponding GMM in the baseline system. This corre-
sponds to 118 leaf nodes per tree. The DTs use hard deci-
sions.

The results show that the word accuracy of DT sys-
tem 2 is very similar to that of GMM system 1. In fact, the
GMM system is better on only 27 of 50 individual test con-
ditions. Although the feature set used by DT system 2 is
larger than the feature set used by GMM system 1, the num-
ber of model parameters is equivalent. That is one of the
advantages of DT acoustic models: the number of model
parameters is completely independent of the size of the fea-
ture set.

We can see from the results that in terms of the feature
set, what works for a DT system does not necessarily work
for a GMM system, and vice versa. That is not surprising,
since the models are fundamentally different. For example,
the GMM system uses diagonal Gaussians, and hence it as-
sumes that the features are uncorrelated, unlike DTs. How-
ever, that assumption does not hold for feature set 2, which
might explain the performance degradation of GMM sys-
tem 2 compared to GMM system 1. Another example is that
GMMs always use all features for the likelihood computa-
tion, whereas DT's use a variable number of features. Owing
to the relatively small model complexity, some trees contain
leaf nodes that are only 2 questions removed from the root
of the tree and the average tree depth is merely 8.9 questions
deep. The consequence is that even a small number of cor-
rupted features can greatly affect the accuracy of the model.
This is the reason for the large performance gap between
DT systems 1 and 2. By keeping track of the number of
times each feature is evaluated during recognition, we found
that the 3 energy features (i.e., the static feature and the two
derivatives) together account for more than 40% of the total
number of feature evaluations for DT system 1. Given that
energy is useful for discriminating speech from silence and
that each tree is trained using all training data samples, 33%
of which corresponds to silence, it can be explained why en-
ergy features are used so frequently. Unfortunately, energy
is not a particularly robust feature, since it is calculated over
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Fig.3 Relative feature usage for different models and noise conditions
in the proposed DT system DT2.

Table 2 Comparison of the word accuracy of a single DT system and a
3-DT-mixture system.
System (feature), mixture of | Set A SetB Set C Ave.
trees
DT 2 (PLP+FB), single 89.1 87.8 89.1 88.7
DT 3 (PLP+FB), 3 mixtures 89.5 88.5 89.6 89.2
DT bagging (PLP+FB) 88.6 79.2 82.1 83.3

the whole spectrum. Replacing the energy-based features
with filter-bank features alleviates this problem and gives a
significant boost in accuracy.

Figure 3 shows the relative usage of features for models
“oh (clean)”, “six (clean)”, “nine at 5dB”, “nine in clean”
and “silence”. The usage was counted for PLP and FB fea-
tures, and their dynamic features. From this figure, we can
see that the features used in decoding are selected automati-
cally in the DT-based acoustic models and that feature usage
can be easily analyzed in DT-based systems.

4.2  Mixture Models

In the following experiment, mixtures of trees are used to
model each HMM state. The mixture models have 3 com-
ponents (trees) per state. The number of parameters in each
component is fixed and it corresponds to 39 leaves per tree
(78 for silence).

Table 2 shows the results. For the purpose of compari-
son, a DT bagging system is also shown. The bagging sys-
tem has 25 trees each state as the ensemble. The number
of trees was experimentally determined as a good number.
Each tree was trained using the data sampled randomly from
the training data. The results from 25 trees were combined
by averaging. All models in Table 2 have the same number
of parameters. The results show that the bagging system is
inferior to the others. Its performance becomes worse than
that of the DT single model, especially for Set B and Set C.
The bad performance for Set B and Set C can be attributed
to over-fitting to the training data. The DT mixture model
outperforms the DT baseline system on 46 of 50 individual
test conditions. Comparing the performance with the GMM
system shows that the DT mixture model is a competitive
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model. In fact, the DT mixture system scores worse on only
14 of 50 individual test conditions.

The baseline DT system can generate at most 118
unique likelihoods per model, since that is the number of
leaves per tree. On the other hand, the DT mixture system
can generate no more than 39 unique likelihoods per tree,
but since the contributions of 3 trees are added together, the
resulting number of unique likelihoods can be much higher.
We found that on the training data each mixture generates
roughly 2700 unique likelihoods on average. This demon-
strates that without changing the total number of parameters,
mixture models can provide a dramatic increase in resolu-
tion, resulting in models that are more robust.

4.3 Soft Decision Trees

We ran some preliminary experiments to verify the advan-
tage of soft DTs trained from scratch over soft DTs con-
verted from hard DTs. This was done using a subset of 400
training utterances and 1500 test utterances. Table 3 shows
speech recognition performance and the number of param-
eters for these two soft DT systems. For the soft DT sys-
tem converted from hard DTs, we took the hard decision
model (“DT 2, single”) and then converted it to a soft deci-
sion model according to the method described in Sect. 3.2.1.
For each question node d, the initial estimate of the smooth-
ness parameter was based on the variance of the feature at
node d. After initialization of the smoothness parameters,
all model parameters were re-estimated by running the opti-
mization algorithm for 3 x 20 iterations. Note that the struc-
ture of the trees does not change. We created the other soft
DT system from scratch using the method in Sect. 3.2.2.

Results show that the soft DT system trained from
scratch requires far fewer parameters to achieve a perfor-
mance similar to that of the soft DT system converted from
hard DTs. This means that, compared with the soft DTs con-
verted from hard decisions, the soft DTs from scratch have
better separation of in-class and other-class data points.

Since the soft DTs from scratch tend to have far fewer
parameters, the bottom-up pruning is not necessarily re-
quired in many cases. However, the pruning can be done
using development data apart from training data in the same
way as for the hard DTs, i.e. worst-first fashion, in order to
improve the robustness against unseen data.

For experiments with full training set, we compared
two soft DT systems with the hard DT system. Table 4

Table 3  Comparison of the word accuracy and the number of parame-
ters between soft DT systems converted from hard DTs and trained from
scratch. PLP+FB was used as the feature set.

System Set A Set B Set C Ave. Number of
parameters

DT soft 87.4 85.0 87.5 86.6 50k

from hard

DT soft 86.3 86.0 88.4 86.9 33k

from scratch
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presents average word accuracies for different test sets for
the hard DT system (denoted “DT hard”), a soft DT system
converted from hard DTs (“DT soft from hard”) and a soft
DT system trained from scratch (“DT soft from scratch”).

Table4  Comparison of the word accuracy of a hard DT system and soft
DT systems.

System (feature) Set A Set B Set C Ave.
DT hard (PLP+FB) 89.1 87.8 89.1 88.7
DT soft from hard (PLP+FB) 91.2 89.6 90.9 90.6
DT soft from scratch 90.9 89.6 90.6 90.4
(PLP+FB)
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Fig.4  Comparison of the word accuracy of GMM, hard DT and soft DT
systems for different noise conditions.
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We created these soft DT systems in the same way as de-
scribed above. Note that the numbers of nodes in all DT
systems in Table 4 are the same. The bottom-up pruning was
applied to both “DT hard” and “DT hard to soft” systems to
make the number of parameters the same. We stopped grow-
ing the tree for “DT soft from scratch” at the same number
of parameters as the other systems.

Table 4 shows that the soft decision models are signif-
icantly better than the hard decision model. The soft DT
system converted from hard DTs achieved 16.8% relative
error rate reduction on average on three test sets over the
hard DT system. Figure 4 shows the comparison between
the GMM 1 system, hard and soft DT systems for clean and
noise conditions for test sets A, B and C. It can be seen
from Fig. 4 that the soft DTs improve the robustness against
noise. The accuracy improvement of soft DTs from scratch
was 15.0%, which is slightly smaller than that of converted
soft DTs. We observed from the experiments that the soft
DTs trained from scratch tend to be more robust in severer
noise conditions. The performance of the soft DTs at —5 dB
of SNR was 34.9% whereas that of soft DTs converted from
hard DTs was 33.8%.

The experimental results show that soft DTs improve
the robustness to noise as well as the performance in clean
conditions. This is consistent with our intuition that soft
decisions should be more capable of handling overlaps of
features between different classes. However, soft DTs are
computationally more expensive in training and testing than
hard DTs. Hard DTs are fast in computing acoustic scores
owing to the nature of binary decisions. There is a trade-off
between computation and the performance.

5. Conclusions

This paper presented decision tree-based acoustic models
for automatic speech recognition. We described the basic
configuration of DT-based acoustic models and proposed
DT mixture models and soft DTs to improve the smoothness
of the acoustic models, which resulted in improved perfor-
mance. Soft DTs are created by the proposed two methods:
one method creates soft DTs by converting hard-questions
to soft ones while maintaining the DT structure unchanged;
the other method trains soft DTs from scratch.

Experimental results for the Aurora 2 speech database
show that the performance of a system using decision trees
offers state-of-the-art performance, even without taking ad-
vantage of its full potential. The performance of soft DT
systems was shown to be significantly better than that of
a hard DT system as well as better than that of a base-
line GMM system. The soft DTs converted from hard DTs
achieved 16.8% relative error rate reduction over the hard
DT system.

We used conventional acoustic feature sets both for
the proposed DT-based acoustic models and conventional
GMMs for the purpose of comparison between these mod-
els. Future work includes investigating feature sets suit-
able for DT acoustic models. DTs can use not only low-
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level acoustic features but also high-level information such
as questions about gender, phonetic contexts, acoustic envi-
ronments and the speaker.

With that in mind, an interesting extension to the ba-
sic DT acoustic model configuration involves allowing DTs
to perform automatic state tying, or more precisely, unty-
ing. We can extend the DT, allowing it to ask questions
about features that can identify the HMM state for which the
model is evaluated, and hence it can untie states. We call
such features decoding features to distinguish them from
acoustic features. The resulting tree can have an arbitrary
mix of tied and untied parameters. This approach allows
DTs to incorporate phonetic context-dependent state tying
directly into the acoustic model. Furthermore, the amount
of state tying can change depending on the input signal.

A decision tree is discriminative when it is seen as a
classifier. However, the decision tree-based acoustic models
described in this paper are generative because decision trees
are used instead of GMM to compute the likelihood. While
both ML and discriminative training are capable of training
the proposed DT-based acoustic models, only ML training
is considered in this paper. Discriminative training is one of
the subjects for future work.

We want to explore these approaches in large vocabu-
lary tasks.
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