
2298
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

PAPER Special Section on Parallel and Distributed Computing and Networking

NSIM: An Interconnection Network Simulator for Extreme-Scale
Parallel Computers

Hideki MIWA†a), Ryutaro SUSUKITA††, Nonmembers, Hidetomo SHIBAMURA††, Member, Tomoya HIRAO††,
Jun MAKI††, Makoto YOSHIDA††, Takayuki KANDO†††, Yuichiro AJIMA†, Ikuo MIYOSHI†, Nonmembers,

Toshiyuki SHIMIZU†, Member, Yuji OINAGA†, Nonmember, Hisashige ANDO††††, Member,
Yuichi INADOMI†††††, Nonmember, Koji INOUE†††††, Member, Mutsumi AOYAGI†††††, Nonmember,

and Kazuaki MURAKAMI†††††, Member

SUMMARY In the near future, interconnection networks of massively
parallel computer systems will connect more than a hundred thousands of
computing nodes. The performance evaluation of the interconnection net-
works can provide real insights to help the development of efficient com-
munication library. Hence, to evaluate the performance of such intercon-
nection networks, simulation tools capable of modeling the networks with
sufficient details, supporting a user-friendly interface to describe communi-
cation patterns, providing the users with enough performance information,
completing simulations within a reasonable time, are a real necessity. This
paper introduces a novel interconnection network simulator NSIM, for the
evaluation of the performance of extreme-scale interconnection networks.
The simulator implements a simplified simulation model so as to run faster
without any loss of accuracy. Unlike the existing simulators, NSIM is built
on the execution-driven simulation approach. The simulator also provides
a MPI-compatible programming interface. Thus, the simulator can emu-
late parallel program execution and correctly simulate point-to-point and
collective communications that are dynamically changed by network con-
gestion. The experimental results in this paper showed sufficient accuracy
of this simulator by comparing the simulator and the real machine. We
also confirmed that the simulator is capable of evaluating ultra large-scale
interconnection networks, consumes smaller memory area, and runs faster
than the existing simulator. This paper also introduces a simulation service
built on a cloud environment. Without installing NSIM, users can simu-
late interconnection networks with various configurations by using a web
browser.
key words: discrete event simulation, multiprocessor interconnection, par-
allel processing

1. Introduction

The upcoming extreme-scale massively parallel computer
systems should have about hundreds of thousands of nodes.
Developing new communication libraries and porting ex-
isting applications to such large machines are challenging
tasks. In order to build more sophisticated control schemes
for future interconnection networks, and optimize commu-
nication algorithms and applications for such networks, it is
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necessary to investigate the performance degradation prob-
lems, such as the network congestion. The performance
problems have to be solved before the development of the
systems is completed. It is crucial to have a tool capable
of simulating the transfer of packets or flits between nodes,
the operation of switches, and the behavior of the commu-
nication functions. The abundance of the supported simula-
tion patterns, the deriving information, the accuracy of the
results and the time it takes for the complete simulation pro-
cess are major issues to consider too.

In addition, it is difficult to predict the performance
problems of such systems statically and qualitatively, be-
cause there are certain factors to take into account, such
as the network contention and the load imbalance of the
nodes. However, the performance prediction of applications
via simulation can provide insights to help optimize applica-
tions so that they are ready to be run on the actual machines
as soon as they become available. Even for existing large
parallel machines, time for tuning applications on large ma-
chines as well as the queuing time before allocation of nodes
can be very long. Hence, a tool that can evaluate the perfor-
mance of interconnection networks, communication algo-
rithms and applications is a real necessity. Therefore, the
simulator presents a more available alternative so that min-
imal supercomputing time is consumed by debugging and
performance optimization.

The existing simulators implement detailed models of
target systems so that they can simulate accurately. How-
ever, it will be difficult for the simulators to complete a sim-
ulation of an extreme-scale alltoall communication within a
reasonable time. The alltoall communication is indispens-
able for a fast Fourier transform required by a global at-
mospheric simulation and a molecular dynamics simulation.
The total amount of data injected into the network by the all-
toall communication is given by O(n2) or O(n2 log(n)) where
n is the number of nodes. Thus, simulation time can be pro-
portional to n2 or n2 log(n). It is not easy to keep the simula-
tion time reasonable by increasing the number of nodes on
the simulation environment, even if the existing simulators
offer enough scalability. In order to complete simulations
within a reasonable time, simulation should be accelerated.

In this paper, we propose a novel execution-driven par-
allel simulator for extreme-scale interconnection networks,
NSIM. By simplifying a simulation model, this simulator
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can run faster without sacrificing accuracy. NSIM offers a
flexible and MPI-compatible interface called MGEN API.
By using the MGEN API, users can describe communi-
cation patterns on a program (called a MGEN program)
and correctly simulate it. Supported patterns are point-
to-point communications, collective communications, and
more complex patterns that are changed by the network con-
gestion. This feature stems from the execution-driven sim-
ulator design. Because the message and packet is gener-
ated adaptively in accordance with the network simulation,
this simulator can accurately simulates network-dependent
communication patterns and successfully reproduce the con-
gestion in the interconnection networks. The simulator also
supports multiple NICs and a zero-copy communication by
using the extended declarations of the MGEN API. NSIM
can act as a performance measurement tool of interconnec-
tion networks for our previous proposal BSIM [1].

In addition, we explain a simulation service over the In-
ternet. NSIM is modified to OpenNSIM so as to work on a
cloud environment called a TaaS framework [2]. By access-
ing this service through a web browser, users can simulate
interconnection networks without installing the simulator.

The rest of this paper is organized as follows. In Sect. 2,
related work in existing interconnection simulators is pre-
sented. In Sect. 3, we go into the details of NSIM by reveal-
ing the inputs, outputs, functions, and implementation. In
Sect. 4, we introduce a simulation service via a cloud envi-
ronment. In Sect. 5, the simulation accuracy and the capa-
bility of simulating extreme-scale interconnection networks
are confirmed by the experimental evaluations. In addition,
an example of usage by the simulation service is described.
In Sect. 6, we conclude our paper.

2. Related Work

There are many good simulators of large-scale interconnec-
tion networks in the literature. BlueGene/L interconnec-
tion network simulator, proposed by N.R. Adiga et al., is
a trace-driven simulator [3]. This simulator specializes in
BlueGene/L and is used for the performance prediction and
the analysis of the interconnection network. Traces are gen-
erated by the IBM’s trace capture utility based on a pseudo
code. This simulator employs the shared-memory parallel
simulation approach. It runs on a relatively small machine
such as a 16-way IBM POWER3+ SMP node with 64 GB
memory. Several threads are concurrently executed at run-
time. In order to synchronize target simulation time among
threads, YAWNS (yet another windowing network simula-
tor) protocol is used [4]. This is a conservative parallel sim-
ulation protocol.

BigNetSim, introduced by L.V. Kale et al., is a paral-
lel simulator of interconnection networks [5]. This simula-
tor supports detailed network models of various topologies.
Many configuration parameters of networks, such as topol-
ogy, network sizes and latency, are available. This simula-
tor is built on the POSE, a general-purpose optimistically-
synchronized PDES (parallel discrete event simulation) en-

vironment [6]. This programming system supports the pro-
cess virtualization. Helped by this, BigNetSim can exploit
the large parallelism of the simulation execution environ-
ment around one hundred of processes. This simulator has
two running modes. The first mode is driven by the ar-
tificial traffic patterns generated by internal traffic genera-
tors. The second mode is a trace-driven simulation mode.
In this mode, the simulator requires trace files generated by
BigSim [7]. BigSim is a parallel simulator for extremely
large parallel machines. It has a simple interconnection net-
work model, which does not consider network contention. A
target program should be linked to the Charm++ library [8].
BigSim is implemented inside the Charm++ library. On the
execution of the program, BigSim generates the trace files.
BigNetSim uses them as inputs, and executes the intercon-
nection network simulation based on the detailed network
model. After simulation, many kinds of statistics can be dis-
played graphically. For example, the CPU usage statistics,
the breakdown of the process time, the transferred message
size, and so on. These are very useful for the application
tuning.

FSIN is a functional interconnection network simula-
tor, which is included in a simulation framework INSEE [9].
This simulator does not support the detailed network simu-
lation, and cannot be executed in parallel. It assumes that
the event processing time takes one FSIN cycle for every
network events. SICOSYS [10] is also an interconnection
network simulator from the INSEE framework. This sim-
ulator implements the detailed network model. It can only
simulate up to one thousand nodes within a practical time.
The INSEE framework has a distinguishing characteristic.
It includes the feedback mechanism from interconnection
network simulator to the trace generator, called TrGen [11].

SMART is a general-purpose sequential simulator for
parallel architectures [12]. This simulator adopts a unique
simulation methodology, process-driven simulation. In this
method, the target system is implemented as a set of com-
municating processes. Each process is corresponding to a
hardware device. Processes communicate by exchanging
information through message passing and accessing shared
variables. The advantage of this method is flexibility and
modularity. The disadvantage is that the simulation speed is
slower than execution-driven simulation.

3. NSIM

3.1 Simulation Model

We have modeled one, two, three and higher dimensional
torus/mesh networks and a full bisectional bandwidth (FBB)
fat-tree network with two or three layers. One example of
the higher dimensional torus/mesh network is Tofu, which
has a six-dimensional topology [13]. The node and the
router are connected by bi-directional links.

The node has one CPU and main memory that con-
tains two buffers, the USER buffer and the MPI buffer. We
assume that the only one thread is executed on the CPU.
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The USER buffer represents a set of all the memory regions
allocated by users in the MGEN program. It contains the
sending and the received data. In the two-copy communica-
tion, the data is transferred by way of the MPI buffer. In the
zero-copy communication, the MPI buffer is not used.

In the router model, we assume the static dimension-
ordered routing, the virtual cut-through and the pipelined
router. The router has input queues, a crossbar switch and
output buffers. The data transfer in the network is modeled
in a packet level. A flit level can achieve better accuracy
than the packet level. However, simulating in the flit level
is so slow that the simulator cannot complete the extreme-
scale simulation within a reasonable time. Without employ-
ing the flit level, simulating virtual cut-through networks in
the packet level can achieve the same accuracy as in the flit
level. This simplification dramatically reduces the simula-
tion events, and helps the simulator to run fast without any
loss of accuracy.

In order to show that simulating virtual cut-through
routing in the both levels has comparable accuracy, we de-
scribe the transfer of the packet in the flit-level as follows.
We assume that a current switch forwards a packet from a
previous switch to a next switch.

1. When a head flit of the packet arrives at the current
switch, the switch checks if there is enough space left
in the receive buffer on the next switch by using a
credit-based flow control mechanism.

2. The current switch starts to forward the first flit of the
packet after the next switch accepts a packet. Then, a
successor flit is sent to the next switch after receiving
the flit from the previous switch and sending a prece-
dent flit to the next switch.

3. The packet transfer is finished if the last flit is arrived
at the next switch.

We define that the current switch w receives a flit k (0 ≤ k <
Np) from the previous switch at time Tr(w, k) and sends it
to the next switch at time Ts(w, k) where Np is the number
of flits included in a packet p. By using these notations,
Ts(w, k) can be expressed as follows.
⎧
⎪⎪⎨
⎪⎪⎩

Ts(w, k) ≥ Tr(w, k) (k = 0),

Ts(w, k) = max(Ts(w, k − 1) + F/b,Tr(w, k)) (k > 0).

In the equation, F and b represents the size of a flit and the
bandwidth of a switch. We assume that the network con-
sists of the same switches and the same network interfaces,
while the throughput between a switch and a network inter-
face is not necessarily identical. In addition, we define that
max(X,Y) returns the largest value from the numbers X,Y .
Then, there can be four cases for the second equation as de-
scribed below.

case 1) Ts(w, k) = Ts(w, k − 1) + F/b for Np > k > 0

case 2) Ts(w, k) = Tr(w, k) for Np > k > 0

case 3) Ts(w, k) = Ts(w, k − 1) + F/b for j ≥ k > 0, and
Ts(w, k) = Tr(w, k) for Np > k > j

case 4) Ts(w, k) = Tr(w, k) for j ≥ k > 0, and Ts(w, k) =
Ts(w, k − 1) + F/b for Np > k > j

In the case 1, each flit arrives at the same speed as the
switch sends a flit. Ts(w,Np − 1) can be inductively calcu-
lated and is equal to Ts(w, 0) + (Np − 1) · F/b. In the case
2 and 3, each flit arrives at the slower speed, because the
bandwidth of the network interface is lower than the switch.
In the case 2, a switch forwards a packet after the head flit of
the packet arrives. On the other hand, in the case 3, the cur-
rent switch cannot start to forward some flits until the next
switch accepts a packet. In these two cases, Ts(w,Np − 1)
is equal to Tr(w,Np − 1). The case 4 cannot be occurred
except for technical trouble of switches. Thus, we ignore
this case. Since Ts(w, 0) depends on Tr(w, 0) and the status
of the next switch, Ts(w,Np − 1) can be obtained if Tr(w, 0)
and Tr(w,Np−1) are known. Therefore, we need to simulate
the first and the last flits of each packet except for interme-
diate flits.

In order to build the packet-level simulation model, we
define a packet-level event so that the event has a meaning of
the arrival of a head flit of a packet in a switch and additional
information of the arrival time of a tail flit. By using this
model, the packet-level simulation of the virtual cut-through
routing can have similar accuracy as the flit-level simulation.

3.2 Simulator Overview

Figure 1 depicts the simulator overview. This figure out-
lined three major parts, the inputs on the left, the body of
the simulator in the middle, and the outputs on the right side.
The inputs are the parallel program (MGEN program) that
describes target traffic patterns to evaluate and the simula-
tor configuration including the mapping between target pro-
cesses and nodes. The simulator is initialized based on the
configuration. In order to simulate the different types of ma-
chine, users have to change the configuration file. The rank
map helps the software developers to evaluate topology-
aware applications and communication algorithms.

The simulator provides a MPI-compatible program-
ming interface called MGEN API. By using the API, users
can describe communication patterns for the simulator in
the same way that they write MPI programs. We named
such program a MGEN program. The MGEN program is
intended to describe the communications in the target sys-
tem. MGEN programs can be generated from the original
MPI programs by the following instructions.

1. Change the prefixes of every declaration from MPI to
MGEN .

2. Replace the name of the main function with
MGEN Main.

3. Delete the undefined function calls, such as MGEN Init,
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Fig. 1 NSIM inputs and outputs.

MGEN Finalize, because the simulator does not pro-
vide them.

4. Replace the computation kernels with MGEN Comp(t)
function calls, if the users want to include the compu-
tation time to the simulation result.

In order to manipulate the multiple NICs and support
the zero-copy communication, NSIM offers the LMGEN *
functions. Figure 2 shows the sample code. In this exam-
ple, each process sends messages to two neighbor processes
and receives messages from them. Since there is no argu-
ment to specify the NIC id or the message-copy mode in the
MGEN Isend and MGEN Irecv functions, we add appro-
priate arguments to new functions LMGEN Irecv and LM-
GEN Isend. The first added argument represents the id of
the NIC, while the second added argument is the switch of
the zero-copy communication.

There are tree constraints of the MGEN program.
The first constraint is that the MGEN API does not pro-
vide all the MPI-compatible declarations. For example,
MGEN Comm split is not defined. The second constraint
is that the functions in the MGEN API do not perform real
communications. Therefore, it is not possible to write the
MGEN programs that depend on the values in the received
messages. This limitation largely contributes to the reduc-
tion of memory consumption by the simulator. The third
constraint is that MGEN functions can only affect the pro-
cessing time of each target process. By using a special func-

Fig. 2 Sample MGEN program using LMGEN functions.

tion of the MGEN API, the processing time of computation
kernels can be included in the time of each target process.
Computation time should be specified as the argument in the
function. This function advances time in the target system.
We recognize that these constraints are not acceptable to
some interconnection network researchers. Currently, users
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are encouraged to describe communication patterns so as not
to be affected by the constraints if possible.

In the simulator configuration, users can specify the
parameters, e.g. the MPI latencies, the specification of the
routers, the specification of the network. The information
contained in the configuration includes the statistics file
name, the log file name, the router specification, the map-
ping file name, the network topology, the overheads of pro-
cessing MPI functions, etc. Users can define arbitrary map-
pings between the target processes and the nodes by describ-
ing the mapping between the rank of a target process and the
address of a node.

This simulator can generate two kinds of information,
the performance report and the detailed performance statis-
tics. The performance statistics include the execution time
predicted for the MGEN program, the effective bandwidth
of the link, the efficiency of the link, the cumulative size of
the data transferred, etc.

The detailed performance statistics includes the
throughput of each link, the waiting time of the packets in
each node, the occupancy rate of each buffer, the communi-
cation latency of each message, the number of the packets
that has the longer residence time in buffers than the speci-
fied period, etc. The statistics is collected every period for
each node. By using tools supplied with NSIM, the statis-
tics can be displayed graphically, as shown in Fig. 1 (at the
bottom right). Users can confirm or analyze state of com-
munications between routers or processes for each period of
time.

3.3 Simulation Flow

In this subsection, we give a full detail of each function
module. The simulator is built on the execution-driven sim-
ulation approach, because this method can simulate cor-
rectly the dynamic behavior in the target system, e.g. the
dynamic load balance, the network congestion. For exam-
ple, the dynamic load balancing application performs this
kind of communications. In this application, a master pro-
cess receives a message from one of worker processes, and
assigns certain jobs to it. These assignments depend on the
network congestion. It is difficult for trace-driven simulation
to support the communication patterns that are dynamically
changed by the network congestion.

Figure 3 illustrates simulator organization. The simu-
lator has five function modules, e.g. the MGEN, the PGEN,
the SIM, the DES, the EP modules, and three event queues.
The simulator handles two types of the events, the MLEs
(message level events) and the PLEs (packet level events).
The MLE is corresponding to a message in the message
passing programming model. This event is composed of the
source rank, the destination rank, the size of the message,
etc. The PLE represents a packet in the interconnection net-
works of the target system. This event is made up of the
source node address, the destination node address, the size
of the packet, the number of flits in the packet, etc. The
modules work in a coordinated manner as follows.

1. MLE generation: The SIM module checks if PLEs are
in the PLE queue. If not found, the module requests the
PGEN to generate PLEs. The PGEN checks if MLEs
are left in the MLE queue. If found, the module gener-
ates PLEs from the MLE(s). If no events in the queue,
the module requests the MGEN module to generate
MLEs. The MGEN module generates the MLEs by ex-
ecuting the MGEN program, and put them in the MLE
queue until the queue is full. If the module reaches a
receive function or a wait function corresponding to a
non-blocking receive function in the MGEN Main, it
also stops generating events.

2. PLE generation: The PGEN module pops an event
from the MLE queue, and extracts PLEs from it. The
module also determines the time to process the PLEs
based on the current time of the target node and the
latency in the node.

3. Interconnection network simulation: The SIM module
obtains PLEs from the PLE queue and passes them to
the DES queue module if the event indicates packet
transfer. The DES module puts the events to the DES
queue. Then, the module requests the EP module to
process the event. The EP module treats the PLE as
a packet in the target system and carries out intercon-
nection network simulation. The EP module checks
the availability of network resources that are needed
for transferring a packet in the target system. If avail-
able, the module calculates the latency, reserves the re-
sources, and generates a new event that releases them.
If the event does not indicate a packet arrival, the EP
module generates a new event that represents the arrival
of the packet in the next node and sends it to the DES
queue. Otherwise, the EP module passes the packet to
the SIM module. The SIM module checks if tail pack-
ets of messages are arrived. If the module detects the
tail packet arrival, it notifies the MGEN module via the
PGEN module that the message is arrived. The MGEN
module restarts event generation.

3.4 Implementation

We implement the interconnection network simulation part
based on the parallel discrete event simulation (PDES). The
PLEs generated by the PGEN module are treated as the dis-
crete simulation events in the interconnection network sim-
ulation part. We employed a conservative algorithm of the
PDES instead of the optimistic one. In terms of the simula-
tion speed, we cannot tell which algorithm is faster. From
the design perspective, the conservative algorithm is easier
to implement. Since this algorithm does not permit the spec-
ulative processing of the events in contrast to the optimistic
one, no rollback mechanism is required.

In order to implement NSIM as the parallel program,
we used the MPI, because a MPI program can run on a va-
riety of parallel machines, e.g. multi-core workstations, PC
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Fig. 3 NSIM simulation flow.

clusters, massively parallel computer systems.

4. A Simulation Service: TaaS+OpenNSIM

In order to make NSIM public, we decided to provide a
simulation service over the Internet instead of distributing
source files. By deploying the simulation service, people
who have an internet connection can use NSIM at any time
without installing the simulator on their computers. We
have made changes to NSIM so that the simulator works
on a cloud environment called TaaS (Tools as a Service)
framework. We named the modified version of the simu-
lator OpenNSIM.

The system consists of two parts, the front-end gui, and
the TaaS framework. We describe each step blow.

1. By using a web browser, a user connects to the web site
managed by the TaaS framework and submits an e-mail
address and a one-time password.

2. The TaaS framework sends an e-mail including an URL
which is unique to each run. When the user accesses
the URL, the TaaS framework authenticate the user
based on the one-time password and transfer the Java
applet to the browser. The applet generates the front-
end gui. The user can specify appropriate parameters
and files through this interface. After all the parameters
and files are set, the applet sends them back to the TaaS
framework.

3. The TaaS framework receives them, confirms that the
parameters are valid, and initiates OpenNSIM. When
the simulation has successfully completed, the TaaS
framework visualizes the results, compresses the files
to a ZIP file, and notify the user of completion via an
e-mail.

4. The user can get results from the URL supplied in the
e-mail.

5. Experimental Evaluation

In this section, the two kinds of fundamental characteris-
tics of this simulator are presented. First, the prediction ac-
curacy is introduced. Then, the simulation performance is

measured. Then, we explain the usage of the simulation ser-
vice by an example.

5.1 Simulation Accuracy of NSIM

In order to examine the accuracy of the simulation, we
compare the bandwidth of a random ring traffic between
the simulation and the measurement on the real machine.
The benchmark program is included in the HPC Challenge
Benchmark suite [14]. For measuring bandwidth of parallel
communication, all processes are arranged in a ring topol-
ogy and each process sends and receives a 2 MB message
from its left and its right neighbor in parallel.

We selected the Intel Endeavor cluster for comparison.
The machine has two quad-core Intel Xeon X5560 CPUs
running at 2.8 GHz in each node and connects up to 256
nodes by InfiniBand QDR switches. The switch provides
unidirectional throughput of 4.0 GB/s and port-to-port la-
tency of less than 100 nanoseconds, and supports adaptive
routing. The parameters for the simulation are listed in Ta-
ble 1. The values except for the MPI latency are determined
in reference to the specification of the target system. The
MPI latency is derived from the pingpong latency of the
HPCC benchmark, since the value cannot be estimated ex-
actly. However, the MPI latency is much shorter than the
1-hop latency of a 2 MB message and must have a small im-
pact on the result in this experiment.

There are some differences between the simulation and
the measurement on the real machine. The first difference is
the benchmark program. The MGEN program is generated
by extracting the program codes relevant to the random ring
traffic. We modified the MGEN program so as to emulate
multiple processes in each node, because the simulator sup-
ports one process per node. In addition, we also omitted the
communications within a node, since the simulator does not
support shared memory communication. The other differ-
ence can be the routing algorithm, the arbitration algorithm,
and so on. These differences lead to errors in the simulation
result.

We executed the MGEN program and calculated the
bandwidth in the same way as the original benchmark (i.e.
the geometric mean of ten different randomly chosen pro-
cess orderings in the ring).

Figure 4 shows the results of the two cases, the predic-
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Table 1 Configuration parameters for NSIM.

Type Parameter Value
Router Unidirectional link throughput 4.0 GB/s

Switch throughput 4.0 GB/s
Routing computation time 4.0 ns
Virtual-channel allocation time 4.0 ns
Switch allocation time 4.0 ns
Switch latency 90 ns
Cable latency 10 ns

Node DMA transfer rate 6 GB/s
Memory bandwidth 6 GB/s
MPI overhead 1.6 us
Number of process 1 process/node

Fig. 4 Random ring bandwidth.

tion by NSIM and the observed result on the cluster. The
horizontal axis represents the number of nodes. The verti-
cal axis stands for the bandwidth of the random ring traf-
fic. They have the similar trends along the number of nodes.
However, the gap exists between two results. There are two
reasons for this gap. The first reason is that we removed the
communications within a node by modifying the benchmark
program. Figure 5 indicates the ratio of intra-node commu-
nications to inter-node communications. For a small num-
ber of processes, the intra-node communications account for
a half of total communications. Although communicating
with other processes on the same node via the shared mem-
ory can be much faster than on different nodes, the elim-
ination of communication makes the predicted bandwidth
higher. The second reason is that the routing algorithm and
the arbitration algorithm can differ. For a large number of
processes, the network congestion is likely to occur. Due to
the differences, more serious congestions can be produced
on the simulation compared to the real machine. Hence, the
predicted bandwidth becomes lower than the observation on
the real machine.

5.2 Simulation Performance Evaluation of NSIM

In order to explore the capability of evaluating the extreme-
scale interconnection networks on a small machine such as
workstations, we have evaluated the simulation time and the
maximum consumed memory size of NSIM . In addition, in
order to show the superiority in a small machine, we also
compare to the existing simulator, BigNetSim, in the same
environment. We used BigNetSim Rev. 11877 and the cor-

Fig. 5 Ratio of intra-node to inter-node communications.

responding version of Charm++ library (i.e. BigSim) from
the cvs repository.

The Dell Precision T7400 workstation is used for a
simulation environment. The specification of the machine
is listed in Table 2. Each simulator runs on eight proces-
sor cores. The simulation time is taken from the simulator
reports that are derived at the end of the simulations. The ex-
ecution time of BigSim is not included into the run time of
BigNetSim, because it is relatively short and can be ignored.
The maximum memory usage is observed by using ps com-
mand and summarizing the virtual memory size consumed
by the eight processes. We execute ps command with ‘-o
vsz’ argument at every 0.01 seconds in the first one second,
then every 1 second after that.

We use the Bruck’s alltoall algorithm [15] as the bench-
mark program. We utilize the MPI program for BigSim
that is the trace generation program for BigNetSim. We
have evaluated the communication with the different mes-
sage sizes, 4 Btyte and 1024 Byte.

Figure 6 shows the execution time of the simulators.
We could obtain the results up to 8x8x4 nodes for BigNet-
Sim, and up to 16x16x8 (for the 1024 Byte message) and
64x32x32 (for the 4 Byte message) nodes for NSIM. We
confirm that NSIM is at least three hundred times as fast
as BigNetSim in this experimental environment. The results
also show that NSIM has the capability to simulate extreme-
scale systems that have nearly one hundred thousands of
nodes. This simulator can work faster than BigNetSim, be-
cause the simulation methodology differs. While NSIM is
an execution-driven simulator, BigNetSim is a trace-driven
simulator. BigNetSim analyzes dependency between simu-
lation events and reorders them so as not to produce incor-
rect results. Meanwhile, NSIM does not need to track the
dependency of simulation events.

Figure 7 shows the maximum consumed memory size
for both simulators. NSIM could run with the smaller mem-
ory area than BigNetSim. The consumed memory size of
BigNetSim is about eight times as large as that of NSIM.

The above results indicate that NSIM can evaluate fu-
ture interconnection networks on a desk-side workstation.
There will be new merits for users. For example, by pro-
cessing the logs along with the simulation, the simulator
can help users observe the network congestion in the tar-
get system before the completion of the simulation. Since
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Table 2 Specification of the simulation environment.

Parameter Setting
Machine Dell Precision T7400 workstation
CPU two Quad-Core Intel Xeon (R) processors E5440 2.8 GHz

with 2x6 MB L2 cache
Memory 32 GB quad-channel DDR2-SDRAM memory 667 MHz

with ECC
OS Red Hat Enterprise Linux 5
Compiler gcc version 4.1.2
MPI library MPICH2 1.0.8 [16]

Fig. 6 Simulator execution time of NSIM and BigNetSim.

Fig. 7 Maximum consumed memory size.

the simulation time for the large-scale networks tends to be
longer, providing such information during the simulation is
effective in reducing the performance evaluation period.

5.3 Usage Example of the Simulation Service

In this section, we describe the usage of the simulation ser-
vice by an example. We evaluate alltoall communication im-
plemented by the pairwise exchange algorithm on a 3D torus
network which contain 2048 nodes in an 16x16x8 structure.
The other parameters are listed in Table 3. The specifica-
tion of the target system is determined based on the state-of-
the-art supercomputers. We used the Dell Precision T7400
workstation as a back-end server. It takes twenty four min-
utes to complete the simulation. The predicted communica-

Table 3 Specification of the simulation environment.

Parameter Value
Routing dimension ordered with dateline
Packet transfer Virtual cut through
Unidirectional link bandwidth 4 GB/s
Routing calculation 4 ns
Virtual channel allocation 4 ns
Switch allocation 4 ns
Switch transfer 4 ns
Switch latency 78 ns
Cable latency 10 ns
MTU 2 KiB
Packet length 32 B - 2 KiB (MTU)
Packet header 32 B
Number of virtual channels 2
Virtual channel buffer 8 KiB (MTU×4)
Flit length 16 B
DMA bandwidth 16 GB/s
Memory bandwidth 16 GB/s
MPI overhead 200 ns

tion time is 166.7 ms. Results are visualized.
Figure 8 and 9 shows time variation of a direction-

averaged link throughput for six directions (plus or minus
in X, Y, or Z axis), and network latency. The horizontal axis
represents elapsed time from the beginning of the simula-
tion. The vertical axis stands for a link throughput in GB/s
(Fig. 8), and the latency in ps (Fig. 9).

According to Fig. 8 and 9, there are peak or bottom
points for each direction. This phenomena can be explained
by a communication pattern of the pairwise exchange al-
gorithm on the three-dimensional torus network. This algo-
rithm has p communication phases where p is the number of
nodes. In each phase, the algorithm determines new pairs of
nodes that exchange messages. When one of the coordinate
values of the Hamming distance between nodes belonging
to the same pair is equal to half of the axis size, every mes-
sage goes to the same direction in the axis and shares links.
Thus, link throughput and network latency have increased
at the same. The above situation occurs y · z, x · z, and x · y
times in the x, y, z-axis where x, y and z are the size of each
axis. After excluding continuous occurrences, there are y · z,
z, and 1 times for each axis. This pattern matches the result
in Fig. 8.

By using OpenNSIM, we can observe an internal be-
havior of interconnection network of the target system.
Therefore, this simulator can be used for debugging and tun-
ing programs in addition to performance evaluation.

6. Conclusions and Future Work

In this paper, we have introduced an execution-driven sim-
ulator, called NSIM, in order to predict the performance
of extreme-scale interconnection networks. Unlike conven-
tional trace-driven approaches, NSIM makes it possible to
handle communication patterns that are changed dynami-
cally by the network congestion. This simulator provides
the flexible and MPI-compatible interface to describe a va-
riety of communication patterns, including the network-
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Fig. 8 Time variation of link throughput.

Fig. 9 Network latency.

dependent communication patterns. Experimental result
shows that the simulator can accurately predict the perfor-
mance trends of the real machine. We also verified that this
simulator is capable of simulating future extreme-scale in-
terconnection networks that have nearly one hundred thou-
sands of nodes. We also introduced OpenNSIM, an inter-
connect simulation service via a cloud environment. By
providing NSIM as a service, users can simulate many kinds
of interconnection networks without downloading, building,
installing and upgrading the simulator.

Although we do not present in this paper, this simula-
tor can work as a performance measurement tool of inter-
connection networks for our previous proposal BSIM [1].
We are performing the cooperative simulation by using
BSIM and NSIM to show the capability of simulating fu-
ture systems. We are also working on removing the limita-
tions of the MGEN program, implementing other topologies
and routing algorithms, and preparing debugging tools for
MGEN programs.
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