
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2309

PAPER Special Section on Parallel and Distributed Computing and Networking

Design and Implementation of a Contention-Aware Coscheduling
Strategy on Multi-Programmed Heterogeneous Clusters

Jung-Lok YU†a), Nonmember and Hee-Jung BYUN††b), Member

SUMMARY Coscheduling has been gained a resurgence of interest as
an effective technique to enhance the performance of parallel applications
in multi-programmed clusters. However, existing coscheduling schemes
do not adequately handle priority boost conflicts, leading to significantly
degraded performance. To address this problem, in our previous study, we
devised a novel algorithm that reorders the scheduling sequence of conflict-
ing processes based on the rescheduling latency of their correspondents in
remote nodes. In this paper, we exhaustively explore the design issues and
implementation details of our contention-aware coscheduling scheme over
Myrinet-based cluster system. We also practically analyze the impact of
various system parameters and job characteristics on the performance of
all considered schemes on a heterogeneous Linux cluster using a generic
coscheduling framework. The results show that our approach outperforms
existing schemes (by up to 36.6% in avg. job response time), reducing both
boost conflict ratio and overall message delay.
key words: coscheduling, priority boost conflict, contention, runtime
rescheduling latency, process reordering, myrinet, heterogeneous cluster

1. Introduction

The design of efficient scheduler plays a crucial role in
effectively utilizing underlying system resources. This
becomes even more challenging on a general-purpose
multi-programmed computing environments [1], [2]. Time-
sharing is particularly attractive because it enables over-
lapped executions of processes with diverse demanding
characteristics for shared resources [3]. The simplest ap-
proach to time-sharing a cluster is to leave each node to
schedule its own processes autonomously. However, this
form of scheduling can be very inefficient for parallel jobs
that need process synchronization, mainly due to the lack of
coordination among local schedulers [11].

Two main strategies for coordinating individual local
schedulers have been proposed: gang scheduling (GS) [8],
[14] and communication-driven coscheduling (CDC) [2]–
[5], [11], [12], [15], [19]. GS uses explicit global synchro-
nization to schedule all the processes of a job simultane-
ously. While GS is efficient for fine-grained parallel jobs,
it can suffer from resource fragmentation when jobs are not
well-balanced and/or do not make use of all nodes [17]. Re-
cently, a full appreciation of these practical limitations of
GS has led to a myriad of CDC schemes such as DCS [15],

Manuscript received December 28, 2010.
Manuscript revised May 31, 2011.
†The author is with Supercomputing Center, Korea Institute of

Science and Technology Information, Republic of Korea.
††The author is with Suwon University, Republic of Korea.
a) E-mail: junglok.yu@kisti.re.kr
b) E-mail: heejungbyun@suwon.ac.kr

DOI: 10.1587/transinf.E94.D.2309

SB [5], PB [12], [19], and HYBRID [4]. These schemes use
inherent communication events of parallel processes to ap-
proximately guide the local schedulers toward coscheduled
execution. For example, on a message arrival, the implica-
tion is that the sender process is currently scheduled in a re-
mote node. Thus, it will be of benefit to schedule or to keep
scheduled the receiver process to reduce synchronization de-
lay. Compared to GS, CDC schemes have better scalability
and reliability, and have been shown to be efficient in clus-
ters [4], [11]. Though these advantages, however, one major
problem found in the existing CDC schemes is that they do
not incorporate any steps to attempt to properly handle pri-
ority boost conflicts, leading to degraded performance.

To address this problem, in our previous study [6], we
proposed a flexible CDC scheme that aims to efficiently
resolve priority boost conflicts, and showed its feasibility
on multi-programmed clusters. In this paper, we exhaus-
tively explore the design issues and implementation details
of our Contention-aware Coscheduling (CC) scheme over
Myrinet [18]-based high performance Linux clusters. Note
that unlike existing CDC schemes, CC adaptively rearranges
the scheduling sequence of conflicting processes by ex-
ploiting the runtime difference in contention across remote
nodes. To achieve this, each node measures its rescheduling
latency - the approximated expected time when the current
process is scheduled again on the node - as an index of con-
tention at runtime, and piggybacks the information with nor-
mal outgoing messages. Based on the rescheduling latency
notified from remote nodes, our scheme can grant more con-
trol over conflicting processes to the native scheduler so that
it can schedule the process to be first whose correspondents
will be scheduled sooner in remote nodes.

We also present a generic coscheduling framework that
can be used to implement any CDC scheme with mini-
mal effort, which is similar to [4], but more generalized
and modulized so as to handle a variety of coscheduling
strategies. We demonstrate the flexibility of this frame-
work by implementing four prior representative CDC tech-
niques (DCS, PB, SB, and HYBRID) and our CC schemes
on real machines. Then, we thoroughly investigate the im-
pact of various system parameters and job characteristics,
such as job arrival patterns, multi-programming levels, and
communication-intensity, etc., on the performance of CC
and different CDC schemes. With the experimental results
on a 16-nodes heterogeneous Linux cluster, we confirm that
the proposed approach is very promising, especially for the
hunting for wasted idle cycles in clusters.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



2310
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

The rest of the paper is organized as follows. The next
section provides a brief introduction of existing scheduling
schemes, and Sect. 3 summarizes the basic concept of our
Contention-aware Coscheduling. Section 4 describes the
design and implementation details of our CC along with a
unified coscheduling framework. Section 5 practically an-
alyzes the performance implications of all considered CDC
schemes. Finally, we conclude this paper in Sect. 6.

2. Coscheduling Strategies

2.1 Batch Scheduling (BATCH)

BATCH is the most popular policy to manage dedicated
clusters for running non-interactive jobs. In BATCH, its
Multi-Programming Level (MPL) is always one, which
means that there is only one parallel job in a specific node
in a cluster. The assigned job keeps running on the node
until it is completed. LoadLeveler and PBS are widely-used
batch schedulers. The disadvantages of BATCH are low pro-
cessor utilization and high completion time [4]. To solve
these problems, various techniques such as backfilling [9],
etc., have been introduced. In our experiments, we use the
OpenPBS [13].

2.2 Local Scheduling (LOCAL)

LOCAL is a baseline technique without the capacity to
coschedule communicating processes. A receiving process
spins until any message arrives, and is coscheduled with a
sender process only if a message arrives while it is spinning.
Though its simplicity, it yields unacceptable performance
due to the lack of coordination among local schedulers.

2.3 Communication-Driven Coscheduling (CDC)

Communication-driven coscheduling (CDC) is a compro-
mise of local scheduling (LOCAL) and gang scheduling
(GS), and attempts to dynamically coschedule communi-
cating processes to improve job performance using inherent
communication behavior. As described in [4], [11], CDC
schemes can be classified by two components: message
waiting action taken by processes waiting for a message and
message handling action performed by the kernel when a
message arrives (see Table 1).

Table 1 Communication-driven coscheduling (CDC).

Scheme Msg. Waiting Action Msg. Handling Action
Sender Receiver (Boost Policy)

LOCAL Spin Spin Nothing
DCS Spin Spin Interrupt & Boost
PB Spin Spin Periodic Boost

IB Spin Im. Block Interrupt & Boost
SB Spin Spin-Block Interrupt & Boost
HYBRID Im. Block Im. Block Boost & Restore

(only collective comm.)

2.3.1 Spinning-Based Schemes: Dynamic CoScheduling
(DCS) and Periodic Boost (PB)

Sobalvarro et al. [15] propose demand-based coscheduling
(DCS) which uses incoming messages to schedule the pro-
cesses for which they are intended. The underlying rationale
is that the receipt of a message denotes the higher likelihood
of the sender process of that job being scheduled at the re-
mote note at that time.

DCS uses only spinning for sending and receiving a
message. Periodically network interface card (NIC) has to
get the ID of the thread currently executing on the host CPU.
Since the NIC can not directly access host memory, this vari-
able has to be DMAed onto the NIC’s memory each time.
On receipt of a message, NIC checks whether the intended
destination of the message matches the estimated currently
running process. If there is a mismatch, an interrupt is raised
and the interrupt service routine (ISR) in the kernel is exe-
cuted to boost the priority of the destination process to the
highest value. This ensures that the destination process is
scheduled soon after the receipt of a message.

Periodic Boost (PB) [12], [19] is an alternative
coscheduling scheme to avoid expensive interrupt costs. In
PB, the receiver is busy-waiting in send and receive oper-
ations, as with DCS; however, rather than raising an inter-
rupt for each incoming message, a kernel thread periodically
examines message queues of each process in a round-robin
way and boosts the priority of one of the processes with un-
consumed (or pending) messages. Whenever the scheduler
is invoked in the near future, it would preempt the current
process and schedule the boosted process. Several heuris-
tics have been proposed to decide which process to boost
at the thread invocation, but they only take the local states
of processes with pending message(s) into consideration in
selecting a candidate for a priority boost.

2.3.2 Blocking-Based Schemes: Spin Block (SB), Imme-
diate Block (IB), and HYBRID

Unlike the former spinning-based schemes, blocking-based
schemes use blocks as a message waiting action.

In Immediate Block (IB) [3], a receiver process blocks
immediately if the expected message has not yet arrived, and
is woken by the kernel when the message arrives.

Spin Block (SB) [5] is a compromise between spinning
and blocking at the receiver side. A receiving process spins
on a message arrival for a fixed amount of time, referred
to as spin time, before blocking itself. The underlying con-
cept of SB is that a process waiting for a message should
receive it within the spin time if the sender process is also
currently scheduled. Thus, if the message arrives within the
spin time, the receiver process should hold onto the CPU
to be coscheduled with the sender process. Otherwise, it
should block and stop wasting the CPU resource. On the
arrival of a subsequent message, NIC raises an interrupt that
is serviced by the kernel to wake up the process and give a



YU and BYUN: DESIGN AND IMPLEMENTATION OF A CONTENTION-AWARE COSCHEDULING STRATEGY
2311

priority boost to the awakened process.
As a variant of SB, HYBRID, recently proposed in [4],

uses immediate-blocking for both senders and receivers to
optimize spinning time. In addition, HYBRID explicitly
boosts the priority of a process locally when it enters a col-
lective communication phase (e.g., barrier, all-to-all), hop-
ing that all other processes are also coscheduled, and re-
stores its priority at the end of the phase.

3. Contention-Aware Coscheduling Approach

All the parallel jobs generally reveal different scheduling
characteristics due to the load imbalance caused by multi-
programming and heterogeneity in cluster hardware re-
sources. This leads to a dynamic change in the frequency of
incoming and/or outgoing messages in each node, and this in
turn can introduce serious obstacles to accurate coschedul-
ing decisions. This problem is exacerbated in the real world,
as parallel jobs themselves typically do not exhibit regular-
ity in node requirements, communication patterns, etc. (i.e.,
application imbalance).

Priority boost conflicts normally occur on multi-
programmed clusters. Figure 1 depicts the occurrence of
a boost conflict. Let Pi j denote the process of a parallel job
i running on node Nj, while Pi∗ represents all the processes
that belong to the same job i. mi j is a message destined to
Pi j. We assume that Pxi and Pzk enter their communication
phases in Ni and Nk, respectively. We also assume that Py j

is currently scheduled on Nj, and that both Px j and Pz j are
blocked, waiting for a message. As depicted in the figure,
the receipt of the new messages mx j and mz j during a short
period of Δd in Nj results in the destined processes being
awakened and boosted. However, at the next context switch
(time t), it is not clear whether Px j or Pz j should be sched-
uled first. Hence, the local scheduler has to make a choice
between two or more candidate processes (Px j and Pz j in
this figure) for coscheduling with their correspondents - a
boost conflict happens.

Scheduling conflicting processes should be carefully
determined to optimize system utilization. Nevertheless, ex-
isting CDC schemes tend to make a simple decision when
faced with a boost conflict. To illustrate this point, Fig. 2 (a)
shows an example of a scheduling sequence of conflicting
processes in existing CDC schemes. Note that because of
multiple incoming messages (m1k, m3k, and m2k) to node Nk,
Nk has conflicting processes {P1k, P3k} at time t and {P3k,
P2k} at t′. Let us assume that Nj is one of the nodes with
many competing jobs (e.g., processes with pending mes-

Fig. 1 Example of a priority boost conflict.

sages) at time t, while Nm and Nl have fewer jobs than Nj. In
existing CDC schemes, the local scheduler of Nk can easily
generate the scheduling sequence of P1k → P2k → P3k for
boost conflicts; however, this scheduling sequence encoun-
ters two major problems:

1. Nj already has numerous stringent processes with
pending messages that are competing for its CPU.
Thus, although a new message arrives from P1k ear-
lier and a priority boost is given to its destined process
(P1 j), it takes a long time for P1 j to be rescheduled in
node Nj. As a result, the probability of synchronization
between P1k and P1 j becomes low, causing additional
excessive contention on the CPU in Nj.

2. On the contrary, in the worst case scenario the node Nm

has no available work that can be run on its CPU (e.g.,
all processes are blocked or spinning while waiting for
a new message arrival). In this situation, if Nk does not
schedule P3k immediately at time t, Nm continues with
its idling state. This leads to low resource utilization.

The basic idea of CC is to dynamically regulate the
scheduling sequence of conflicting processes by estimating
the time when their correspondents are rescheduled in re-
mote nodes. We call this rescheduling latency. Figure 2 (b)
provides a conceptual depiction of CC. Note that, as in
Fig. 2 (a), Nk has conflicting processes at time t and t′. As
shown in Fig. 2 (b), if the local scheduler of Nk has informa-
tion concerning the status of its peer nodes, it can schedule
P3k and P2k at t and t′, respectively, with the intention of not
wasting CPU resource in Nm and Nl. Similarly, with this in-
formation, the local scheduler can delay the execution of P1k

to provide more time for Nj to schedule other boosted pro-
cesses without intervention. In this way, by scheduling in
advance one of the conflicting processes whose correspon-
dents will be scheduled sooner in remote nodes, CC can not

(a) existing CDC schemes

(b) CC

Fig. 2 An example scheduling sequence for conflicting processes.



2312
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

only reduce unnecessarily wasted CPU time within the sys-
tem but also increase the chance of synchronization among
processes. This results in an overall improvement of system
performance.

Note that the major difference between the proposed
CC and the existing CDC schemes is that CC tries to
guide coscheduled execution of parallel processes taking
contention-imbalance across nodes into consideration on
boost conflicts. PB selects a process with pending messages
in a simple round-robin fashion on the same situation. DCS,
SB, and IB boost the priority of processes based on the mes-
sage arrival order, and HYBRID with preferring collectively
communicating processes. However, these blind scheduling
decision on resolving boost conflicts can lead to severe per-
formance degradation, as described prior paragraphs. On
the other hand, CC dynamically reorders the scheduling se-
quence of conflicting processes with the basis of reschedul-
ing latency (i.e., a metric for contention-imbalance), hoping
to minimize the wasted idle time in the system, as well as
increase the synchronization ratio among processes.

4. Design and Implementation

4.1 Coscheduling Framework

To implement a coscheduling scheme, in general, it is
needed to modify three major components: the NIC’s de-
vice driver, the NIC’s firmware, and the user-level commu-
nication library. A coscheduling algorithm is mainly im-
plemented in the device driver (i.e., kernel level) to decide
which process should be scheduled next (by boosting its pri-
ority). However, this traditional approach can require signif-
icant amount of effort and time. Moreover, this effort needs
to be repeated whenever we move to another platform. Thus,
we derived a coscheduling framework where a coscheduling
heuristic can be cleanly abstracted as a stand-alone loadable
kernel module. Note that it is similar to one in [4], but more
generalized and modulized in that we present additional ab-
stracted interfaces between kernel and loadable kernel mod-
ules (or device drivers).

Figure 3 shows our scalable framework used to im-
plement various scheduling schemes. We provide a mini-

Fig. 3 A coscheduling framework.

mal kernel scheduler hook (i.e., abstracted interfaces) that
allows the system software developers to change their lo-
cal scheduling heuristics through an independently load-
able kernel module. Then, we developed a coschedul-
ing library and a dynamically loadable kernel module
(named CoScheduling Module (CSM)), which support sev-
eral reusable coscheduling policies. Every time the local
Linux scheduler is invoked by the system, before making a
selection from its own runqueue, the CSM selects the next
process to run based on certain policy, and returns its rec-
ommendation to the native scheduler.

Using this framework, we have implemented prior
coscheduling schemes (DCS, PB, SB, and HYBRID) and
our CC. We also modified the GM driver and firmware
to gather communication information used in different
coscheduling schemes. As in [20], GM has one “Receive
Event Queue” per an endpoint (port) for all notifications
from a NIC; the send completion and receive completion
event. To implement all schemes correctly, we divided the
single event queue of GM into a “Send Completion Queue”
(SCQ) and “Recv Completion Queue” (RCQ), and we only
used the RCQ to detect whether a process has unconsumed
messages or not for those schemes. For DCS, we added a
minimal function to the NIC firmware that compares a cur-
rent process to the destination process of the message and
notifies the mismatch to the CSM by raising an interrupt.
For HYBRID, to schedule a process differently depending
on the computation and communication phases, we added
the boosting/restoring code only in the collective communi-
cations of the Message Passing Interface (MPI) [10].

4.2 Implementation Details

The basic rationale of CC is that whenever a boost con-
flict is detected, the process whose corresponding pro-
cesses will be scheduled sooner in remote nodes should
be scheduled first (i.e., process reordering). Figure 4 de-
picts the overall structure involved in our CC implementa-
tion. The flexible coscheduling framework allows whether
a process is subject to an alternate scheduling policy (DCS,
PB, SB, HYBRID, and CC) or not. This functionality has
been implemented in cosched lib, and well-defined “reg-

Fig. 4 Overall structure of CC implementation.



YU and BYUN: DESIGN AND IMPLEMENTATION OF A CONTENTION-AWARE COSCHEDULING STRATEGY
2313

ister and unregister” interfaces (register to CSM() and
unregister from CSM() as shown in Fig. 4) are provided
to be invoked by the GM library†. During this “initializa-
tion” step, both “Send Completion Queue” (SCQ) and “Re-
ceive Completion Queue” (RCQ) (arbitrary memory pages
used for send/recv notifications from NIC) belonged to the
process are mapped to the kernel virtual memory by us-
ing kmap() function, and the START/END index of each
queue is also mapped to the kernel memory area accessible
by the CSM. This whole mapping mechanism enables the
CSM to sniff meta-information (message length, etc.) on
the send/recv completion events for the process registered
to the CSM, as well as to detect if the process has pending
messages or not.

CC is a complementary approach to existing CDC al-
gorithms in that it only reorders the scheduling sequence of
processes upon boost conflict. Therefore, CC can be eas-
ily integrated with existing schemes. As shown in Fig. 4,
in CC-S (CC with spinning), both senders and receivers
perform spinning (gm receive()) waiting for the comple-
tion of send/recv operations, and process reordering is ap-
plied in a periodically invoked kernel thread (similar to
PB). CC-B (CC with blocking) uses immediate-blocking
(gm blocking receive()) at both sides if communica-
tions are not completed. Then, if a send or receive op-
eration does not finish immediately, we block the process
(ioctl()) and register for an interrupt with the NIC. As
shown in Fig. 4, on a send completion/message arrival, if the
process has registered itself with the firmware, the NIC in-
terrupts the host to wakeup the blocked process. The woken-
up process is placed in the ready queue, being a candidate
for the next schedule. In CC-B, our reordering procedure is
invoked at each context switch.

In our CC approach, whenever there exist the pro-
cesses registered to the CSM, CSM updates the expected
rescheduling latency (ERL) and calls the GM driver to
download the measured ERL to the NIC at each context
switch on its behalf (see write ERL() function in Fig. 4).
The driver makes a PIO call to make it available to NIC
firmware. We approximately calculated the ERL value as
the Eq (1):

ERL = (ED · ENP) + ((�ENP� + 1) · Costswitch) (1)

where ED (Execution Duration) is the measured average
CPU time (at granularity of µs) spent by each registered
process between consecutive context switches, ENP (Ex-
pected # of Processes) is the number of processes with pend-
ing messages, and the context switching cost (Costswitch) in
Linux 2.4 kernel is about 6 µs [7]. Note that the ENP value is
implicitly obtained from reordering function, as will be de-
scribed in next paragraphs, by counting the process whose
START and END index of RCQ has different value. The
downloaded ERL value will be copied into the header of
normal outgoing messages and transferred to other different
nodes.

On a message arrival, the piggybacked ERL value ex-
tracted from the message and the timestamp (Real Time

Fig. 5 The procedure of process reordering.

Clock (RTC) in NIC) for a corresponding process are
DMAed onto an entry of RCQ pointed by END. At later,
the process will consume the notified event of recv comple-
tion, making an increment of START index (inc START() as
shown in Fig. 4).

Every time the local scheduler gets invoked, it asks the
CSM to recommend the next process to schedule (through
goodness() function which is hooked by the CSM). For the
evaluation of the weight for a candidate process, the CSM
uses the mapped kernel memory area to access a list of the
rescheduling latency information for the process as shown
in Fig. 5. For each goodness() call for the process(es) in
the ready queue, the total weight (Wtotal = Wc + Wr) of the
process (P) is calculated in the proposed CC, according to
the following simple Eqs. (2), (3), and (4):

Wc =

{
20 if the process has pending msg(s)
0 else if it has no pending msg(s)

(2)

where 20 is constant weight factor to schedule first the pro-
cesses with unconsumed messages, which mimics nice pri-
ority values (ranging from -20 to 20) in the Linux sched-
uler (In Linux, the default niceness for processes is inherited
from its parent process, usually 0.). Then, for each pending
message (m), we calculate:

Δt = fetch RTC() − RTC

RTC = RTC + Δt (3)

ERL′ = ERL − Δt

ERL = ERL′

Next, we find a proportional weight (Wr) for the process P,

Wr =
min∀m {ERLmax − ERL′}

NF
(4)

where ERLmax
†† is the expected largest rescheduling latency

in the system, NF is a normalization factor that adjusts Wr

to the range of numerical values from 0 to 100. A constant
weight (Wc) is assigned to a process(es) for which a message
has already arrived, followed by a proportional weight (Wr)
to all processes based on the minimal rescheduling latency
of their correspondents in remote nodes. Adding the two

†Currently, in each node, maximum five number of processes
can join to the CoScheduling Module (CSM) due to the limitation
of available ports in GM.
††Multi-Programming Level (MPL) * 41 ms



2314
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

weights (Wc + Wr) and recommending a candidate process
with a higher total weight to the local scheduler provide us a
reasonably accurate criteria to decide which process should
be scheduled first in order to hunt wasted cycles in clusters.

In this way, we can establish a new improved schedul-
ing order among conflicting processes, enforcing the local
scheduler to select the most urgent process that communi-
cates with the correspondents with the shorted rescheduling
latency. Note that this is only one of the several possible
reordering criteria, re-emphasizing its potential for further
research direction.

5. Performance Analysis

In this section, we practically evaluate and analyze the per-
formance of the CC schemes on real machines and compare
it with those of others (LOCAL, BATCH, DCS, PB, SB, and
HYBRID).

5.1 Experimental Setup

Our experimental testbed consists of one front-end node and
16-nodes Linux cluster (see Fig. 6). All computing nodes
are connected through a 16-port Myrinet [18] switch for the
data network, and further they are divided into two sub-
groups; seven computing nodes of Pentium-4 2.8 GHz pro-
cessor and nine nodes of Pentium-4 1.8 GHz, each node with
512 MB memory and a PCI based intelligent Myrinet NIC,
having 4 MB of on-chip RAM and a 133 MHz Lanai 9.2
RISC processor.

All computing nodes run Linux kernel version 2.4.32
with a minor scheduler hook. We modified the kernel by
changing the default HZ value from 100 to 1000. This has
a negligible effect on OS overhead, but makes the Linux
scheduler re-evaluate process scheduling every ≈ 1 ms. As a
result, considered all scheduling algorithms become more
responsive, in particular, allowing us to control the fre-
quency of periodic action used in DCS, PB, and CC-S be-
ing more fine-grained. We used Myrinet’s GM implemen-
tation (version 1.6.5) over Myrinet’s NIC as our user-level
communication layer and MPICH over GM as our paral-
lel programming library. GM supports two communication
mechanisms; (i) non-blocking and (ii) blocking. In SB,
HYBRID, and CC-B schemes, we use the blocking mech-
anism of GM.† On this platform, we measured application-
to-application one-way latency to be around 13 µs by us-

Fig. 6 Experimental setup (7 P4-2.8 GHz and 9 P4-1.8 GHz nodes).

ing gm allsize micro-benchmark packed with GM distribu-
tion. This includes protocol processing overheads on both
the sender and the receiver ends.

5.2 Workload Characterizations

We use NAS Parallel Benchmarks (NPB, version 2.4) [21] to
evaluate the performance of all scheduling schemes in this
study. NAS benchmarks consist of a set of eight benchmark
problems, and of these, we consider five applications with
CLASS A: BT, SP, FT, IS, and CG; the lowest to highest
communication intensities, respectively (see Table 2). BT
and SP are two simulated CFD applications that solve mul-
tiple independent systems of block trigonal and scalar pen-
tadiagonal equations. FT is a 3D partial differential equation
solver using fast Fourier’s transformation, which exchanges
a large number of (66%) big message chunks. IS is an in-
teger sorting application that uses a large number of small
messages (< 4 KB). CG is a conjugate gradient matrix in-
version algorithm with very heavy communication intensity
(≈ 46%). The communications in benchmarks FT and IS
are dominated by collective communications (i.e., All-to-All
(AA) pattern), while the communications in CG, BT, and SP
are dominated by point-to-point communications (i.e., Near-
est Neighbor (NN) pattern).

Using a combination of above five applications, we de-
signed a set of 6 parallel workloads (WL1 - WL6), vary-
ing in communication intensity and patterns. The complete
workload space for which we have run the experiments is
summarized in Table 3. All applications have been adjusted
and compiled so they approximately take the same amount
of time (66 - 73 sec) to complete, when executed individu-
ally on all 16-nodes. In a real system, a parallel job arrives
at a cluster and waits in the waiting queue if it cannot be
allocated immediately. After a certain amount of queuing
time, it is assigned to the required number of processors.

Table 2 Five applications from NPB (16 nodes, CLASS=A).

Comm. Comm. Msg. Size MPI
Intensity Pattern Distribution Routines

BT low NN 11 K (37%) MPI Isend()
61 K (26%) MPI Irecv()
69 K (37%) MPI Wait()

SP medium NN 18 K - 20 K (37%) MPI Isend()
39 K - 45 K (37%) MPI Irecv()
61 K (26%) MPI Wait()

FT medium AA 8 (33%) MPI Alltoall()
1048 K (66%) MPI Reduce()

IS high AA 4 (33%) MPI Allreduce()
4 K (33%) MPI Alltoall()
65 K (33%) MPI Alltoallv()

CG high NN 8 (56.5%) MPI Send()
16 (1.1%) MPI IRecv()
28 K (42.4%) MPI Wait()

†In SB, spin time for which a process spins on a message re-
ceive before blocking itself, is carefully chosen to optimize perfor-
mance. We varied the spin time from 100-300 µs and we set it to be
about 150 µs because it gives the best performance on the platform
we are using.



YU and BYUN: DESIGN AND IMPLEMENTATION OF A CONTENTION-AWARE COSCHEDULING STRATEGY
2315

Table 3 Parallel workloads.

Applications Comm. Intensity # of Proc.

WL1 BT low 4, 9, 16
WL2 SP medium 4, 9, 16
WL3 FT medium 4, 8, 16
WL4 IS high 4, 8, 16
WL5 CG high 4, 8, 16
WL6 BT+SP+FT+IS+CG low+medium+high 4, 8, 9, 16

(a) heavy load (b) light load

Fig. 7 Average job response time of all schemes for WL6 under heavy
and light load.

Thus, for the job mixes (WL6 case), we imitate the arrival
pattern of jobs in a real system by randomly generating sev-
eral jobs with different number of processors per job (The
number of processors is selected from 4, 8, 9 or 16 as per
the NAS application requirements.). These jobs arrive at
the cluster with exponentially distributed inter-arrival times
(Inter-arrival time distribution analysis of several supercom-
puter centers’ workloads [16] showed an exponential fit.).

In our experiments, we set the maximum Multi-
Programming Level (MPL) to five for the local schedul-
ing and all CDC techniques. We limit the total size of si-
multaneously running applications to fit well into our mem-
ory (512 MB), and hence, we incur no swapping overheads.
Considering swapping effects on coscheduling is an exten-
sive research in itself, and is out of scope of our work in
this study. We also use the default FIFO allocation policy
provided by OpenPBS [13] in the front-end node. To ana-
lyze the performance of difference scheduling techniques,
we consider the average job response time as the main per-
formance metric, where the time is the sum of the waiting
time and execution time.

5.3 Impact of Job Arrival Pattern for Mixed Workload

Figure 7 (a) and 7 (b) depict the average job response time of
eight different scheduling techniques under heavy and light
workloads (i.e. the average job inter-arrival time are 40.75
and 70.27 seconds), respectively. As a metadata of Fig. 7,
Fig. 8 shows boost conflict ratio (BCR) and message de-
lay (MD) of major CDC techniques. Here, BCR means the
number of times that more than two processes have pend-

(a) BCR/MD under heavy load

(b) BCR/MD under light load

Fig. 8 BCR/MD of all major schemes for WL6 under heavy and light
load.

ing messages at the moment of context switch from the to-
tal number of context switches, and MD represents the time
difference between when a process starts to wait for a mes-
sage arrival and when the receive operation completes (i.e.
the message is consumed by the process) averaged over all
received messages. The results are obtained by running 100
mixed applications (WL6) from the NAS benchmarks. For
this experiment, we limited the MPL to 5.

As expected, in Fig. 7 (a) heavy load, the average job
response time of each scheduling scheme is much longer
than that in Fig. 7 (b) light load. In Fig. 7 (a), the response
times increase mainly due to large waiting times that jobs
experience in the arrival queue, but in Fig 7(b), the differ-
ence between the execution times of the scheduling schemes
is more pronounced. In Fig. 7 (a) and Fig. 7 (b), the results
of the local scheduling (LOCAL) show the worst response
times and DCS follows next. This is mainly because LO-
CAL makes no effort for coscheduling, resulting the longest
waiting time. Of other six schemes, BATCH generally gives
the next highest response time, due to its employment of
space sharing only.

We also observe that the blocking-based schemes
(SB, HYBRID, and CC-B) outperform the spinning-based
schemes (LOCAL, DCS, PB, and CC-S) in all cases. Espe-
cially, from Fig. 8 (a) and Fig. 8 (b), it is apparent that the in-
crement of system load does not affect the BCR and the MD
in DCS and PB, which means that these schemes saturate
in terms of utilization even under light load. In general, in
spinning-based schemes, a communicating process spends
most of its time spinning for a message, thus preventing



2316
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

other ready processes from making progress. In blocking-
based schemes, this wasted time is eliminated at a small cost
of blocking and wake-up, providing more chances for other
processes. This is the reason why the BCRs and MDs for
DCS, PB, and CC-S are larger than those of SB, HYBRID,
and CC-B, as shown in Fig. 8.

The most interesting observation from both figures is
that CC-S and CC-B achieve significant performance im-
provements over other spinning and blocking-based alter-
natives, respectively. In addition, CC-B performs the best
among all considered schemes. For example, CC-B reduces
the average job response time by up to 36.6% (or 24.7%)
compared to SB (or HYBRID), and CC-S by up to 8.02%
compared to PB under heavy load. Although CC-S alters
the scheduling order of conflicting processes, the time spent
spinning considerably limits CC-S from attaining results
that are competitive with those of CC-B.

From Fig. 8, another interesting observation is that CC
experiences much lesser BCR (Boost Conflict Ratio) and
MD (Message Delay) than existing CDC schemes (for ex-
ample, CC-B reduces BCR and MD, by up to 22% and
25%, respectively, compared to SB under heavy load). Re-
mind that CC dynamically adjusts the scheduling sequence
of conflicting processes based on the rescheduling latencies
of their correspondents in remote nodes. Thus, when re-
solving boost conflicts, delaying local processes communi-
cating with their correspondents in the contended node (i.e.,
the node that has processes with pending messages compet-
ing for its CPU) helps the node to schedule other stringent
processes without intervention, not introducing another ex-
cessive boost conflicts in that node. Also, scheduling in ad-
vance one of conflicting processes whose correspondents are
in less contented nodes results in the remarkable decrease of
MD within the system. From the reduction in both BCR and
MD, we can find that the proposed CC makes beneficial de-
cisions on boost conflicts, showing the effectiveness of ERL
(Expected Rescheduling Latency) and Wr (normalized pro-
portional weight based on ERL in order to establish an im-
proved scheduling order in local scheduler) (see Eqs. (1)-(4)
in Sect. 4.2).

In summary, the primary reason the CC approach out-
performs others is that it rearranges the scheduling sequence
of conflicting processes according to the rescheduling la-
tency of their correspondents in remote nodes. Accord-
ing to these results, we can conclude that the proposed CC
approach is very promising, especially for the hunting for
wasted idle cycles in clusters, improving the overall system
utilization, and this is in good agreement with the simulation
results reported in [6].

5.4 Impact of the Nature of Parallel Applications

Next, we focus on the performance variation of different
scheduling schemes when the communication intensities
and patterns of the workloads change. As in Table 3, WL1
- WL5 are different types of workloads in terms of compu-
tation granularity, communication pattern, and message size

Fig. 9 Parallel application performance.

distribution. In all 16 nodes, we simultaneously run 50 iden-
tical type of jobs, and we again fixed MPL to 5.

Figure 9 shows the average job execution times of
seven scheduling schemes (excluding BATCH) for each
workload WL1 - WL5. Note that the avg. job execution
time measured in this experiment, is a system-perspective
performance metric closely related to the system through-
put. From the figure, we clearly confirm that with the use
of reordering technique, CC-B and CC-S always outper-
form other blocking-based (SB and HYBRID) and spinning-
based (LOCAL, DCS, and PB) alternatives, respectively. Of
these, CC-B performs the best across all considered work-
loads, showing the shortest avg. job execution time.

In Fig. 9, for application with low communication in-
tensity (like BT), the execution time difference between
CC and other CDC schemes is less distinguished, although
the proposed CC approach shows marginally better perfor-
mance. As the communication intensity of workload in-
creases (WL1 <WL2 <WL3 <WL4 <WL5), however, the
performance benefit of the CC schemes over other schemes
becomes more pronounced. For example, in WL5 (CG),
CC-B shows much shorter execution time as high as 26.8%
(or 13.6%) compared to SB (or HYBRID). From the results
of this experiment, we also reconfirm that blocking-based
schemes outperform spinning-based ones.

5.5 Impact of Multi-Programming Level (MPL)

Advancing CPU speed, memory size, and most impor-
tantly, reduced context switching overheads in an optimized
OS kernel like Linux, there is enormous potential for im-
proving system utilization through a high degree of multi-
programming. Thus, it is worthwhile to investigate how dif-
ferent scheduling techniques perform when MPL varies.

Figure 10 and Figure 11 show the changes of aver-
age job response time and BCR/MD of seven scheduling
schemes for the mixed workload (WL6) when MPL value
goes from 3 to 5, respectively. In this experiment, we ex-
clude BATCH because it only supports space sharing. First
of all, in Fig. 10, we observe that with increasing the MPL,
the average job execution times of all schemes are uniformly
prolonged. Of all schemes, LOCAL and DCS schemes have
a very steep increase in execution time, whereas the other



YU and BYUN: DESIGN AND IMPLEMENTATION OF A CONTENTION-AWARE COSCHEDULING STRATEGY
2317

Fig. 10 Avg. job response times when MPL goes from 3(left) to 5(right).

(a) BCR variation (left (MPL = 5) and right (MPL = 3)

(b) MD variation (left (MPL = 5) and right (MPL = 3)

Fig. 11 BCR and MD variation between MPL = 5 and MPL = 3.

schemes are much more tolerant. In a larger MPL, however,
due to additional free slots available in each node, we can
allocate reasonably higher number of jobs; this lowers the
waiting time per job. Overall, with the exception of LOCAL
and DCS, other five schemes experience the decrease of the
average job response time with increasing MPL. Of these,
the CC schemes outperform other schemes at all MPLs.

At a lower MPL, the performance gain of the CC
schemes is rather limited. In Fig. 10, the CC schemes re-
duce the response time by the small factor of up to 20.3%
compared to the other schemes at MPL = 3. This is because
each node has at most two competing processes, making the
chance to apply our reordering function to become low, as
shown in Fig. 11 (a). Larger MPL, however, permits a larger
number of jobs to be simultaneously accommodated in the
system, increasing the likelihood of a boost conflict at each
context switch; this makes the scheduling sequence of con-

flicting process to be frequently affected by our reordering
technique. Consequently, as we increase MPL, the proposed
CC schemes provide better improvement in both the result-
ing response time and the message delay (see Fig. 11 (b))
over other CDC schemes.

6. Conclusions

In this paper, we explored the design issues and imple-
mentation details of novel contention-aware coscheduling
(CC) strategy. CC dynamically resolves priority boost con-
flicts with detecting short-term load imbalance across nodes
and regulating the scheduling sequences of conflicting pro-
cesses based on it. With a generic coscheduling framework,
we also performed broad spectrum of experiments on real
multi-programmed heterogeneous clusters to analyze how
different system parameters and job characteristics impact
on the performance of CC and other CDC approaches.

From the results, we confirmed that i) priority boost
conflict is common in multi-programmed clusters that de-
ploy CDC mechanisms, and therefore should be carefully
handled to improve system utilization and ii) significant
performance improvement can be achieved with our CC
schemes. The main reason for this improvement is that
CC seeks to avoid unnecessarily wasted spinning and idle
time by attaining a marked reduction in false decisions upon
the boost conflict. The performance gain is even more pro-
nounced when a communication-intensive workload and/or
a larger MPL are applied to the system.

In the future, we will focus on evaluating the CC per-
formance on large-scaled multi-core clusters as well as de-
vising a revised model to more accurately estimate the con-
tention on the resources in the system. We also plan to ex-
pand our work to the virtual machines (VMs) scheduling in
cloud computing platform.

Acknowledgment

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education, Science
and Technology (grant number 20110026740) and also
supported by the GRRC SUWON 2011-B5 program of
Gyeonggi province.

References

[1] T.E. Anderson, D.E. Culler, and D.A. Patterson, “A case for NOW
(networks of workstations),” IEEE Micro, vol.15, no.1, pp.54–64,
1995.

[2] F. Gine, F. Solsona, M. Hanzich, P. Hernandez, and E. Luque, “Co-
operating coscheduling: A coscheduling proposal aimed at non-
dedicated heterogeneous NOWs,” J. Computer Science and Tech-
nology, vol.22, pp.695–710, Sept. 2007.

[3] C. Anglano, “A comparative evaluation of implicit coscheduling
strategies for networks of workstations,” Proc. Ninth IEEE Inter-
national Symposium on High Performance Distributed Computing,
pp.221–228, 2000.



2318
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

[4] G.S. Choi, J.H. Kim, D. Ersoz, A. Yoo, and C.R. Das, “Coschedul-
ing in clusters: Is it a viable alternative?,” Proc. 2004 ACM/IEEE
conference on Supercomputing, Nov. 2004.

[5] A. Dusseau, R. Arpaci, and D. Culler, “Effective distributed schedul-
ing of parallel workloads,” Proc. ACM SIGMETRCDC Conference,
pp.25–36, May 1996.

[6] J.L. Yu, J.S. Kim, and S.R. Maeng, “A runtime resolution scheme for
priority boost conflict in implicit coscheduling,” J. Supercomputing,
vol.40, no.1, pp.1–28, March 2007.

[7] E.G. Bradford, Measuring the Scheduler Overhead, Available from
http://www-106.ibm.com/developerworks/linux/library/lrt9/

[8] P. Strazdins and J. Uhlmann, “A comparison of local and gang
scheduling on a Beowulf cluster,” Proc. IEEE Conference on Cluster
Computing, pp.55–62, 2004.

[9] B. Lawson, E. Smirni, and D. Puiu, “Self-adapting backfilling
scheduling for parallel systems,” Proc. International Conference on
Parallel Processing, pp.583–592, Aug. 2002.

[10] The Message Passing Interface (MPI) Standard. Avaialble from
http://www-unix.mcs.anl.gov/mpi/

[11] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C.R. Das, “Alter-
natives to coscheduling a network of workstations,” J. Parallel and
Distributed Computing, vol.59, no.2, pp.302–327, Nov. 1999.

[12] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C.R. Das, “A
closer look at coscheduling approaches for a network of worksta-
tions,” Proc. ACM Symposium Parallel Algorithms and Architec-
tures, pp.96–105, June 1999.

[13] OpenPBS. Available from http://www.openpbs.org.
[14] J. Ousterhout, “Scheduling techniques for concurrent systems,”

Proc. 3rd International Conference on Distributed Computing Sys-
tems, pp.22–30, 1982.

[15] P. Sobalvarro, S. Pakin, B. Weihl, and A.A. Chien, “Dynamic
coscheduling on workstation clusters,” Proc. International Parallel
Processing Symposium, pp.231–256, March 1998.

[16] A.B. Yoo and M.A. Jette, “The characteristics of workload on
ASCI Blue-Pacific at lawrence livermore national laboratory,” Proc.
CCGrid2001, pp.295–302, May 2001.

[17] Y. Zhang, H. Franke, J.E. Moreira, and A. Sivasubramaniam, “An
integrated approach to parallel scheduling using gang-scheduling,
backfilling, and migration,” IEEE Trans. Parallel Distrib. Syst.,
vol.14, no.3, pp.236–247, 2003.

[18] N.J. Borden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W. Su, “Myrinet: A gigabit-per-second local area
network,” IEEE Micro, vol.15, no.1, pp.29–36, 1995.

[19] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H. Franke, “Im-
pact of workload and system parameters on next generation clus-
ter scheduling,” IEEE Trans. Parallel Distrib. Syst., vol.12, no.9,
pp.967–985, 2001.

[20] Myrinet. Inc. MPICH-GM software. Oct. 2003. Available from
http://www.myrinet.com

[21] NAS division. The NAS parallel benchmarks. Available from
http://www.nas.nasa.gov/Software/NPB

Jung-Lok Yu received his Ph.D. degrees
from KAIST, Daejeon, Korea in 2007. He was
a senior engineer in Samsung Electronics from
2007 to 2010. He is currently a senior re-
searcher with Supercomputing center, Korea In-
stitute of Science and Technology Information.
His research interests include parallel process-
ing, cluster computing, and cloud computing.

Hee-Jung Byun received the Ph.D. degrees
from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 2005.
She was a senior engineer in Samsung Electron-
ics, Ltd. from 2007 to 2010. She is currently an
assistant professor with the Department of Infor-
mation & Communications, Suwon University,
Kyunggi-do, Korea. Her research interests in-
clude network modeling, controller design, and
performance analysis.


