
2328
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

PAPER Special Section on Parallel and Distributed Computing and Networking

Evaluation of GPU-Based Empirical Mode Decomposition for
Off-Line Analysis

Pulung WASKITO†a), Nonmember, Shinobu MIWA†, Member, Yasue MITSUKURA†, Nonmember,
and Hironori NAKAJO†b), Member

SUMMARY In off-line analysis, the demand for high precision signal
processing has introduced a new method called Empirical Mode Decom-
position (EMD), which is used for analyzing a complex set of data. Unfor-
tunately, EMD is highly compute-intensive. In this paper, we show parallel
implementation of Empirical Mode Decomposition on a GPU. We propose
the use of “partial+total” switching method to increase performance while
keeping the precision. We also focused on reducing the computation com-
plexity in the above method from O(N) on a single CPU to O(N/P log (N))
on a GPU. Evaluation results show our single GPU implementation using
Tesla C2050 (Fermi architecture) achieves a 29.9x speedup partially, and a
11.8x speedup totally when compared to a single Intel dual core CPU.
key words: Empirical Mode Decomposition (EMD), Hilbert-Huang Trans-
form (HHT), GPU, CUDA

1. Introduction

In the field of signal processing, it is common to analyze
complex sets of data, e.g: harmonic signals, stock price
fluctuation, and yearly average temperature. These complex
data are so called non-stationary data, where the frequency
changes over time. Traditionally, non-stationary data is an-
alyzed using Short-Time Fourier Transform (STFT). How-
ever, since STFT has its own drawback, i.e. there exists a
trade-off between frequency and time resolution, an ade-
quate analysis cannot be performed. In recent years, new
methods have been introduced to overcome such disadvan-
tage, giving higher precision in signal analysis [1], [2].

One of such methods is Empirical Mode Decomposi-
tion (EMD) in conjunction with a Hilbert Spectral Analysis
(HSA), together called Hilbert-Huang Transform (HHT) [1].
HHT is designed as an adaptive, empirically based data-
analysis method for non-stationary process in off-line analy-
sis, i.e. analysis where the whole problem data is given. On
the other hand, HHT needs a large amount of computation.
As discussed later, such complexity comes from the algo-
rithm having two nested loops structure with the inner loop
having an O(N) complexity. As a result, it takes hours to
analyze even for a short 3 seconds harmonic signal.

The EMD algorithm, as will be described later, is the
performance bottleneck of HHT, but it also shows a high

Manuscript received December 28, 2010.
Manuscript revised June 10, 2011.
†The authors are with the Department of Computer and Infor-

mation Sciences, Tokyo University of Agriculture and Technology,
Koganei-shi, 184–8588 Japan.

a) E-mail: pulungw@nj.cs.tuat.ac.jp
b) E-mail: nakajo@cc.tuat.ac.jp

DOI: 10.1587/transinf.E94.D.2328

degree of data parallelism. Therefore, parallelizing EMD
accelerates the speedup of the program. However, many of
the current research on EMD focuses on the application [3]–
[6] and its extension [7]–[13]. Therefore we take advantage
of CUDA to develop a parallel model of EMD. Although
there exist a previous work concerning parallelization strat-
egy of EMD using GPU [14], since it is aiming for on-line
analysis, the focus differs greatly to the one described in this
paper. This is explained in detail in Sect. 5.

The main contribution of our work is to provide a par-
allel EMD algorithm for off-line analysis. The algorithm is
developed on a GPU. It consists of two parts: partial method
and total method. By using two methods appropriately, the
algorithm achieves high precision and high performance.

In this paper, we extend our previous research [15].
This paper aims to find adequate parameters for our parallel
method. In addition, we show new results using NVIDIA
Fermi with cache architecture. As a result, our implementa-
tion achieves a 29.9 times speedup partially for single result,
and 11.8 times speedup for all results when compared to a
typical general purpose CPU’s execution time.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes the HHT and the EMD algorithm. Sec-
tion 3 describes the details of our parallelization strategy for
EMD using CUDA. Experimental results are analyzed in
Sect. 4. In Sect. 5, we summarize previous work related to
the GPGPU-aided EMD. Finally, Sect. 6 summarizes our
work and concludes the paper.

2. The Hilbert-Huang Transform

As shown in Fig. 1, HHT consists of two different algo-
rithms. One is called Hilbert Spectral Analysis (HSA),
which computes the instantaneous frequency from the data.
However, HSA cannot be used on data where multiple fre-
quencies are mixed. Therefore, the other algorithm, Empiri-
cal Mode Decomposition (EMD) acting as a preprocessor is
applied to the input data prior to HSA.

Although the details are omitted here, the workload of
HSA is substantially smaller compared to the workload of
EMD [14]. Additionally, the majority of HSA process con-
sists of applying Fast Fourier Transform (FFT) and its in-
verse to the data over the frequency domain. The paral-
lelization of FFT and its inverse have been studied exten-
sively over the years, and there have been previous works
concerning the FFT implementation in CUDA [16].

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

WASKITO et al.: EVALUATION OF GPU-BASED EMPIRICAL MODE DECOMPOSITION FOR OFF-LINE ANALYSIS
2329

Fig. 1 Hilbert-Huang transform (HHT).

Fig. 2 Envelope and mean calculation.

Therefore, this paper focuses only on the paralleliza-
tion and implementation of EMD in CUDA. The EMD pro-
cedure is explained in more details as follows.

2.1 EMD Overview

The basic idea of the Empirical Mode Decomposition is a
simple assumption that any data consists of different sim-
ple intrinsic modes of oscillation [1]. At any given time,
the data may have many different coexisting modes of os-
cillation one superimposing on the others. The result is the
final complicated data. Each of these oscillatory modes is
represented by an intrinsic mode function (IMF) with the
following definition:

• in the whole dataset, the number of extrema and the
number of zero-crossings must either equal or differ at
most by one, and
• at any point, the mean value of the envelope (Fig. 2)

defined by the local maxima and the local minima is
zero.

To decompose the input signal f (t) into IMFs, the
EMD algorithm is shown as a flowchart in Fig. 3. Let the
value of the current input signals be si(t) with i as number
of IMF. First, identify all the local extrema (step a), then
connect all the local maxima by a cubic spline line to pro-
duce the upper envelope (step b). Repeat the procedure for
the local minima to produce the lower envelope (step b).
The upper and lower envelopes should cover all the data be-
tween them (see Fig. 2). Their mean is designated as mi(t),
and the difference between the data and mi(t) is calculated
as hi(t) = si(t) − mi(t)(step c).

Unfortunately, hi(t) does not yet satisfy the definition
of an IMF. Such function is called a protoIMF. The same
procedure is simply executed to hi(t) during the inner loop
process until it reaches the definition of IMF.

After repeated sifting, hi(t) becomes an IMF. Over-
all, hi(t) should contain the finest scale of the signal. Then
hi(t) can be separated from the rest of the data by ri(t) =

Fig. 3 EMD algorithm.

Fig. 4 Extrema padding.

si(t) − hi(t). Since the residue ri(t) still contains longer fre-
quency variations in the data, it is treated as the new data
and subjected to the same sifting process as described above.
This procedure can be repeated with all the subsequent ri(t),
until the residue ri(t) becomes a monotonic function from
which no more IMFs can be extracted. By definition, the
relation between the input data f (t) and IMFs hi(t) is as fol-
lows:

f (t) =
n∑

i=1

hi(t) + r(t) (1)

As described below, the complexity of each of the inner
loop procedure is shown to be O(N).

2.2 Extrema Identification

Each extrema point (maxima and minima) can be identified
by comparing each value of input signal si with the previous
and behind value in sequence i = 0, · · · ,N − 1. Since this
procedure sequentially compares each values in the data, the
complexity can be expected to be O(N). The x and y value of
each maxima (minima) is then stored in new arrays. After
this procedure, separate arrays of maxima and minima set
are created which are used in the following envelope calcu-
lation, shown in Fig. 4. This figure shows a case for maxima
identification, with the gray part representing the identified
maxima.

2330
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

2.3 Envelope Calculation

Cubic Spline Interpolation is used to interpolate the interval
between extrema creating an envelope. The essential idea of
cubic spline interpolation is as follows. Given a set of ex-
trema (x j, y j), j = 1, · · · , n, the cubic spline curve (ei) con-
necting them can be calculated using the following equation,

ei = Ay j + By j+1 +Cy′′j + Dy′′j+1 (2)

where x j < i < x j+1, and y′′j as the second derivatives of
each x j. Each A, B, C and D can be calculated using x j and
x j+1 respectively

In practice, since the values of each y′′i are unknown,
they need to be specified before calculating Eq. (2). The key
idea of a cubic spline requires the first derivative be con-
tinuous across the boundary between two intervals (y′j from
interval x j−1 and x j is the same as y′j from interval x j and
x j+1). After taking the derivatives of Eq. (2) and rearrang-
ing it, the following equation is obtained and can be used to
calculate a unique set of y′′i values:

ay′′j−1 + by′′j + cy′′j+1 = r (3)

where a, b, c and r are also calculated using x j, x j−1 and x j+1

respectively.
The cubic splines are especially practical because the

set of Eq. (3) can be arranged in a tridiagonal matrix just as
shown below.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c1 0
a2 b2 c2

a3 b3
. . .

. . .
. . . cn−1

0 an bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′′1
y′′2
y′′3
...
y′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1

r2

r3
...

rn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

These equations can be solved in O(n) operations by the
Tridiagonal Matrix Algorithm (TDMA). TDMA is a sim-
pler form of Gaussian elimination method, where if the
equations can be represented as a tridiagonal matrix, the so-
lution can be obtained by just one forward sweep and one
backward elimination. Once y′′i are obtained, simply apply-
ing Eq. (2) brings the result of the envelope.

We point out that the envelope calculation does not re-
quire pivot operations. This is because matrices generated
by Cubic Spline Interpolation are strictly diagonally dom-
inant [17]. Gaussian elimination without pivoting is stable
for diagonally dominant matrices. Thus, the Eq. (4) can be
solved in a simple manner.

2.4 protoIMF Generation

After the upper envelope and lower envelope are calculated,
finding the mean value hi can be calculated in O(N) opera-
tions. The C code snapshot of the operation is shown below.

for(i=0; i<N; i++){

m[i] = (upper[i] + lower[i])/2.0;

h1[i] = h[i] - m[i];

}

3. Parallelization Strategy for EMD

In this section, the details on our proposed parallelization
strategy for EMD are explained. We first describe a com-
mon CUDA implementation to achieve high performance,
followed with problems that arises with naive implementa-
tion. Then we explain our approach to solve the problems
which we name Partial+Total method.

3.1 Shared Memory Usage and Its Problem

A common implementation in CUDA is to split the tasks to
group of thread blocks, where each block is executed in par-
allel by each Streaming Multiprocessor (SM) in GPU. Each
SM has a small on-chip shared memory that can be accessed
very quickly by every thread in the same block compared to
global memory access. Maximizing the use of this shared
memory is the focus in our parallelization strategy.

To use the shared memory fully, the tasks are divided to
regions such that each region fits in each SM’s shared mem-
ory. Ideally, each block applies the inner loop procedure as
described on the previous section only to the data inside the
region.

However, as explained in Sect. 2.3, during the envelope
calculation, the coordinate of every extrema points need
to be considered to calculate the second derivative y′′j in
Eq. (4). Since each block is isolated and is practically ex-
ecuting each region independently from each other, consid-
ering all the extrema from the input data is practically im-
possible. Each block cannot access the extrema data out-
side its own shared memory. Upon calculating the envelope
with the limited data, the envelope from each block will not
be smooth and continuous across the boundary between re-
gions. As a result, the resulting IMF may contain error.

Therefore, the data is overlapped for some interval
around the boundary during the splitting of the input [15].
This behavior is shown in Fig. 5. Each block has an extra
part of the data around the boundary allowing it to calculate
extra part of the envelope. After the inner loop procedure
terminates, each block discards the extra part and outputs
the result, resulting in one continuous IMF.

However, there is a limitation in this Partial method. If
the number of extrema found in the region is too small for
interpolating a continuous envelope, a wrong envelope may
be produced. A certain number of extrema in each thread
block is needed to maintain one continuous envelope across
regions. To facilitate this, we propose a switching method
between shared and global memory explained in the next
section [15].

WASKITO et al.: EVALUATION OF GPU-BASED EMPIRICAL MODE DECOMPOSITION FOR OFF-LINE ANALYSIS
2331

Fig. 5 Proposed EMD partial method.

Fig. 6 EMD partial+total method.

3.2 Coordination between Partial and Total Methods

Our proposed coordination method is shown in Fig. 6. When
the kernel is launched, the partial method is first used to
determine the number of extrema in each region (step a). If
the number is larger than a threshold, the partial method is
continued (step b). However if the number in one region
is lower than a threshold, the EMD method is switched to
the total method (step c), where EMD is calculated this time
using whole input data in the global memory where all SMs
cooperate to solve (see Fig. 7).

Checking of other regions which contain less extrema
(step a) requires inter-block synchronization, which in-
creases the total execution time. To reduce this side effect,
checking is done only at the beginning of calculating IMFi.
This is because the number of extrema in each region is sta-
ble during the inner loop of the EMD process.

In our proposed strategy, the switch to total method
is executed inside the kernel, so to facilitate inter-block
communication, a GPU lock-based synchronization is ap-
plied [19]. The basic idea is to use a global mutex variable

Fig. 7 Proposed EMD total method.

combined with atomicAdd function to count the number of
thread blocks which reach the synchronization point. It acts
as a barrier function stalling each thread block until every
block reaches the same point [18].

Since in a CUDA programming model, the execution
of a thread block is non-preemptive, i.e. its execution cannot
be interrupted until it is finished, care must be taken when
attempting to coordinate a group of thread blocks to avoid
deadlocks. Therefore, a one-to-one mapping between thread
blocks and SMs is applied. For a GPU with N number of
SMs, no more than N blocks can be used in the kernel. This
results in multiple region mapped to one SM as shown in
Fig. 5. After completing the first IMF calculation, a new
input data is calculated and the procedure described above
is repeated.

Next the parallelization strategy for each of the inner
loop procedure is described with focus on reducing the com-
plexity of each procedure.

3.3 Extrema Identification

In this procedure, each thread decides whether or not one
point is an extrema. Since comparison with the point be-
fore and behind that point can be done for each point inde-
pendently, extrema identification is simple to perform on a
CUDA implementation. Each thread is mapped to a single
point in the data to perform the comparison in parallel.

However, problem arises when trying to store the ex-
trema coordinate into separate arrays. Just as described in
Sect. 2.2, the subsequent envelope calculation needs sepa-
rate arrays for x and y values as shown in Fig. 4.

Here prefix sum method is used for the padding proce-
dure to obtain the max x and max y arrays. Figure 8 shows
the prefix sum behavior on an array with 8 elements. First
the element of each of identified maxima is set to 1, other-
wise set to 0. Then apply the prefix sum as shown in the
figure, resulting each element to be the sum of all the ele-
ments in the array up to its index. Finally using this value as
a new array index, the value from the data are copied to the
max x and max y arrays shown in Fig. 4.

The prefix sum algorithm performs O(Nlog(N)) addi-

2332
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 8 Prefix sum behavior.

tion operations. Thus the complexity of extrema identifica-
tion becomes O(N

P log(N)) with the number of processors as
P. Although the prefix sum algorithm performs more oper-
ations than the O(N) sequential scan (Sect. 2.2), in practice
with large P number, the prefix sum algorithm performs bet-
ter. The GPU implementation uses TESLA C2050 with 448
Stream Processors (SP), thus prefix sum is chosen for the
padding procedure.

3.4 Envelope Calculation

Just as described in Sect. 2.3, during the envelope calcula-
tion, the solution for tridiagonal matrix equations is calcu-
lated. There are a couple of variants to solve tridiagonal
linear systems in parallel, namely cyclic reduction (CR) and
parallel cyclic reduction (PCR) [20]. In this paper, the PCR
method is chosen because less synchronization is needed
compared to CR method.

CR consists of two phases, the forward reduction and
backward substitution. From step complexity, CR has O(N)
step complexity, while PCR has O(log(N)) step complexity.
Although the step complexity is lower in PCR, each step in
PCR consists of N operations. In comparison, CR has more
step complexity but less operations for each step [20]. In
this paper, PCR is chosen as the tridiagonal system solvers.
The reason for this is in this implementation, especially in
global method, synchronization point between all blocks
is needed for every step. Since the cost of each synchro-
nization is high, keeping the synchronization number lower
is preferred. With PCR, the number of synchronization is
lower than CR, therefore PCR is better suited for this imple-
mentation.

In a PCR method, the Gaussian elimination procedure
is performed in parallel, eliminating all of the terms for each
row until a matrix which has only one diagonal non zero
entries is obtained. The cyclic reduction procedure is ex-

plained below.
First, the first three rows of matrix Eq. (4) can be trans-

formed into general form shown in equations below.

b1y
′′
1+c1y

′′
2 = r1 (5)

a2y
′′
1+b2y

′′
2 + c2y

′′
3 = r2 (6)

a3y
′′
2 + b3y

′′
3 + c3y

′′
4 = r3 (7)

Focusing on Eq. (6) on the 2nd row, the a2y
′′
1 term can be

eliminated by substituting y′′1 = (r1 − c1y
′′
2)/b1 from the

Eq. (5) on the 1st row. In a similar fashion, the c2y
′′
3 term can

also be eliminated by substituting y′′3 = (r3−a3y
′′
2 −c3y

′′
4)/b3

from the Eq. (7) on the 3rd row. The key idea of cyclic re-
duction is to eliminate the a jy

′′
j−1term and c jy

′′
j+1term for

each row j using the equations above and below it. Be-
cause the elimination for each row can be performed inde-
pendently, cyclic reduction can easily be calculated in par-
allel.

After the first step, the a jy
′′
j−1 and c jy

′′
j+1term for

each row j are eliminated and replaced with a′jy
′′
j−2 and

c′jy
′′
j+2term. The Eq. (5), (6), (7) become,

b′1y
′′
1+c′1y

′′
3 = r1 (8)

b′2y
′′
2 + c′2y

′′
4 = r2 (9)

a′3y
′′
1 + b′3y

′′
3 + c′3y

′′
5 = r3 (10)

which can be written back into the matrix form as,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′1 0 c′1 0
0 b′2 0 c′2
a′3 0 b′3

. . .

. . .
. . .

. . . 0
0 a′n 0 b′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′′1
y′′2
y′′3
...
y′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′1
r′2
r′3
...

r′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

Notice on the left side of the equations, each variable aj and
c j changes position after each step with a j moving to the left
and c j to the right respectively, while variable b j stays on the
same position. This procedure is then repeated to the new
equations, this time substituting the a′jy

′′
j−2 and c′jy

′′
j+2term

from each row j with row j − 2 and j + 2. After the second
step, the equations become,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′′1 0 0 c′′1 0
0 b′′2 0 0 c′′2
0 0 b′′3 0

. . .

a′′4 0 0 b′′4
. . .

. . .
. . .

. . .
. . .

0 a′′n 0 0 b′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′′1
y′′2
y′′3
y′′4
...
y′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′′1
r′′2
r′′3
r′′4
...

r′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

with the variable a j and c j moving farther and eliminated
completely from the equations. The subsequent procedure
is done using row j − 4 and j + 4 respectively. Finally, after
log(n) operations, a matrix which is having one diagonal non
zero entries is obtained just as shown in Eq. (13). Looking at

WASKITO et al.: EVALUATION OF GPU-BASED EMPIRICAL MODE DECOMPOSITION FOR OFF-LINE ANALYSIS
2333

these matrix equations, it is naturally clear that the solution
is trivial.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′′′1 0
b′′′2

b′′′3
. . .

0 b′′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′′1
y′′2
y′′3
...
y′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′′′1
r′′′2
r′′′3
...

r′′′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

Thus, the complexity of envelope calculation can be
reduced to O(N

P log(n)).

3.5 protoIMF Generation

There exists a data parallelism in the code shown in
Sect. 2.4. Therefore, the protoIMF generation can easily be
parallelized on the GPU. Each thread is mapped to each
point where they first calculate the mean and then proceed
to generate the protoIMF.

3.6 Implementation on Fermi Architecture

Fermi architecture is the newest GPU architecture for
CUDA released by NVIDIA. One of the addition com-
pared to previous GT200 series is programmer-managed
64 KB scratch-pad memory† in each SM. The 64 KB shared
memory can be configured as either 48 KB of scratch-pad
memory with 16 KB of L1 cache (s48k/c16k), or 16 KB of
scratch-pad memory with 48 KB of L1 cache (s16k/c48k).
When configured with 48 KB of scratch-pad memory, pro-
grams that make extensive use of scratch-pad memory can
perform up to three times faster. For programs whose mem-
ory accesses are not known beforehand, the 48 KB L1 cache
configuration offers greatly improved performance over di-
rect access to DRAM.

In our partial+total method, the total method is signifi-
cantly slower than the partial method due to extensive access
to global memory [15]. It is therefore preferable to configure
the shared memory as s16k/c48k to reduce the global mem-
ory latency for total method. Partial method can also take
advantage of this large cache. When designing program in
parallel machine with cache architecture, we consider the
spatial and temporal locality by tiling the data to fit inside
the cache memory.

Figure 9 shows the tiled data structure for partial
method. SM DATA is a long data array where one
SM DATA array is allocated for each SM. In a case with
14 SMs, then 14 SM DATA arrays are allocated. These
data arrays lies on global memory instead on scratch-pad

Fig. 9 Data tiling in partial method to utilize Fermi cache architecture.

memory. Inside the SM DATA array, the data needed for
the calculation are explicitly tiled. All data are allocated
in sequence on the memory. Therefore, when the size of
SM DATA is less than the cache size, all the data inside
SM DATA are guaranteed to be loaded on to the cache.

These are the minimum amount of data needed for in-
ner loop procedure. proto is an array to store the calcu-
lated protoIMF data. The size of this array is set equal to
the region size. env is used to store the maxima envelope
and mean envelope. exa is used for temporary arrays in
the padding procedure (prefix sum). pad ex and pad ey are
used to store the padding results.

4. Evaluation Results

First, the evaluation to find effective overlap space and
switching threshold is shown. Then, the evaluation results
of our partial+total EMD method are presented.

4.1 Evaluation Environment

Evaluation environment is shown in Table 1. We use a
single Intel Core 2 Duo 2.53 GHz for CPU, TESLA C1060
(GT200) with 240 SP (Stream Processor), and TESLA
C2050 (Fermi) with 448 SP. For the CPU program, the
HHT program included in MIST (Media Integration Stan-
dard Toolkit) is used. MIST is a standard library for media
and signal processing developed by Nagoya University [21].
The CPU program is a sequential program utilizing only 1
core, therefore in Table 1 only 1 core is shown.

For the input data, the harmonic signal Hotel Califor-
nia.wav sampled at 44.1 kHz is chosen. For our partial EMD
method evaluation, the region size is set to 256 points on
GT200 and 1024 points on Fermi, due to different size of
the scratch-pad memory. For the partial+total EMD method,
the thread block is set to 30 for GT200 and 14 for Fermi, re-
spectively. These number are based on the number of SMs
in each GPU. The size of shared memory limits the size
of region that our implementation can process. However as
long the total data size fits on the global memory, our im-
plementation can efficiently process the data. The number
of threads per block that are responsible for the EMD cal-
culation of each region is 256 in GT200, and 512 in Fermi.
Therefore each thread in a block is in charge for 2 points in
each region.

Additionally, the check to decide whether the protoIMF

Table 1 Evaluation environment.

CPU GT200 Fermi
Proc. Core 2 Duo TESLA C1060 TESLA C2050
Cores Num. 1 240 (30 SM) 448 (14 SM)
Clock Sp. 2.53 GHz 1.296 GHz 1.15 GHz
Dev. Env. GCC 4.1.2 CUDA SDK 2.3 CUDA SDK 3.1

gcc -O3 nvcc nvcc

†NVIDIA refers to programmer-managed memory as shared
memory. In this paper, we refer to such memory as scratch-pad
memory, which is a more general term.

2334
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 10 Error corresponding to overlap space in partial method.

satisfy the IMF condition is not performed, but instead stop-
ping the inner loop procedure after 1,000 loops. The number
of iteration of the outer loop is set to 8. These simplification
is not practical, however, it enables to compare the outputs
of proposed algorithm with those of original algorithm at
any steps. Therefore, we exploit the simplification for the
evaluation of the precision. We also evaluate the proposed
algorithm without the simplification later.

4.2 Precision Results

First, we evaluate how long overlap space is optimal. We use
20 sets of datum as test datum, which are randomly selected
from the input data. Each test data contains 64 K sampling
points and the head data (which consists of 12672 points) is
used for the evaluation. For these datum, we calculate IMFs
with the partial method.

Figure 10 shows the root mean square error (RMSE) of
IMFi(i = 1, 2, · · · , 5) with partial method compared to the
total method. RMSE is accumulated during IMF calculation
and cumulative RMSE in the worst case is shown in the fig-
ure. The x-axis is the evaluated overlap space, and the y-axis
is the calculated RMSE. Lower RMSE means the precision
does not deteriorate. The result shows that overlap space
larger than 128 gives high enough precision for IMF2. That
is, if the space is larger than 128, the partial method ensures
precise results for IMF1 and IMF2. Therefore we set the
overlap point parameter to 128.

Second, we investigate optimal switching threshold.
As described in Sect. 3.2, at the beginning of IMFi calcu-
lation, the total method starts if the number of extrema in a
region is less than the threshold. In other words, the min-
imum number of extrema at the beginning of IMFi calcu-
lation determines whether the partial method can calculate
precisely or not. If precise IMFi can not be calculated, the
threshold should be larger than the minimum number.

Figure 11 shows the relationship between RMSE of
IMFi and the minimum number of extrema at the beginning
of the calculation. The x-axis is the minimum number, and

Fig. 11 Error corresponding to the minimum number of extrema at the
beginning of calculating IMFi(i = 2, 3, · · · , 5).

Fig. 12 Breakdown of partial and total method.

the y-axis is the RMSE. For the evaluation, we use above 20
test datum to get plotted pairs of the number and RMSE. A
singular point exists at 79, while all RMSEs are significantly
small in the area larger than 79. Thus, we set the switching
threshold to 80 for the following evaluation.

4.3 Performance Results

In Fig. 12, we show the breakdown of IMFs calculated with
partial and total method. The number of iteration of the in-
ner loop is fixed in this experiment, so the amount of IMFs
calculated by a method represents how many times criti-
cal operations (which consists of three steps mentioned in
Sect. 2.2) are executed by its method. The x-axis is the sam-
pling point evaluated, and the y-axis is the average amount
of IMFs calculated by each method. The amount of IMFs
calculated by partial method and total method is shown in
dark and light area, respectively.

For large input size, the amount of IMFs calculated
by the partial method is reduced. This is because a re-
gion which consists of less extrema than the threshold has
a higher chance of appearing as the datum increases. If such
region exists in the datum, the method is switched to the

WASKITO et al.: EVALUATION OF GPU-BASED EMPIRICAL MODE DECOMPOSITION FOR OFF-LINE ANALYSIS
2335

Fig. 13 Total speedup of proposed method compared to CPU.

total method earlier, reducing the ratio of partial method.
Figure 13 shows 6 lines corresponding to each config-

uration, of which the bottom 2 correspond to the speedup of
total method on GT200. The rest represent Fermi’s result.
The x-axis is the evaluated sampling point, and the y-axis
is the speedup normalized by the CPU runtime. In addition
to the evaluation of partial+total method and total method,
we also test different shared memory configuration, set as
s48k/c16k and s16k/c48k respectively.

On GT200, partial+total method achieves 3.4x speedup
(circle point) in best case. Meanwhile, on Fermi, par-
tial+total method achieves 11.8x speedup (square point) in
best case.

The number of cores on Fermi is about 2 times greater
than that on GT200, but the speedup ratio on Fermi is about
3 times greater than that on GT200. This mismatch is caused
by the difference in region sizes. As described in Sect. 4.1,
the size on Fermi is quadruple compared to the size on
GT200. The region size is a significant factor related to the
amount of IMFs calculated by the partial method. Thus,
parallelizing on Fermi greatly outperforms rather than par-
allelizing on GT200.

In Fig. 12 and Fig. 13, the speedup ratio of partial+total
method on Fermi is improved as the size of test datum in-
creases, while the ratio of IMFs calculated by the partial
method is decreased. This is because the speedup by the to-
tal method is slightly improved as increasing the datum. The
effect of the speedup by the partial method is reduced, how-
ever, the effect of the speedup by the total method causes the
improvement of the total performance.

Overall, partial+total method is faster than total
method, 11.8x speedup (square point) compared to 9.3x (di-
amond point) in best case respectively. For different shared
memory configuration, the result shows that s48k/c16k
achieves 11.8x speedup in best case (square point), while
s16k/c48k configuration achieves 10.7x speedup in best case
(cross point) for partial+total method. Total method using
both configuration show the same performance (triangle and
diamond point).

Fig. 14 Speedup of proposed method using different shared memory
configuration for single IMF.

Fig. 15 Speedup of the proposed method using SD calculation compared
to CPU.

This means that large cache configuration on Fermi
has little effect to the performance. To further examine
the effect of shared memory configuration, we show the
speedup derived from calculating a first IMF (Fig. 14). The
x-axis is the evaluated sampling point, and the y-axis is
the speedup normalized by the CPU runtime. The result
shows that partial method using shared memory as a scratch-
pad achieves more than double the performance (maximum
29.9x speedup) compared to using it as a cache (maximum
15.1x speedup). Total method shows no advantage when
using large cache, contrary to our assumption in previous
section. We believe that this is because total method only
has spatial locality, thus reducing the effectiveness of cache.

For comparison, Fig. 15 shows the speedup of the pro-
posed method under GT200 when implementing S D calcu-
lation with inter-block synchronization on every iteration.
Figure 15 shows the speedup is reduced to a maximum of
3.0x. We believe that this is caused by using inter-block syn-
chronization which further introduces communication over-
head. Therefore new approach is needed to avoid the syn-
chronization in each iteration. In our future works, we will
investigate approaches such as synchronizing after some
hundred cycles.

Additionally, on input size 26944 points the speedup
of shared-global method is reduced (see Fig. 15). This is

2336
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

caused by the difference in loop count when partial method
is active. Although partial method produces IMF with
small error compared to CPU implementation, such error
is enough to produce different loop count for the subsequent
total method. In some cases, total loop count of the par-
tial+total method is around the total loop count when us-
ing only global method. This results in similar speedup
shown in Fig. 15, lowering the effect of partial method. Fur-
ther analysis on the relationship between the loop count and
shared method will also be our focus for future works.

5. Related Works

Chen et al. shows a GPGPU-aided Ensemble EMD for on-
line analysis [14]. Ensemble EMD is a kind of EMD which
is designed to overcome EMD’s sensitivity to noise [7].
Their approach is very similar to ours, but there are two
different points: 1) their target is EMD for on-line analy-
sis, and 2) their implementation is not taking account of the
GPU architecture.

In signal analysis, on-line analysis is different from off-
line analysis. In on-line analysis, recent signals are sub-
tracted from the historical input data as an input data. Then
the input is processed by analytical algorithm. These two
steps are alternated indefinitely. The signal is fed to the ana-
lytical system, so the system must analyze the input in real-
time. Hence the analytical speed weighs heavier than the an-
alytical resolution. For this purpose, input signals of EMD
are preferred to be shorter, therefore they divide subtracted
signals into small pieces beyond the analytical limitation.

In contrast, off-line analysis aims to obtain precise an-
alyzed data by treating the whole problem data as an input.
Therefore, the data fed to our system is longer than the one
fed to theirs. We also divide the data into small pieces to
improve performance. However, for the above purpose, we
do not create extremely small pieces which causes deterio-
ration in precision.

Since the EMD process for subtracted signals in on-
line analysis is identical with the EMD process in off-line
analysis, it seems that their parallelizing method could be
exploited for off-line EMD. However, they do not take the
GPU architecture into account sufficiently to develop a par-
allel EMD. For example, they use only one thread block,
which means that the rest of SMs are idle. Moreover, they
do not exploit shared memory at all. Thus our approach and
theirs differ greatly in focus and implementation.

6. Conclusions

This paper presents an evaluation of our GPU-based EMD
implementation for CUDA-enabled devices. A brief in-
troduction to EMD has been provided prior to explain-
ing our parallelization strategy. The results show that our
proposed parallelization strategy reduces the complexity to
O(N

P log(N)) when used on a GPU. The partial method
achieves a maximum speedup of 29.9 times for calculation
of a single IMF compared to sequential implementation on a

CPU. Meanwhile the partial+total method achieves a maxi-
mum speedup of 11.8 times for calculation of all IMFs. Ad-
ditionally, setting up an overlap interval to achieve the same
result to reduce error is shown to be effective.

As for future works, we will further investigate a new
approach to increase the partial method ratio. Second, we
will implement our own parallel Hilbert Spectral Analysis
and perform exhaustive comparison on the final result.

Acknowledgements

This research is partially supported by Japanese MEXT
Fund for Promoting Research on Symbiotic Information
Technology.

References

[1] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng,
N.C. Yen, C.C. Tung, and H.H. Liu, “The empirical mode decompo-
sition and the hilbert spectrum for nonlinear and non-stationary time
series analysis,” Proc. Royal Society A: Mathematical, Physical and
Engineering Sciences, vol.454, pp.903–995, 1998.

[2] E. Rao and A. Bopardikar, Wavelet transforms, introduction to the-
ory and applications, Addison Wesley Longman, 1998.

[3] N. Rehman and D.P. Mandic, “Filter bank property of multivari-
ate empirical mode decomposition,” IEEE Trans. Signal Process.,
vol.59, no.5, pp.2421–2426, 2011.

[4] N. Rehman and D.P. Mandic, “Empirical mode decomposition
for trivariate signals,” IEEE Trans. Signal Process., vol.58, no.3,
pp.1059–1068, 2010.

[5] T. Rutkowski, D.P. Mandic, A. Cichocki, and A. Przybyszewski,
“EMD approach to multichannel EEG data analysis - the amplitude
and phase components clustering,” J. Circuits, Systems, and Com-
puters, vol.19, no.1, pp.215–229, 2010.

[6] D. Looney and D.P. Mandic, “Multi-scale image fusion using com-
plex extensions of EMD,” IEEE Trans. Signal Process., vol.57, no.4,
pp.1626–1630, 2009.

[7] Z. Wu and N.E. Huang, “Ensemble empirical mode decomposition:
A noise-assisted data analysis method,” Advances in Adaptive Data
Analysis, vol.1, no.1, pp.1–41, 2009.

[8] N. Rehman and D.P. Mandic, “Multivariate empirical mode decom-
position,” Proc. Royal Society A, vol.466, no.2117, pp.1291–1302,
2010.

[9] N.U. Rehman and D.P. Mandic, “Quadrivariate empirical mode de-
composition,” Proc. IJCNN’10, pp.2265–2270, 2009.

[10] N.U. Rehman and D.P. Mandic, “Qualitative analysis of rotational
modes within three-dimensional empirical mode decomposition,”
Proc. ICASSP’09, pp.3449–3452, 2009.

[11] T. Tanaka and D.P. Mandic, “Complex empirical mode decomposi-
tion,” IEEE Signal Process. Lett., vol.14, no.2, pp.101–104, 2007.

[12] M.U.B. Altaf, T. Gautama, T. Tanaka, and D.P. Mandic, “Ro-
tation invariant complex empirical mode decomposition,” Proc.
ICASSP’07, pp.1009–1012, 2007.

[13] Y. Washizawa, T. Tanaka, D.P. Mandic, and A. Cichocki, “A flexible
method for envelope estimation in empirical mode decomposition,”
Proc. 10th International Conference on Knowledge-Based & Intelli-
gent Information & Engineering Systems, KES-06, pp.1248–1255,
2006.

[14] D. Chen, D. Li, M. Xiong, H. Bao, and X. Li, “GPGPU-aided
ensemble empirical-mode decomposition for EEG analysis dur-
ing anesthesia,” IEEE Trans. Inf. Technol. Biomed., vol.14, no.6,
pp.1417–1427, 2010.

[15] P. Waskito, S. Miwa, Y. Mitsukura, and H. Nakajo, “Parallelizing
hilbert-huang transform on GPU,” Proc. 2nd Workshop on Ultra

WASKITO et al.: EVALUATION OF GPU-BASED EMPIRICAL MODE DECOMPOSITION FOR OFF-LINE ANALYSIS
2337

Performance and Dependable Acceleration Systems (UPDAS’10),
pp.184–190, 2010.

[16] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth
intensive 3-D FFT kernel for GPUs using CUDA,” Proc. 2008
ACM/IEEE conference on Supercomputing, SC ’08, pp.5:1–5:11,
2008.

[17] G. Dahlquist, Numerical Methods in Scientific Computing: Volume
1, Society for Industrial Mathematics, 2008.

[18] S. Xiao and W. chun Feng, “Inter-block GPU communication via
fast barrier synchronization,” Proc. 2010 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS 2010), pp.1–12,
2010.

[19] W. chun Feng and S. Xiao, “To GPU synchronize or not GPU syn-
chronize?,” Proc. 2010 IEEE International Symposium on Circuits
and Systems, pp.3801–3804, 2010.

[20] Y. Zhang, J. Cohen, and J.D. Owens, “Fast tridiagonal solvers on
the gpu,” Proc. 15th ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’10, pp.127–136, 2010.

[21] T. Takahashi, “Mist: Media integration standard toolkit,” 2009.

Pulung Waskito was born in 1986 and re-
ceived the B.E. degree from Tokyo University
and Agriculture and Technology in 2009. He is
currently working toward the M.E. degree. His
research interests are general-purpose computa-
tion on GPUs, parallel processing and high per-
formance computing. He received the 2nd place
award under Free Category in GPU Challenge
2010. He is a student member of IPSJ.

Shinobu Miwa was born in 1977 and re-
ceived the Doctor of Informatics degree from
Kyoto University in 2007. He worked at Tokyo
University of Agriculture and Technology as an
Assistant Professor. He is now an Assistant Pro-
fessor at the University of Tokyo from 2011.
His research interests are computer architec-
ture, high performance computing and embed-
ded systems. He received the best paper award
in 2010 Embedded System Symposium. He is a
member of IPSJ and JSAI.

Yasue Mitsukura received the M.E. degree
from Okayama Prefectural University in 1999
and D.E. degree from the University of Toku-
shima in 2001. She worked at the University
of Tokushima and Okayama University as an
Assistant Professor and a Lecturer, respectively.
Since 2005, she is an Associate Professor at To-
kyo University of Agriculture and Technology.
Her current research interests are image process-
ing, EEG analysis and signal processing. She is
a member of IEEE, SICE and RISP.

Hironori Nakajo was born in 1961 and
received the B.E. and M.E. degree in Electri-
cal Engineering from Kobe University in 1985
and 1987, respectively. He was a Research As-
sociate at Kobe University in 1989. He worked
at Center for Supercomputing Research and De-
velopment (CSRD) of the University of Illinois
at Urbana-Champaign as a Visiting Research
Assistant Professor from 1998 to 1999. He is an
Associate Professor at Institute of Engineering,
Graduate School Tokyo University of Agricul-

ture and Technology since 1999. His research interests are computer archi-
tecture, parallel processing, cluster computing and reconfigurable comput-
ing. He is a member of IPSJ, IEEE and ACM. (Doctor of Engineering).

