
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2345

PAPER Special Section on Parallel and Distributed Computing and Networking

A Network Clustering Algorithm for Sybil-Attack Resisting

Ling XU†a), Nonmember, Ryusuke EGAWA††b), Hiroyuki TAKIZAWA†c),
and Hiroaki KOBAYASHI††d), Members

SUMMARY The social network model has been regarded as a promis-
ing mechanism to defend against Sybil attack. This model assumes that
honest peers and Sybil peers are connected by only a small number of at-
tack edges. Detection of the attack edges plays a key role in restraining
the power of Sybil peers. In this paper, an attack-resisting, distributed al-
gorithm, named Random walk and Social network model-based clustering
(RSC), is proposed to detect the attack edges. In RSC, peers disseminate
random walk packets to each other. For each edge, the number of times
that the packets pass this edge reflects the betweenness of this edge. RSC
observes that the betweennesses of attack edges are higher than those of the
non-attack edges. In this way, the attack edges can be identified. To show
the effectiveness of RSC, RSC is integrated into an existing social network
model-based algorithm called SOHL. The results of simulations with real
world social network datasets show that RSC remarkably improves the per-
formance of SOHL.
key words: sybil attack, social network, attack edge, clustering

1. Introduction

Peer to peer (P2P) is a model to organize large scale dis-
tributed systems. Unlike conventional Server-Client sys-
tems, in a P2P system, there is no central server, and users
directly share resources with each other. This removal of
central servers makes the system highly easy to extend.

However, the lack of central servers also makes P2P
systems vulnerable to Sybil attack [1]. In a P2P system,
each user can register a legal account. From the view of
the system, this account is called a peer, and is used for the
user to share resources. In a P2P system, there may exist
malicious users whose objective is to break the system pro-
tocols. Due to the lack of central authorities, it is easy for
a malicious user to obtain a large number of fake accounts.
From the view of the system, these fake accounts are called
Sybil peers. The malicious users can then control these Sybil
peers to break the system laws. Sybil attack is a big threat
to P2P systems, and thus has taken researchers great efforts
to defend the system against the attack.

Recently, the social network model (SNM) [2], shown

Manuscript received January 6, 2011.
Manuscript revised June 10, 2011.
†The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8578 Japan.
††The authors are with Cyberscience Center, Tohoku University,

Sendai-shi, 980–8578 Japan.
a) E-mail: xling@sc.isc.tohoku.ac.jp
b) E-mail: egawa@isc.tohoku.ac.jp
c) E-mail: tacky@isc.tohoku.ac.jp
d) E-mail: koba@isc.tohoku.ac.jp

DOI: 10.1587/transinf.E94.D.2345

Fig. 1 Social network model.

in Fig. 1, becomes to be frequently utilized to resist Sybil at-
tack [3]. SNM assumes that, in a P2P system, honest peers
and Sybil peers are only connected by a small number of
edges, called attack edges. These attack edges form a small
cut in the system. The existing SSR (SNM-base Sybil Re-
sisting) algorithms utilize this small cut to probabilistically
judge whether a peer is Sybil or not [3]. However, they can-
not decide which peers are connected to the attack edges.

The detection of the attack edge plays a key role in
both detecting Sybil peers and restraining the communi-
cation from Sybil peers to honest peers. The motivation
of this paper is hence to explicitly detect the attack edges.
For this goal, we design an attack-resisting distributed algo-
rithm, named Random walk and SNM-based network Clus-
tering (RSC). To validate the potential of RSC in improv-
ing the performance of existing SSR algorithms, we inte-
grate RSC into a Sybil resisting One Hop Lookup (SOHL)
algorithm [4]. The resulting algorithm is called RSC-based
Sybil Resisting (RSSR). We evaluate RSSR by simulations
using real world network datasets, and show that RSSR
achieves notable performance improvement from multiple
aspects over SOHL. These results demonstrate that RSC can
be generally used as a underlying component to improve the
performance of SSR algorithms.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the social network model, the SSR algo-
rithms, and a network clustering algorithm that enlightens
our work. Section 3 elaborates the design of RSC. Hav-
ing obtained RSC, Sect. 4 integrates it into SOHL to con-
struct RSSR. Then, Sect. 5 evaluates the performance of
RSC by comparing SOHL with RSSR by simulations. Fi-
nally, Sect. 6 concludes this paper.

2. Related Work

2.1 Social Network Model

In many P2P systems, a new peer needs to first contact a
bootstrap peer – a peer that has existed in the systems, to

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

2346
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

join the systems. The bootstrap then helps the new peer to
connect to the systems. Therefore, a malicious bootstrap
can introduce a large number of other malicious peers to
break the system protocol. This is a special kind of Sybil at-
tack. To solve this problem, Danezis et al. [5] noticed that al-
though a malicious bootstrap can introduce arbitrarily many
Sybil peers, it cannot arbitrarily forge connection between
honest peers and the new coming Sybil peers. This idea
later evolves into SNM [6].

SNM assumes that in a P2P system, peers of the same
types closely connect with each other, while peers of the dif-
ferent types loosely connect with each other. The edges con-
necting peers of different types are called the attack edges.
The network can thus be largely divided into an honest clus-
ter and a Sybil cluster, connected by a few number of attack
edges.

2.2 Social Network Model-Based Sybil Attack Resisting
Algorithms

Many SSR algorithms have been proposed in the recent
years. SybilLimit [2], SOHL (Sybil Resisting One Hop
Lookup) [4] and Whānau [7] aim to increase (decrease) the
probability that honest peers accept honest (Sybil) peers.
The basic principle of these algorithms is as follows. In
these systems, since the number of attack edges is small, the
attack edges forms a small cut. This cut reduces the proba-
bility that the random walk packets of Sybil peers reach hon-
est peers, and therefore limits the communication between
peers of different types. However, to the best of our knowl-
edge, none of the existing SSR algorithms concentrates on
the detection of the attack edges. A good summary of the
existing SSR algorithms can be found in [3].

2.3 Sybil Resisting One Hop Lookup

Here, we give a brief introduction of SOHL [4]. SOHL will
be used as the baseline to evaluate the algorithms proposed
in this paper.

The objective of SOHL is to increase the number of
honest peers, and decrease the number of Sybil peers, ac-
cepted by honest peers. Here, “peer v accepts peer u”
means that v accepts to communicate with u. In SOHL,
each peer disseminates a certain number of random walk
packets, called probing random walks. Besides, each peer
v maintains a set, named a finger set, denoted by v. f ingers.
v. f ingers contains the IDs of the destinations of the probing
random walks of v. To decide whether to accept a peer x, v
first checks whether x is in v. f ingers. If x is not found, for
each finger u in v. f ingers, v asks u whether x is in u. f ingers.
x will be accepted by v if and only if x is contained in either
the finger set of v, or in the finger set of any finger of v.

2.4 Random Walk Betweenness-Based Network Cluster-
ing

The problem of detecting the attack edges is similar to the

problem of detecting the front peers (peers connecting to the
attack edges) in the well studied network clustering prob-
lem. Newman [8] proposed a random walk betweenness-
based network clustering (RWBC) algorithm, where the
goal is to identify the front peers and thus the clusters in
the network. Specifically, in RWBC, each peer dissemi-
nates one absorbing random walk packet to each of the other
peers. Here, an absorbing random walk packet is a packet
that moves in a random walk manner until it reaches its des-
tination. For each peer v in the system, the number of times
that absorbing random walks pass v reflects the betweenness
of v. RWBC shows that the betweennesses of front peers are
higher than those of the non-front ones. In this way, the front
peers, and thus the clusters in the network, can be detected.

However, RWBC cannot be directly used to detect the
attack edges in P2P system, because RWBC is a centralized
algorithm, and is not attack-resistible.

3. RSC – Detecting Attack Edges

This section proposes RSC, which is designed to accurately
detect attack edges. This paper assumes that the resources
(CPU, memory, bandwidth, etc.) of the malicious users be-
hind Sybil peers is finite. Therefore, the total number of
Sybil peers in the system is comparable to that of honest
peers.

3.1 A More Detailed Introduction of RWBC

Basically, RSC is a distributed, attack-resisting variation of
RWBC. Therefore, first, we give a more detailed explana-
tion of RWBC.

We use (s, t) random walks to denote the absorbing ran-
dom walks that start from peer s and end at peer t. For
each peer s, s disseminates one absorbing random walk to
each of the other peers, t. The expected numbers of times
that (s, t) random walks passing an edge e = (v, u) from v
to u and from u to v are denoted by e.i(s,t)

v and e.i(s,t)
u , re-

spectively. The absolute difference between e.i(s,t)
v and e.i(s,t)

u

(i.e., |e.i(s,t)
v −e.i(s,t)

u |) is called the partial betweenness of e for
the (s, t) random walks. Then, for all peer pairs, the summa-
tion of partial betweennesses of e (i.e.,

∑
∀(s,t) |e.i(s,t)

v −e.i(s,t)
u |)

is called the betweenness of edge e. Let E(v) and N(v) de-
note the incident edges and neighbors of v, respectively. The
summation of the betweennesses of the incident edges of v,
namely∑

∀(v,u)∈E(v)

∑
∀(s,t)

|e.i(s,t)
v − e.i(s,t)

u |, (1)

is the betweenness of peer v.
RWBC shows that the betweennesses of front peers are

higher than those of the other peers. Therefore, by comput-
ing the betweennesses of peers, front peers can be detected.

3.2 Basic Protocol of RSC

We estimate that in a SNM-based system, the betweennesses

XU et al.: A NETWORK CLUSTERING ALGORITHM FOR SYBIL-ATTACK RESISTING
2347

of attack edges are averagely higher than those of the non-
attack edges. Intuitively, in RWBC, front peers have high
betweennesses because all random walks that connect peers
of different types have to pass the front peers. All these
random walks also have to pass the attack edges. More-
over, SNM ensures that the number of attack edges is small.
Accordingly, the average number of random walks passing
an attack edge, and thus the betweennesses of attack edges
should be high.

Based on this estimation, RSC detects the attack edges
by computing the betweenness of each edge, in a distributed
manager. To do this, as with RWBC, peers disseminate ab-
sorbing random walks. In RSC, each peer has an unique
ID, which is a hash value of its IP address. Each peer v
maintains a destination set, denoted by v.Des. v.Des stores
the IDs of peers, to which v disseminates absorbing random
walks. We discuss the way to construct the destination set
in Sect. 3.4.

For each peer u in v.Des, v disseminates C absorbing
random walks of length L to peer u, where L and C are two
system parameters. In practice, each peer sets its L and C to
be as large as possible according to their respective comput-
ing capacities. Each absorbing random walk rw contains the
IDs of its source and destination, denoted by rw.s and rw.t,
respectively. Besides, for each incident edge e = (v, u) and
each set of (s, t) random walks, v holds two variables v.u(s,t)

−
and v.u(s,t)

+ . These two variables are used by v to record the
expected number of times that (s, t) random walks passes e
from v to u and u to v, respectively. When rw enters (leaves)
v from e, v increases v.u(s,t)

− (v.u(s,t)
+) by one. In this way,

v.u(s,t)
− and v.u(s,t)

+ are approximations of e.i(s,t)
v and e.i(s,t)

u of
RWBC, respectively. Then, v can compute the partial be-
tweenness of e for the (s, t) random walks, denoted by v.i(s,t)

u ,
as

v.i(s,t)
u = |v.u(s,t)

− − v.u(s,t)
+ |. (2)

By summing up v.i(s,t)
u for all (s, t) pairs, the between-

ness of edge e, denoted by v.i, can be computed. Algo-
rithm 1 details the behaviors of each peer v in this basic
RSC algorithm.

3.3 Resisting Attacks

We have introduced the basic protocol of RSC, which can
compute the edge betweenness in a benign environment.
However, in malicious environments, Sybil peers would
launch attacks to break the system protocols. Let e = (v, u)
be an attack edge, where v is honest and u is Sybil. We dis-
cuss solutions for typical attacks in this section.

Attack 1: Suppose that u has received a random walk from
v. Instead of randomly selecting a neighbor peer as the next
hop, u can always chooses v as the next hop for this random
walk. In this way, as Eq. (2) shows, the betweenness of e
will always be zero. An instance of Attack 1 is provided in
Fig. 2 (a): peers v and u are connected by edge e, where v is

// Initiate:

1 foreach w ∈ v.Des do
2 for i = 0; i < C; i + + do
3 forms a (v,w) random walk message m = {s : v, t : t};
4 sends m to a random neighbor;
5 end
6 end

// Received a absorbing random walk m from a
neighbor u:

7 if v == m.t then
8 stop successfully;
9 else

10 if v.u(m.s,m.t)
− does not exist then

11 v.u(m.s,m.t)
− = v.u(m.s,m.t)

+ = 0;
12 end

13 v.u(m.s,m.t)
+ + = 1;

14 randomly chooses a neighbor w;

15 v.w(m.s,m.t)
− + = 1;

16 foreach (s, t) pair where v.u(s,t)
− exists do

17 v.iu+ =
∑
∀u∈N(v) |v.u(s,t)

− − v.u(s,t)
+ |;

18 end
19 end

Algorithm 1: Basic RSC

(a)

(b)

Fig. 2 Examples of Attack 1 and Attack 2.

honest and u is Sybil. To reduce the betweenness of e, on
receiving a random walk packet m from v, u simply returns
m back to v.

Attack 2: Sybil peers can reduce the betweennesses of at-
tack edges by forging random walks. Suppose that a (i, j)
random walk has passed through e from v to u. u can then
form a random walk message m, setting the source and desti-
nation of this message to be the IDs of i and j, respectively,
and send m to v through e. In this way, the (i, j) random
walks that enter and leave v from e offset each other. As a
result, the betweenness of e decreases. Figure 2 (b) gives an
example of Attack 2: To reduce the betweenness of e, hav-
ing received a (i, j) random walk m1 from v, u forges a (i, j)
random walk m2 and sends m2 to v.

We design a special kind of random walks, called the
steered absorbing random walk to defend against these at-
tacks. For the simplicity of expression, we simply use the

2348
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

// Initiate:

1 forms a Q message m = {s : v, t : t, Pre : v};
2 sends m to a random neighbor u;

// Received a Q message m from u:
3 if m.s! = hash(IP(u)) || m.Pre � N(v) then
4 stops incorrectly;
5 else
6 if v == m.t then
7 stops succeeded;
8 else
9 sends an A message m = {IPs : IPs(v)} to u;

10 end
11 end

// Received a A message from u:
12 forms a Q message m = {s : v, t : t, Pre : u};
13 chooses a random IP from m.IPs(u);
14 sends m to IP;

Algorithm 2: The protocol of steered random walk
on peer v

steered random walks to denote the steered absorbing ran-
dom walks. Beside, we call the steered random walks that
have honest sources and Sybil destinations the first type
steered random walks, and call the other steered random
walks the second type steered random walks. The steered
random walk is designed to satisfy the following require-
ments:

Requirement 1: Each first type steered random walk in-
creases the betweenness of at least one attack edge by one.
This makes sure that attack edges still have a high between-
nesses even under Attack 1.

Requirement 2: On receiving a random walk rw with rw.s
being the ID of peer s, peer v can identify whether this ran-
dom walk is really originated by peer s or not. This enables
honest peers to reject the forged random walks of Attack 2.

The steered random walk runs in the following way.
Suppose that peer s disseminates a (s, t) random walk rw,
and suppose that rw is currently on peer v. On receiving rw,
v sends IPs(v) – the set of the IP addresses of neighbors of
v, to s. Then, s randomly chooses an IP from the IP set,
and relays rw to the chosen IP. This process continues until
rw arrives at t. The key to defend against the attacks is as
follows. When peer v receives rw from a sender s′, v relays
rw to the next peer only if rw.s is equal to hash(IP(s′)).
Here, IP(s′) denotes the IP address of s′, and hash() can
be any collision-free hash function. Algorithm 2 describes
the behaviors of each peer v in the relay of steered random
walks.

Now, we show that the steered random walk satisfies
Requirements 1 and 2. As for Requirement 1, let rw be a
first type steered random walk. Let k denote the number of
times that rw traverses attack edges during its movement.
No matter whether rw eventually reaches its destination or
not (Sybil peers can arbitrarily stop the relay of rw), rw must

Fig. 3 A first type steered random walk.

finally stop in the Sybil region. This means that k is an odd
number. Figure 3 provides an example showing this prop-
erty. In this example, the dot dash line is a first type (s, t)
random walk, denoted by rw. ae1, ae2 and ae3 are the at-
tack edges of the system. The number of times that rw tra-
verses the attack edges must be an odd number (three in this
example).

Supposing that the first k − 1 times of traverses cancel
off each other completely, the left one traverse will still pass
a certain attack edge from the honest peer side to the Sybil
peer side. Therefore, the betweenness of at least one attack
edge will be increased, and Requirement 1 holds. Then, ac-
cording to the algorithm of the steered random walk, Re-
quirement 2 holds naturally.

3.4 Discussion

Now, we discuss the problem of constructing the destina-
tion set for each peer. Intuitively, it would be better to have
a large destination set, so that RSC can more accurately ap-
proximate the edge betweennesses. However, maintaining
an accurate ID set of all peers is expensive in distributed
malicious environments.

Fortunately, as shown in Sect. 3.3, for each peer, the
key to detect attack edges is that a sufficient number of first
type steered random walks are disseminated. This means
that RSC only needs to ensure that each honest peer main-
tains a destination set that contains a sufficient number of
Sybil peers. For this goal, for each honest peer v, once a
peer u requires peer v for communication, v adds u to v.Des.
Therefore, the number of Sybil peers in the destination set of
v increases as long as Sybil peers try to communicate with
v. In a long term, a sufficient number of first type steered
random walks will be disseminated to detect attack edges.

4. RSSR

We have introduced RSC in the previous section. To show
the potential of using RSC in improving the performance
of existing SSR algorithms, this section proposes RSSR, a
RSC-based Sybil resisting algorithm.

Basically, RSSR is a combination of RSC and SOHL.
Recall that in SOHL, honest peers disseminate probing ran-
dom walks to find each other. Let us denote by escape rate
(ER) of random walks the average probability that a ran-
dom walk disseminated by an honest peer enters the Sybil
region. First, RSSR uses RSC to detect attack edges. Then,
RSSR reduces the escape rate of probing random walks by
preventing them from passing the detected edges. This en-

XU et al.: A NETWORK CLUSTERING ALGORITHM FOR SYBIL-ATTACK RESISTING
2349

ables honest peers to accept more honest peers and less Sybil
peers.

Specifically, the basic protocol of RSSR is just the
same as that of SOHL, as shown in Sect. 2.3. The differ-
ence is in the way the probing random walks advance. In
RSSR, let rw be a probing random walk. Suppose that rw is
currently on peer v, and u is a neighbor of v. The probability
that v selects u as the next hop is inversely proportional to
the betweenness of edge (v, u). We call this kind of random
walks the waterfall random walks. Since the attack edges
are expected to have a high betweennesses, the escape rate
of probing random walks can be decreased. Hence, the per-
formance of SOHL can be improved.

In RSSR, the length of each probing random walk is
O(log(n)) and the number of probing random walks dissem-
inated by each peer isΘ(

√
M). Here, n is the number of hon-

est peers and M is the number of edges among honest peers.
For a peer w, let us define the degree of w as the number of
neighbor peers of w, denoted by k(w). And, we denote by
rw a random walk of length O(log(n)) that starts within the
honest cluster. On one hand, SybilLimit [2] has shown that
under SNM, rw would stay within the honest cluster during
its movement with a high probability. Accordingly, for an
honest peer u, the probability that u accepts Sybil peers is
low. On the other hand, as shown in SOHL (Sect. 3.2, [4]),
rw will stop at w with a probability Θ

(
k(w)
M

)
. Therefore, by

disseminating Θ(
√

M) probing random walks, the probabil-
ity that u accepts each of the other honest peers, v, is high:

1 −
(
1 − Θ

(
k(v)
M

)
Θ(
√

M)
)Θ(
√

M)

> 1 −
(
1 − Θ

(√
M

M

))Θ(
√

M)

= 1 − O(e−1) = Ω(1).

(3)

Similar to SOHL, we assume that each peer knows n
and M. This is because the performance of SOHL and RSSR
is not very sensitive to small changes in these two parame-
ters, and each peer only needs a brief approximation of n
and M [4].

5. Evaluation

In this section, we compare the performance of RSSR with
SOHL by simulations to evaluate the effectiveness of RSC.

5.1 Simulation Configuration

The networks for simulations are designed in the following
way. First, the networks of the honest and Sybil clusters
are constructed separately. Then, attack edges are added
to connect these two clusters. The networks of the hon-
est clusters are extracted from the real world social network
datasets, and the Sybil cluster networks are constructed us-
ing the Erdos-Renyi random network model [9].

We select three datasets of real social networks and ex-
tract subnetworks from them to construct the honest clus-
ters. The datasets used are: slashdot for Slashdot.org, epin-

Table 1 Networks used in the simulations.

dataset |Honest Peers| |Sybil Peers|
N1 epinions 1017 500
N2 hepTh 1053 500
N3 slashdot 1078 500
N4 epinions 1781 500

ions for Epinions.com, and hepTh for the Hep-Th (High En-
ergy Physics) archive [10]. Slashdot.org is a technology-
related news website known for its specific user commu-
nity. It allows users to tag each other as friends or foes. The
slashdot dataset contains friend/foe links between the users
in Slashdot.org. Epinions.com is a general consumer review
website, where users can decide whether to trust each other.
The epinions dataset represents the trust relationship among
users. The hepTh dataset contains the citation relationship
among papers in Hep-Th. In hepTh, if a paper i cites paper
j, the graph contains an edge from i to j. We choose these
datasets because they are available for public use, and all of
them have been used for academic researches [11].

Then, we extract subnetworks from the datasets as the
honest clusters. We use extracted subnetworks instead of the
original datasets for two purposes: 1) to reduce the comput-
ing intensity of our simulations; 2) to make the peers more
closely connected, according to the assumption of SNM
(honest peers are closely connected). Specifically, we pro-
cess each dataset in three steps. Intuitively, the connection
density of the central part of a network is higher than that
of its border part. Therefore, first, we find a center node of
the dataset as an initial subnetwork. Here, the center nodes
of a network is the nodes whose maximal distances to the
other nodes are equal to the radius of this network. Then,
gradually, we extend the current subnetwork in a breadth-
first search manner. Finally, we remove from the subgraph
the nodes with degrees less than three, as SybilLimit [12]
does. After these three steps of processing, we obtain a sub-
network, in which the peers are closely connected. Four net-
works constructed in this way are used in the simulations, as
shown in Table 1.

Having created the honest and Sybil clusters, we con-
nect these two clusters by |AE| attack edges. That is, each
time one random honest peer and one random Sybil peer are
chosen to connect, and this procedure is repeated |AE| times.

During the simulations for RSSR and SOHL, the length
of each probing random walk is log(n), and the number of
probing random walks disseminated per peer is

√
M.

5.2 Evaluation Metrics

The performance is evaluated by four metrics: ER (escape
rate), HVS (honest peer number versus Sybil peer number),
ANHP (average number of honest peers) and ANSP (aver-
age number of Sybil peers). HVS denotes the ratio of the
number of honest peers to the number of Sybil peers in the
view of an average honest peer:

HVS =

〈 |honest peers in v.view|
|Sybil peers in v.view|

〉
, ∀v ∈ HP.

2350
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

ANHP (ANSP) denotes the percentage of honest (Sybil)
peers in the view of an average honest peer:

ANHP =

〈 |honest peers in v.view|
|HP|

〉
, ∀v ∈ HP.

ANS P =

〈 |Sybil peers in v.view|
|S P|

〉
, ∀v ∈ HP.

5.3 Simulation Results and Discussion

Figure 4 shows that in the simulations, the average between-
ness of the honest edges is lower than that of the attack
edges. In each sub-figure, the two curves represent the aver-
ages of the betweennesses of honest edges and attack edges,
respectively. We can see that when the number of attack
edges is low, the average betweenness of attack edges is
much higher than that of honest edges. Moreover, the av-
erage betweenness of attack edges decreases as the number
of attack edges increases. These results match well with
our assumption and explanation of the edge betweenness in
Sect. 3.2.

Figure 5 shows that the ER of RSSR is usually much
lower than that of SOHL. The four sub-figures show the
results obtained from the four networks listed in Table 1,
respectively. In each sub-figure, the horizontal axis repre-
sents the ratio of the number of attack edges to the number
of honest peers in the system. Each sub-figure compares the

(a) (b) (c) (d)

Fig. 4 The changes of the averages of edge betweennesses.

(a) (b) (c) (d)

Fig. 5 Comparison between the ERs of RSSR and SOHL.

(a) (b) (c) (d)

Fig. 6 Comparison between ANHPs and ANSPs of RSSR and SOHL.

ERs between RSSR and SOHL. We can see that as the num-
ber of attack edges increases, ERs of both RSSR and SOHL
increase. However, ER of RSSR is much lower than that
of SOHL. This is because waterfall random walks are less
likely to go into the Sybil region than the normal random
walks do.

Figure 6 shows the changes of ANHP and ANSP in
RSSR and SOHL, as the number of attack edges increases.
It shows that, first, as the number of attack edges increases,
ANHP decreases and ANSP increases in both RSSR and
SOHL, which is a direct result of the increasing of escape
rate. Second, ANHP of RSSR is slightly lower than that of
SOHL. This is because that in RSSR, the honest peers near
the attack edges are less likely be visited by probing random
walks. Third, however, RSSR averagely has much lower
ANSPs, which is owed to the low escape rates of RSSR.

Figure 7 reveals the changes of HVS’s in SOHL and
RSSR, as the number of attack edges increases. Two fea-
tures can be observed. First, when the number of attack
edges is small, HVS of RSSR is much larger than that of
SOHL. Intuitively, HVS is approximate to ANHP

ANS P . When at-
tack edges are few, ANSP of RSSR is much smaller than that
of SOHL, and hence HVS of RSSR is larger. Second, as the
number of attack edges increases, HVSs decrease quickly
in both SOHL and RSSR. In all the simulations, HVSs of
SOHL and RSSR almost have overlapped each other when
the number of attack edges is larger than 1000. The reason

XU et al.: A NETWORK CLUSTERING ALGORITHM FOR SYBIL-ATTACK RESISTING
2351

(a) (b) (c) (d)

Fig. 7 Comparison between HVSs of RSSR and SOHL.

of this feature is also intuitive: HVS is approximate to ANHP
ANS P .

As the number of attack edges increases, ANHP decreases
and ANSP increases simultaneously, which causes the quick
decrease of HVS.

In conclusion, compared with SOHL, RSSR can ef-
fectively increase the number of honest peers (reduce the
number of Sybil peers) accepted by honest peers. RSSR
achieves such improvement because waterfall random walks
can effectively reduce the escape rate, which accordingly in-
creases ANHP and decreases ANSP.

Note that RSC can be used not only for SOHL, but also
for Whānau, SybilLimit, and many other existing SSR al-
gorithms to improve their performance. Take Whānau for
example. Whānau is a SSR algorithm that is a refined vari-
ation of SOHL. As with SOHL, Whānau also uses random
walk as the basic protocol. The Sybil resisting performance
of Whānau thus closely depends on the escape rate of ran-
dom walks. Therefore, RSC and the waterfall random walk
technique of RSSR can also be used for Whānau to decrease
its Sybil accept rate.

6. Conclusions

The motivation of this study is to design a distributed,
attack-resisting algorithm to detect the attack edges in SNM.
To this end, we designed RSC. To evaluate the effectiveness
of RSC, it is embedded into SOHL. Then, the performance
of the new algorithm is compared with that of the original
one. The simulation results indicate that RSC notably im-
proves the performance of SOHL from multiple dimensions.
To the best of our knowledge, RSC is the first Sybil-resisting
attack edge detecting algorithm designed for distributed sys-
tems.

As future work, we plan to extend this research from
two directions. First, it is interesting to investigate the pos-
sibility of finding a general method to embed RSC to the
existing SSR algorithms. Second, RSC uses the steered ran-
dom walk to resist attacks. The problem of steered random
walk is that it brings high message cost on each peer. Hence,
the efficiency of RSC should be improved.

References

[1] J. Douceur, “The sybil attack,” Peer-to-Peer Systems, pp.251–260,
2002.

[2] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A near-
optimal social network defense against sybil attacks,” IEEE Sympo-
sium on Security and Privacy, pp.3–17, 2008.

[3] B. Viswanath, A. Post, K.P. Gummadi, and A. Mislove, “An anal-
ysis of social network-based sybil defenses,” SIGCOMM Comput.
Commun. Rev., vol.40, pp.363–374, Aug. 2010.

[4] C. Lesniewski-Laas, “A sybil-proof one-hop DHT,” Proc. 1st Work-
shop on Social Network Systems, SocialNets ’08, pp.19–24, New
York, NY, USA, 2008.

[5] G. Danezis, C. Lesniewski-Laas, M. Kaashoek, and R. Anderson,
“Sybil-resistant DHT routing,” Lect. Notes Comput. Sci., pp.305–
318, 2005.

[6] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, “SybilGuard:
Defending against sybil attacks via social networks,” SIGCOMM
Comput. Commun. Rev., vol.36, pp.267–278, 2006.

[7] C. Lesniewski-Laas and M.F. Kaashoek, “Whānau: A sybil-proof
distributed hash table,” Symposium on Networked System Design
and Implementation, San Jose, California, April 2010.

[8] M. Newman, “A measure of betweenness centrality based on random
walks,” Social Networks, vol.27, no.1, pp.39–54, 2005.

[9] Networkx. http://networkx.lanl.gov/contents.html
[10] http://arxiv.org/archive/hep-th
[11] http://snap.stanford.edu/data
[12] H. Yu, P.B. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A

near-optimal social network defense against sybilattacks,” Tech.
Rep. TRA2/08, National Univ. of Singapore, School of Com-
puting, March 2008. http://www.comp.nus.edu.sg/˜yuhf/sybillimit-
tr.pdf, 2008.

Ling Xu is a Ph.D. student in Graduate
School of Information Sciences in Tohoku Uni-
versity. He received his B.E. Degree in Com-
puter Science, Wuhan University of Technol-
ogy, and M.E. Degree in Information Science,
Tohoku University. He is interesting in the anal-
ysis and design of distributed algorithms for P2P
systems, social network systems and other dis-
tributed systems.

Ryusuke Egawa received the B.E. de-
gree, Master Degree on information sciences
from Hirosaki University in 1999, 2001, respec-
tively, and the Ph.D. degree on information sci-
ences from Tohoku University in 2004. He is
currently an assistant professor of Cyberscience
Center, Tohoku University. His research inter-
ests include computer architecture, VLSI design
and high-performance computing.

2352
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Hiroyuki Takizawa is currently an as-
sociate professor of Graduate School of Infor-
mation Sciences, Tohoku University. His re-
search interests include high-performance com-
puting systems and their applications. He re-
ceived the B.E. Degree in Mechanical Engineer-
ing, and the M.S. and Ph.D. Degrees in Informa-
tion Sciences from Tohoku University in 1995,
1997 and 1999, respectively. He is a member of
the IEEE CS, and the IPSJ.

Hiroaki Kobayashi is currently Director
and Professor of Cyberscience Center and Pro-
fessor of the Graduate School of Information
Sciences, Tohoku University. His research inter-
ests include high-performance computer archi-
tectures, grid and P2P computing, and multime-
dia applications. He received the B.E. Degree in
Communication Engineering, and the M.E. and
D.E. Degrees in Information Engineering from
Tohoku University. He is a senior member of
IEEE CS, and a member of ACM and IPSJ.

