
2362
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

PAPER Special Section on Parallel and Distributed Computing and Networking

Adaptive Prefetching Scheme for Peer-to-Peer Video-on-Demand
Systems with a Media Server∗

Ryusuke UEDERA†a), Student Member and Satoshi FUJITA†, Member

SUMMARY In this paper, we consider Peer-to-Peer Video-on-Demand
(P2P VoD) systems based on the BitTorrent file sharing protocol. Since the
Rarest First policy adopted in the original BitTorrent protocol frequently
fails to collect pieces corresponding to a video file by their playback time,
we need to develop a new piece selection rule particularly designed for P2P
VoDs. In the proposed scheme, we assume the existence of a media server
which can upload any piece upon request, and try to bound the load of
such media server with two techniques. The first technique is to estimate
pieces which are not held by any peer and prefetch them from the media
server. The second technique is to switch the mode of each peer according
to the estimated size of the P2P network. The performance of the proposed
scheme is evaluated by simulation.
key words: Peer-to-Peer, video-on-demand, media server, scheduling

1. Introduction

Video-on-Demand (VoD) is an online service which enables
customers to watch their favorite videos at any time, at any
place. In this service, each user can acquire a requested
video file in such a way that she can start watching while the
download is in progress. Most of existing VoD systems such
as YouTube and Ustream are implemented under the tradi-
tional Client/Server (C/S) model [1], [2], so that they could
enjoy several advantages such as an efficient resource man-
agement and a secure contents delivery. However, such a
centralized approach causes several critical issues such as
the access bottleneck and a single point of failure at the cen-
tral server.

In order to overcome such problems, Peer-to-Peer
(P2P) technology has emerged as a perspective way to real-
ize scalable, dependable VoDs. A VoD system based on the
P2P technology is generally referred to as a P2P VoD. P2P is
a distributed system consisting of a number of autonomous
computers called peers, and each peer participating in the
system plays the roles of a server and a client at the same
time, so that network services will be provided with the aid
of many participating peers. Such a cooperative behavior of
the participants could reduce the load of the central server,

Manuscript received December 24, 2010.
Manuscript revised May 25, 2011.
†The authors are with the Department of Information Engi-

neering, Graduate School of Engineering, Hiroshima University,
Higashihiroshima-shi, 739–8527 Japan.

∗Earlier version of this paper was presented as “Adaptive
Prefetching Scheme for Peer-to-Peer Video-on-Demand Systems
with a Media Server,” by Ryusuke Uedera and Satoshi Fujita, in
Proc. the First International Conference on Networking and Com-
puting, Nov. 2010.

a) E-mail: ryusuke@se.hiroshima-u.ac.jp
DOI: 10.1587/transinf.E94.D.2362

and in many cases, significantly improves the scalability and
the dependability of the overall system.

In this paper, we will focus our attention to P2P VoDs
of the BitTorrent type. BitTorrent [5] is a P2P file sharing
protocol based on: 1) the notions of file chunking, where
chunks are called pieces, 2) quick propagation of pieces us-
ing the Rarest First policy, and 3) an incentive mechanism
based on the Tit-for-Tat strategy. BASS [6] is the first at-
tempt to combine the BitTorrent protocol with VoD. In [9],
Vlavianos et al. proposed a P2P VoD called BiToS, which
equips a modified piece selection rule so as to avoid sus-
pending of a video play while conducting a download (de-
tails of those systems will be described in Sect. 3). In gen-
eral P2P file sharing systems, a peer can leave the system
as soon as it finishes the download of an entire file, and it
causes a situation in which there remain only few peers to
have a copy of the file. In particular, if the number of peers
who have downloaded the file is very small, we could not
avoid a situation in which a particular piece is not held by
any peer. Such a “missing” piece can never be acquired by
any peer until another peer who has that piece will join the
network. In P2P VoDs, although such a problem of miss-
ing pieces could be partially resolved by preparing a media
server which stores all video files as in BASS, such a media
server easily becomes a bottleneck as increasing the number
of missing pieces in the system.

In this paper, we propose a piece prefetching scheme
to reduce the amount of such missing pieces. Our scheme
consists of two basic techniques. The first technique is to es-
timate a set of missing pieces by referring to the local infor-
mation around each peer. By limiting the area of references
by an appropriate TTL (Time-to-Live), and by limiting the
time interval of consecutive references by an appropriate
value, we can bound the cost required for each prefetch op-
eration sufficiently low. We can accurately realize such an
estimation when the number of peers in the corresponding
P2P network is relatively small (as will be described later,
we assume that a P2P network is organized for each media
file to be downloaded). In our second technique, we try to
switch the mode of each peer, i.e., whether or not a prefetch-
ing should be executed, by referring to the estimated size of
the network.

The performance of the proposed scheme is evaluated
by simulation. The result of simulations indicates that:
1) the prefetching scheme certainly reduces the load of the
media server when the arrival of peers is bursty, e.g., if the
average arrival interval is less than or equal to 1 [s], it re-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

UEDERA and FUJITA: ADAPTIVE PREFETCHING SCHEME FOR PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS WITH A MEDIA SERVER
2363

duces the load of the media server in a conventional scheme
by 39%; 2) the mode switching technique effectively adapts
the scheme to the underlying P2P network of various sizes;
i.e., it enhances the advantage of prefetching when the net-
work size is small, and it avoids unnecessary overhead in
large networks. Result of additional experiments indicates
that the accuracy of such an estimation could be improved
by increasing the TTLs and the frequency of references.

The remainder of this paper is organized as follows.
In Sect. 2, we overview related works. Section 3 gives a
detailed description of BitTorrent and previous P2P VoDs.
Our proposed scheme is described in Sect. 4. The result of
performance evaluation is summarized in Sect. 5. Finally,
Sect. 6 concludes the paper with future works.

2. Related Work

Recently, a number of P2P video streaming systems have
been proposed in the literature. Those systems can be classi-
fied into two types by the configuration of the P2P network,
i.e., tree-based systems and mesh-based systems.

In tree-based systems, participant peers organize a tree-
structured P2P network called a multicast tree, and a peer lo-
cated at the root of the tree uploads a copy of a video file in
the form of a video stream. Such a stream is delivered to the
recipients of the video file through the multicast tree, where
each intermediate peer on the delivery paths continuously
forwards the stream received from a peer in the upstream to
the peers in the downstream. ESM [4] is a tree-based live
streaming system which adopts a single multicast tree for
each video stream. A critical drawback of tree-based sys-
tems such as ESM is that the failure of a peer significantly
degrades the routing performance of the overall system. In
order to overcome such a problem, SplitStream [3] prepares
several multicast trees for each video stream, and uses those
trees in a combined manner. P2Cast [7] is another tree-based
scheme based on the notion of patching. Patching is a tech-
nique which allows each peer to receive video streams hav-
ing been delivered in the past, by caching those streams in
each intermediate peer.

In contrast to tree-based systems, P2P network in
mesh-based systems can take any structure, and each link in
the network can be used in both directions. Thus, by adopt-
ing a graph structure with high connectivity as an underly-
ing P2P network, we could effectively resolve drawbacks of
tree-based systems. In mesh-based systems, each file is di-
vided into several chunks, and each peer downloads chunks
from adjacent peers, while conducting an upload of other
chunks to the adjacent peers. CoolStreaming [10] is a typ-
ical mesh-based live streaming system based on that idea,
where the mesh structure of the system is organized by exe-
cuting a gossip protocol.

Recently, BitTorrent file sharing system attracts con-
siderable attention as a key infrastructure to realize an effi-
cient delivery of video streams to their designated recipients.
BASS [6] is the first P2P VoD based on that idea. In this
system, chunks are called pieces, and can be downloaded

from adjacent peers, in addition to the ordinary download
from the media server. In [9], Vlavianos et al. improved
the piece selection rule in BitTorrent, and designed a P2P
VoD called BiToS. A remarkable feature of BiToS is that
it does not rely on any media server, while techniques pro-
posed there are also applicable to P2P VoDs with a media
server. The piece selection rule in BiToS was further refined
by many researchers; e.g., Zhou et al. [11] proposed a mixed
strategy consisting of several known rules and Sakashita et
al. [8] proposed a rule based on the rarity and the urgency
of pieces. The reader should note that those piece selection
rules can be used with our proposed scheme in a combined
manner, since the objective of our scheme is to reduce the
load of a media server rather than the increase of the effi-
ciency of piece exchanges.

3. BitTorrent

In this section, we first describe an overview of the BitTor-
rent protocol with its two key techniques; i.e., an incentive
mechanism and the Rarest First piece selection rule. We
then outline BASS and BiToS, which are P2P VoDs based
on the BitTorrent protocol.

3.1 Overview

In the BitTorrent protocol, each file is divided into several
chunks called pieces, and those pieces are exchanged among
peers relevant to that file. A BitTorrent network consists of
a tracker and a collection of peers, and the tracker manages
the information on all peers in the network, such as peer ID,
IP address, and the port number. To start the download of a
file, each peer first sends a request to the tracker relevant to
the requested file to join the network managed by the tracker.
Upon receiving the request, the tracker sends back a list of
peers to the requester, so that the requester establishes a con-
nection to several peers relevant to the requested file, where
such a request is periodically issued to establish additional
connections to the relevant peers. During the download of
pieces from adjacent peers, each peer keeps the piece avail-
ability for each adjacent peer, which denotes whether each
piece is held or not by the peer, and uses it to determine
the order of pieces to be downloaded (details of the piece
ordering scheme are described in the next subsection). In
addition, in order to keep such an information as accurate
as possible, whenever a piece is newly acquired, each peer
informs the fact to all of its adjacent peers.

3.2 Piece Selection Rule

The performance of the BitTorrent protocol is significantly
affected by the piece selection rule. A key point to real-
ize an efficient download under the protocol is how to avoid
the slowdown due to the rareness of the pieces to be down-
loaded, since a peer to have a rare piece becomes a bottle-
neck in the overall download process. This motivates a piece
selection rule called the Rarest First policy, where the word

2364
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

“rarest” indicates that the number of adjacent peers holding
that piece is the smallest. Such a set of rarest pieces can be
easily identified by using the piece availability information
locally kept by each peer. Note that this policy is effective
not only to avoid the slowdown of a download, but also to
protect rare pieces from being extinct due to an unexpected
failure or a sudden leave of peers.

3.3 Incentive Mechanism

Another key issue we need to consider is how to motivate
each peer to upload its acquired pieces to the other peers. In
other words, we should prevent each peer from being self-
ishly downloading pieces without contributing to the sys-
tem as an uploader. In order to regulate such a coopera-
tive behavior of the peers, the BitTorrent protocol uses a
choke/unchoke mechanism in the following manner (note
that we will merely describe a typical scheme based on the
Tit-for-Tat strategy, although several alternative schemes are
prepared in the BitTorrent protocol): In the protocol, at any
point in time, the number of target peers to which acquired
pieces can be uploaded is bounded by a constant for each
peer, where the status of each connection is controlled by
using choke/unchoke operations. The amount of contribu-
tions as an uploader is evaluated by the upload rate, i.e., by
the amount of uploads per second, and each peer determines
the set of target (i.e., unchoked) peers in a non-increasing
order of the upload rate of the adjacent peers.

3.4 BASS

BASS is the first P2P VoD based on the BitTorrent proto-
col. System architecture of BASS is illustrated in Fig. 1. In
addition to the basic infrastructure used in the original Bit-
Torrent, it uses a media server which stores all video files
to be uploaded. Each peer downloads pieces from the me-
dia server in a playback order, while conducting a down-
load from adjacent peers according to the Rarest First pol-
icy, where the policy is slightly modified in such a way that
the pieces prior to the current playback position will never
be selected. During the download from the media server,
it skips the download of pieces which have already been ac-
quired from the adjacent peers, or pieces which are expected
to be acquired before their playback time.

3.5 BiToS

BiToS is another P2P VoD developed by Vlavianos et al. [9].
Figure 2 illustrates the system architecture of BiToS. In P2P
VoDs based on the BitTorrent protocol, each peer should
collect pieces close to its playback position as quickly as
possible to avoid unnecessary suspending of a video play.
In other words, each piece is given a deadline, and the criti-
calness of such deadline gradually and dynamically changes
after starting the play of the video. However, the Rarest First
policy adopted in the BitTorrent protocol does not explicitly
take into account such a deadline, but merely tries to collect

Fig. 1 System architecture of BASS.

Fig. 2 System architecture of BiToS.

rare pieces independent of the position in the given media
file. This means that it is difficult to collect all pieces be-
fore deadline under the piece selection rule adopted in the
original BitTorrent.

To overcome such a problem, BiToS adopts the follow-
ing modified piece selection rule: At first, each peer par-
titions the set of unacquired pieces into two subsets, i.e.,
a high priority set consisting of a limited number of high
priority pieces close to the deadline, and the set of remain-
ing pieces. After selecting one of those two subsets with a
fixed probability, each peer selects a piece to be downloaded
from the selected subset according to the Rarest First policy,
where the probability of selecting the former subset is given
by p ∈ [0, 1]. Note that the parameter p controls the bal-
ance between the deadline requirement and the diversity of
the collected pieces; e.g., for large p’s, each peer can have
a more chance to acquire pieces before their deadline, and
for small p’s, each peer can acquire rare pieces which would
become a bottleneck in the future.

4. Proposed Scheme

4.1 System Architecture

Similar to BASS, our system architecture consists of a
tracker, a media server, and a collection of peers connected
by a P2P network. The role of the tracker is the same as the
original BitTorrent. The role of the media server is to store

UEDERA and FUJITA: ADAPTIVE PREFETCHING SCHEME FOR PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS WITH A MEDIA SERVER
2365

all video files, and to upload those files upon request. The
configuration of the network is controlled by the tracker.

After joining the network, each peer starts the down-
load of a requested file by repeatedly exchanging pieces
among adjacent peers. Each peer can also download pieces
directly from the media server so as to meet the deadline,
i.e., when it recognizes that the remaining time before its
playback becomes as short as the estimated download time
from the media server, each peer directly asks the media
server to deliver that piece, where the download time is esti-
manted by dividing the size of pieces by the download band-
width.

Note that such a way of estimation merely gives a lower
bound on the download time since it would significantly in-
crease if a large number of peers wish to download pieces
from the media server at the same time (as will be described
later, the objective of our proposed scheme is to bound the
number of such requests to the media server as low as possi-
ble). In fact, the media server becomes a bottleneck if it re-
ceives a number of requests in a short time period, and such
a situation frequently occurs if there are only few copies
of each piece in the network. In many VoD systems such
as YouTube, we cannot avoid such a situation since it pro-
vides a large number of “unpopular” videos each of which is
shared by a small number of peers. Although such a concen-
tration of the load to the media server could be alleviated by
the piece selection rule adopted in BiToS, it is not enough in
many cases.

4.2 Missing Piece Request

The first technique used in our proposed scheme is to con-
duct a “prefetch” of missing pieces from the media server,
where a missing piece is a piece which is not held by any
peer in the network (note that it is different from the notion
of rarest pieces used in the Rarest First policy, since a piece
selected under the policy should exist in the network). In the
following, we call such a request for a missing piece miss-
ing piece request (MPR, for short). The performance of such
a prefetching scheme is significantly affected by the timing
and the frequency of MPRs issued by each peer, in addition
to the selection of pieces to be requested. We are going to
design our scheme in such a way that each peer issues an
MPR only when there are no pieces which can be down-
loaded from the adjacent peers. Note that it is different from
a simple deadline driven scheme, since in our scheme, each
peer can issue an MPR even if the deadline for unacquired
pieces is not critical. In addition, we design the scheme such
that an MPR is issued only for those pieces included in its
high priority set, where the definition of the high priority set
is the same as the definition used in BiToS, and that if there
are several candidates, it selects a random piece to avoid a
collision with MPRs issued by the other peers.

A key point in this approach is how to estimate miss-
ing pieces in the network. Although such an information
could be acquired by aggregating the piece availability of
all peers to the media server, it causes an extra load to the

media server. On the other hand, if the acquired informa-
tion is not accurate, and many of identified pieces could be
acquired through the local communication among nearby
peers, it would also unnecessarily increase the load of the
media server. In the proposed scheme, each peer periodi-
cally collects the piece availability of nearby peers by flood-
ing a query with an appropriate TTL. Each query con-
tains the peer ID, IP address, and the port number of the
requester, as well as a TTL and a sequence number repre-
senting the number of queries having been issued by the
requester, which will be used to reduce the number of re-
sponses to the same requester. More concretely, each peer
returns a response to a query only when the sequence num-
ber of the query is greater than the largest sequence number
of queries received from the same requester.

In the original BitTorrent protocol, the notion of local
piece availability (LPA) is used to identify a set of rarest
pieces, where the LPA of a peer is an accumulated value
of the piece availability in its adjacent peers. In this paper,
in order to estimate a set of missing pieces as accurately
as possible, a new notion of piece availability called chain
piece availability (CPA) is introduced. The CPA of a peer
is a bit array representing the piece availability in a region
centered at the peer. It is initialized by using the LPA of
the corresponding peer, in such a way that an element in
the CPA takes value 1 if and only if the corresponding el-
ement in the LPA takes a positive value, and is propagated
through the network by conducting an issue of queries in
a “chain-reaction” manner. More concretely, each peer re-
peatedly issues a query requesting for CPAs, and after re-
ceiving CPAs from nearby peers (within a given TTL) as
the query-response, each peer updates its CPA, such that:
1) to take a bit-wise OR of its own CPA and received CPAs,
and 2) to replace the CPA by the outcome of the operation.
After calculating the array, each peer recognizes that pieces
whose value of the CPA are 0 are missing pieces. Finally, in
order to reflect the removal of pieces to the CPA, each peer
periodically refreshes the CPA.

4.3 Switching MPR

The second technique developed in the proposed scheme is
to switch the mode of peers according to the estimated size
of the P2P network. In the following, we call such a mode
switch switching MPR (SMPR, for short). Direct download
of missing pieces from the media server works effectively
when the number of peers is relatively small. However, as
will be shown in Sect. 5, the performance of the scheme
gradually degrades as increasing the number of peers in the
network, while the cost of MPRs increases in proportion to
the number of peers. A reason of such phenomena is that
an increase of the number of non-adjacent peers makes it
difficult to accurately estimate the set of missing pieces in
the network, and the number of missing pieces decreases
as increasing the number of peers, since for each piece, the
possibility of being held by at least one peer should increase.

We overcome such problem by conducting SMPRs.

2366
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Let N be a local variable representing the estimated number
of peers in the network. In the scheme, each peer switches
its mode by the value of N; i.e., if it is smaller than a prede-
termined threshold, it switches to the Small Network mode,
and issues queries requesting for CPAs and MPRs accord-
ing to the policy described in the last subsection; otherwise,
it switches to the Large Network mode, and stops to issue
queries and MPRs, where it returns the LPA instead of the
CPA if it receives a query requesting for a CPA (the im-
pact of the threshold to the performance will be evaluated
in Sect. 5). The value of N is updated at each time of re-
questing a set of peers to the tracker, where in the BitTor-
rent protocol, each peer should periodically acquire such a
list of peers from the tracker. A concrete way of estimating
the value of N from the response received from the tracker
is given in the next subsection.

4.4 Distributed Estimation of Network Size

Finally, we describe a procedure to estimate the size of the
given network which is locally executed by each peer. The
procedure is based on a random sampling. Let Γ(i) denote
the set of adjacent peers of peer i, and N∗ denote the number
of peers currently participating in the system (note that the
value of N∗ is not disclosed to each peer). Suppose that the
tracker returns a set of peers S as a response to the request
from peer i. For simplicity, we fix the cardinalities of Γ(i)
and S to a constant. Let Y denote a random variable repre-
senting the cardinality of set Γ(i) ∩ S . If each element in S
is selected randomly, for each element in Γ(i), the probabil-
ity that the element is selected as an element in S is 1/N∗.
Thus, by the linearity of expectation, the expected value of
Y is |S |×|Γ(i)|N∗ , which means that N∗ is calculated as in the fol-
lowing formula:

N∗ :=
|S | × |Γ(i)|

E[Y]
.

In the above formula, E[Y] can be approximated by repeat-
ing the calculation of Γ(i)∩S for different S (and Γ(i)), pro-
vided that the size of the network does not change.

5. Evaluation

5.1 Setup

We evaluate the performance of the proposed scheme by
simulation with respect to the following metrics: 1) the to-
tal amount of pieces Us [Mb] uploaded by the media server,
2) the average wait time W [s] of peers caused by suspend-
ing of a video play, and 3) the total number of queries Q
exchanged among all peers. Each result is an average over
20 runs. To exclude possible ambiguity, we call a method
issuing MPRs the “MPR method,” and a method conducting
SMPRs the “SMPR method.” The performance of these two
methods are compared with a method in which no peer is-
sues an MPR (we call it the “Normal method”). In all meth-
ods, we assume that pieces downloaded from its adjacent

peers are selected according to the same rule to BiToS.
Parameters used in the simulation are determined as

follows. In each run of the simulation, The total num-
ber of peers arriving at the system is selected from {100,
101, . . . , 300}. All peers are homogeneous, and each peer
can maintain at most 30 connections to the other peers.
Communication bandwidth of each peer is 1024 [Kbps] in
each of upload/download directions, and the communica-
tion bandwidth of the media server is 30 [Mbps]. The ratio
of the high priority pieces used in BiToS is 8% of the entire
pieces as is recommended in [9], and the probability p of
selecting the high priority set is 0.8 as in [9]. The interval of
requesting a list of peers to the tracker and the interval for
SMPRs are both fixed to 15 [s], and the propagation speed
of queries used in calculating CPAs is 1 [hop/s].

We assume that the system contains exactly one
video file of length 600 [s], with the playback bit-rate of
512 [Kbps]. As for the behavior of the peers, we con-
sider the following scenario: All pieces are held by the me-
dia server. Each peer arrives at the system according to a
Poisson distribution with average arrival interval t [s], where
initially, a newly arrived peer has no pieces. Upon arrival,
it downloads one random piece from the media server. The
piece exchange among peers and the play of the video will
start immediately after completing the download of the first
piece from the media server, and the playback continues un-
til it reaches the end of the file. Finally, a peer leaves the
system as soon as it completes the playback.

5.2 Tuning of Parameters in the MPR Method

At first, we conduct preliminary experiments to determine
the TTL and the interval of query issues used in the pro-
posed scheme. In the simulation, we consider an extreme
case such that 300 peers arrive at the system with t = 0
(i.e., simultaneously), since the impact of MPRs to the per-
formance of the scheme is maximized in such a bursty sit-
uation. In fact, under such a situation, playback positions
of peers are close to each other so that missing pieces cause
bursty requests to the media server provided that MPRs are
not used.

Figure 3 summarizes the results. In this figure,
“TTL=0” indicates that each peer estimates missing pieces
merely by referring to its own LPA. As shown in Fig. 3 (a),
the total amount of pieces Us uploaded by the media server
increases as increasing the time interval, while there is no
significant difference among three positive TTLs. A similar
phenomenon could be observed for the average wait time W
as shown in Fig. 3 (b), which indicates that a heavy load of
the media server causes a suspending of the video play. In
contrast, as shown in Fig. 3 (c), the total number of queries
Q rapidly increases as decreasing the time interval particu-
larly when the TTL is large.

Such a behavior of the scheme is due to the accuracy
of the estimation of missing pieces. Recall that a long time
interval implies that peers should use an old availability in-
formation, although it could provide an accurate information

UEDERA and FUJITA: ADAPTIVE PREFETCHING SCHEME FOR PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS WITH A MEDIA SERVER
2367

(a) Total amount of pieces Us uploaded by the media server.

(b) Average wait time W.

(c) Total number of queries Q.

Fig. 3 Performance of the MPR method (300 peers).

Fig. 4 Hit rate of MPRs for the MPR method (300 peers).

about missing pieces compared with simple LPA. To clarify
this point, we evaluated the hit rate of the scheme which is
defined as the ratio of the number of (actual) missing pieces
to the total number of MPRs issued by all peers. Figure 4

(a) Total amount of pieces Us uploaded by the media server.

(b) Average wait time W.

(c) Total number of queries Q.

Fig. 5 Performance of the SMPR method.

shows the result. We can observe that the hit rate rapidly de-
creases as increasing the time interval, and that there is no
significant difference among positive TTLs; i.e., it is enough
to use a small TTL to attain a hit rate around 0.7 provided
that the time interval is sufficiently small.

According to the above observations, in the following
experiments, we fix the TTL of each query to one, and the
time interval to 15 [s].

5.3 Tuning of Threshold in the SMPR Method

Next, we conduct experiments to determine the threshold
used in the SMPR method. We select the total number of
peers arriving at the system from 100, 200, or 300, and eval-
uate the performance by varying the threshold from 0 to 320.
All peers are assumed to arrive at the system simultaneously,
for the same reason to the previous simulation.

Figure 5 summarizes the results. As shown in Fig. 5 (a),

2368
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

when the number of peers is 100, the total amount of pieces
Us uploaded by the media server dramatically reduces by
setting the threshold to 40 or larger; i.e., MPRs significantly
reduce the load of the media server since there are many
missing pieces in such small networks. On the other hand,
when the number of peers becomes large, Us increases by
setting the threshold to 90 or larger; i.e., MPRs cause an
extra server load because of an inaccuracy of the estimation
of missing pieces. A similar effect could be observed for the
average wait time W, as shown in Fig. 5 (b).

The total number of queries Q increases as increasing
the threshold as shown in Fig. 5 (c), which is apparently due
to an increase of the number of peers in the Small Network
mode which repeatedly issue a query to their nearby peers.
In fact, when the threshold is smaller than 150, a network
consisting of 100 peers exchanges more messages than a
network consisting of 300 peers, since there are a larger
number of peers in the Small Network mode in such small
networks. In contrast, when the threshold becomes large,
a small network exchanges less number of messages since
it contains smaller number of peers in the Small Network
mode compared with a large network.

According to the above observations, in the following
experiments, we fix the threshold to 70.

5.4 Comparison of Three Methods

Next, we compare the performance of two proposed meth-
ods with the Normal method by varying the average arrival
interval t from 0 to 20 [s]. In the simulation, we assume
that 100 peers are sequentially arriving at the system with a
designated time interval.

Figure 6 summarizes the results. As shown in Fig. 6 (a),
when t ≤ 1, two proposed methods significantly reduce the
total amount of pieces Us uploaded by the media server in
the Normal method, e.g., the SMPR method reduces the
amount by more than 39% of the Normal method. On the
other hand, when t ≥ 2, all methods could bound Us because
of the variance of the arrival time. A similar phenomenon
could be observed for the wait time W as shown in Fig. 6 (b);
e.g., when t ≤ 1, the SMPR method reduces W of the Nor-
mal method by 8%. Figure 6 (c) shows the result for the to-
tal number of queries Q. Although Q in the SMPR method
is bounded small for small t’s, it should exchange as large
number of queries as the MPR method for large t’s, which
is because the number of peers participating in the network
becomes small for large t’s, i.e., most of peers are in the
Small Network mode in such cases.

Finally, we examine the relationship between Us and W
of the three methods by varying the communication band-
width of the media server from 10 to 160 [Mbps] and by
plotting Us with its corresponding W for each setting. In the
simulation, we assume that 200 peers are sequentially arriv-
ing at the system with t = 1. Figure 7 (a) shows the result.
Note that a point with larger W corresponds to the result
with a narrower bandwidth of the media server, as shown in
Fig. 7 (b). In this setting, the arrival of peers is bursty and

(a) Total amount of pieces Us uploaded by the media server.

(b) Average wait time W.

(c) Total number of queries Q.

Fig. 6 Comparison of three methods with different average arrival
interval t.

the existence of missing pieces is critical. Thus the Nor-
mal method should download many pieces from the media
server to ensure small W; i.e., Us is severely affected by W.
On the other hand, two proposed methods can prevent the
media server from receiving bursty requests by conducting
a prefetching and a pre-propagation of missing pieces. Then
Us does not grow large even for small W’s and is not affected
significantly by W.

We can also observe from Fig. 7 (a) that when W is
large, the fluctuation of Us becomes small. Recall that a
point with large W corresponds to a narrow bandwidth of
the media server, i.e., it becomes a bottleneck and fully uses
its bandwidth at any time. Under such conditions, Us is pro-
portional to the bandwidth of the media server, and lightly
affected by a small difference of the bandwidth, while W

UEDERA and FUJITA: ADAPTIVE PREFETCHING SCHEME FOR PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS WITH A MEDIA SERVER
2369

(a) Total amount of pieces Us uploaded by the media server as average
wait time W of peers.

(b) Average wait time W of peers as communication bandwidth of the
media server.

Fig. 7 Comparison of three methods with different communication
bandwidth of the media server.

is heavily affected by the difference, since the difference
largely affects the propagation of pieces. Furthermore, when
the bandwidth of the media server is narrow, extra MPRs
significantly affect W by consuming the bandwidth, thus the
performance of the MPR method degrades in such condi-
tions. In contrast, the SMPR method exhibits a good perfor-
mance even in such severe situations, since it controls the
amount of MPRs by the mode switching.

6. Concluding Remarks

In this paper, we propose a data prefetching scheme for P2P
VoDs with a media server. The first idea of the scheme is
to directly request missing pieces to the media server by es-
timating the set of missing pieces as accurately as possible,
and the second idea is to switch the mode of each peer in
such a way that the request for the missing pieces is issued
only when the estimated size of the network is sufficiently
small. The result of simulations indicates that the proposed
scheme reduces the load of the media server by 39% when
the arrival of peers is bursty, compared with a scheme with-
out prefetching.

A future work is to refine the notion of CPA to im-
prove the accuracy of the estimation of the set of missing
pieces. In addition, we should evaluate the performance of
the scheme under peer churn.

References

[1] YouTube. http://www.youtube.com/
[2] USTREAM. http://www.ustream.tv/
[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,

and A. Singh, “SplitStream: High-bandwidth multicast in coopera-
tive environments,” Proc. Nineteenth ACM Symposium on Operat-
ing Systems Principles, pp.298–313, 2003.

[4] Y.-H. Chu, S.G. Rao, S. Seshan, and H. Zhang, “A case for end
system multicast,” Proc. ACM SIGMETRICS, pp.1–12, 2002.

[5] B. Cohen, “Incentives build robustness in BitTorrent,” Proc. 1st
Workshop on Economics of Peer-to-Peer Systems, 2003.

[6] C. Dana, D. Li, D. Harrison, and C.-N. Chuah, “BASS: BitTorrent
assisted streaming system for video-on-demand,” Proc. International
Workshop on Multimedia Signal Processing, pp.1–4, 2005.

[7] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-peer
patching scheme for VoD service,” Proc. 12th Int. Conf. World Wide
Web, pp.301–309, 2003.

[8] S. Sakashita, T. Yoshihisa, T. Hara, and S. Nishio, “A data reception
method to reduce interruption time in P2P streaming environments,”
Proc. 13th Int. Conf. Netw.-Based Inf. Syst., pp.166–172, 2010.

[9] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for supporting streaming applications,” Proc. 25th IEEE
Int. Conf. Comput. Commun., pp.1–6, 2006.

[10] X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “CoolStreaming/DONet:
A data-driven overlay network for peer-to-peer live media stream-
ing,” Proc. 24th Annual Joint Conference of the IEEE Comput. and
Commun. Societies, pp.2102–2111, 2005.

[11] Y. Zhou, D.-M. Chiu, and J.-C. Lui, “A simple model for analyzing
P2P streaming protocols,” Proc. IEEE Int. Conf. Netw. Protocols,
pp.226–235, 2007.

Ryusuke Uedera received the B.E. degree in
information engineering, from Hiroshima Uni-
versity in 2010. He is a Master Student at
the Graduate School of Engineering, Hiroshima
University. His research interests include peer-
to-peer networks and distributed systems.

Satoshi Fujita received the B.E. degree in
electrical engineering, M.E. degree in systems
engineering, and Dr.E. degree in information en-
gineering from Hiroshima University in 1985,
1987, and 1990, respectively. He is a Profes-
sor at Faculty of Engineering, Hiroshima Uni-
versity. His research interests include communi-
cation algorithms on interconnection networks,
parallel algorithms, graph algorithms, and par-
allel and distributed computer systems. He is a
member of the Information Processing Society

of Japan, SIAM Japan, IEEE, and SIAM.

