
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2389

LETTER Special Section on Parallel and Distributed Computing and Networking

Minimum-Energy Semi-Static Scheduling of a Periodic Real-Time
Task on DVFS-Enabled Multi-Core Processors∗

Wan Yeon LEE†a), Hyogon KIM††, Nonmembers, and Heejo LEE††, Member

SUMMARY The proposed scheduling scheme minimizes the energy
consumption of a real-time task on the multi-core processor with the dy-
namic voltage and frequency scaling capability. The scheme allocates a
pertinent number of cores to the task execution, inactivates unused cores,
and assigns the lowest frequency meeting the deadline. For a periodic real-
time task with consecutive real-time instances, the scheme prepares the
minimum-energy solutions for all input cases at off-line time, and applies
one of the prepared solutions to each real-time instance at runtime.
key words: scheduling, real-time task, multi-core, energy, DVFS

1. Introduction

The limited battery life of mobile devices becomes a burning
issue. In the dynamic voltage and frequency scaling (DVFS)
mechanism, the processor speed is proportional to the sup-
plied clock frequency and its energy consumption is pro-
portional to a polynomial function of the clock frequency.
In order to reduce the energy consumption, state-of-the-art
scheduling schemes decrease the supplied clock frequency
to the lower bound meeting all deadlines of given real-
time tasks. While the energy-efficient real-time schedul-
ing scheme on the multi-core platform has been intensively
investigated for many real-time tasks [1]–[6], it has been
rarely considered for a single real-time task due to overabun-
dant hardware platform of the multi-core processor.

Allocating multiple cores to parallel processing of a
real-time task whilst lowering the supplied clock frequency
can open a rich possibility of reducing the energy consump-
tion. Unfortunately, allocating all available cores to the ex-
ecution does not directly result in the minimum energy con-
sumption due to two main reasons; One is the non-linear
speedup of parallel processing with regard to the number
of allocated cores [7]. The other is the irregular energy
consumptions of discretely available frequencies in real-life
DVFS-enabled processors [3]. In this paper, we propose a
scheduling scheme that minimizes the energy consumption
of a real-time task by fully exploiting both the parallel pro-
cessing on multiple cores and the DVFS capability. Con-
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sidering the non-linear scaling property of parallel process-
ing and the irregular energy consumptions of discrete fre-
quencies, the proposed scheme allocates a pertinent number
of cores to the task execution, inactivates the other unused
cores, and assigns the lowest frequency meeting the dead-
line. If the lowest frequency is not one of the available dis-
crete frequencies, it is virtually generated with a combined
use of two adjacent discrete frequencies.

The proposed scheme works in a semi-static manner
for a periodic real-time task with consecutive real-time in-
stances; At off-line time, the scheme prepares the minimum-
energy schedules for all input cases. When calculating the
minimum-energy schedule, the scheme takes into account
the extra energy required to activate/inactivate cores. At run-
time, the scheme applies one of the prepared schedules to
each real-time instance in accordance with the task’s input.
Evaluation results show that the scheme saves significant en-
ergy of the previous method that executes the task on a sin-
gle core while inactivating the other cores, up to 60% energy
consumption of the processing cores. In this paper, the pro-
posed scheme is applied to a real-time video stream running
long on the DVFS-enabled multi-core platform, as the video
stream represents the most popular and energy-demanding
application for current and future mobile devices. Note that
the proposed scheme is applicable to other long-lived peri-
odic real-time tasks as well as the video stream.

Numerous approaches have been suggested to save en-
ergy of multi-core processors with the DVFS capability. Ex-
cept a few recent schemes [8], [9], all of the existing ap-
proaches [1]–[6]∗∗ considered only the case that the num-
ber of running real-time tasks is larger than that of available
processing cores, but not the opposite case (the number of
running real-time tasks is smaller than that of processing
cores). Only two off-line scheduling methods [8], [9] ex-
ploited overabundant processing units of multi-core proces-
sors for the energy-saving parallel processing. These two
off-line methods require the runtime information of each
real-time task in advance and search for a near minimum-
energy schedule, instead of the minimum-energy schedule,
due to enormous search space of consecutive real-time tasks
with different inputs. In contrast, the main benefit of the
proposed scheme is to rapidly find the minimum-energy so-
lutions of all input cases without any runtime information

∗∗Six studies frequently cited are selected among numerous
energy-efficient scheduling schemes with the DVFS capability on
the multi-core platform.
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and store them with a low memory overhead. In accor-
dance with the task’s input information obtained at runtime,
one of the minimum-energy solutions found at off-line time
is applied to each real-time task. Moreover, the proposed
scheme is designed to operate over discretely available fre-
quencies with their arbitrary energy consumptions and con-
siders the energy overhead for activating/inactivating cores,
whereas the previous methods are designed over infinitely
continuous frequencies with an enforced energy consump-
tion formula [1], [2], [4]–[6], [8] and do not consider the en-
ergy overhead for activating/inactivating cores [5], [6], [8],
[9].

2. System Model and Problem Definition

There are N homogeneous processing cores available in the
processor. An identical clock frequency is supplied to all
activated cores. Core running speed is proportional to the
supplied clock frequency. Available clock frequencies are
finite and discrete. Available K discrete frequencies are de-
noted as f1, · · · , fK in increasing order. For each fi where
1 ≤ i ≤ K, the power consumption is denoted as pi. Then
the energy consumption and execution time of each cycle
are pi

fi
and 1

fi
, respectively. If fi < f j, then pi < p j. The

power consumption in the idle status, i.e., leakage power
consumption, is denoted as p0. For convenience, we addi-
tionally define a virtual frequency of the idle status as f0,
and set its value to zero because its running speed is seman-
tically equivalent to zero. Unused cores can change their
state into the dormant mode (inactivated mode) [6].

A video stream consists of consecutive real-time tasks,
i.e., image frames that periodically arrive from the network.
The considered system delays a little the execution of an
arriving task and buffers it temporarily in order to reduce
jitter. The scheduler can then measure the input amounts
of the buffered tasks, but not those of un-arrived tasks. The
buffered task must be executed within the task arrival period,
i.e., the deadline. Each image frame task requires the video
decoding operation. The considered system reads ahead the
next instruction/data block and thereby hides the memory
access latency for a fast video decoding operation. Then the
video decoding operation is rarely interrupted by the mem-
ory accesses and becomes seriously computation-intensive.
The massive decoding computations of image frames can
be partitioned into multiple independent subtasks, e.g., dis-
joint partitions of an image frame and separate groups of the
image frames [7], and can be executed in parallel on multi-
ple cores. The parallel processing speedup is approximately
proportional to the number of allocated cores, but usually
smaller than the number of the allocated cores due to ineffi-
ciency factors, such as extra communications between sub-
tasks and unbalanced completion of subtasks. The parallel
processing speedup on n cores is denoted as S [n]. In the
considered system, the speedup values are obtained empiri-
cally and their worst-case speedup is used for safety.

The problem tackled in this article is to minimize the
total energy consumption of the processing cores executing

a real-time task while meeting the deadline D on N homo-
geneous cores. If n cores are allocated to the task execu-
tion, the other (N − n) cores are inactivated to save energy.
The task has Ctot computation cycles that must be completed
within the deadline D. When the Ctot computation cycles are
executed in parallel on n cores with a speedup of S [n], they
can be completed within at most � Ctot

S [n] � cycles. The compu-
tation amount Ctot, the deadline D, and the speedup values
S [n] for 1 ≤ n ≤ N are given to the scheduler. A schedule is
referred to as n-feasible if it allocates n cores and completes
the task within the deadline D. An n-feasible schedule is
called n-Optimal Schedule if it consumes the minimal en-
ergy among all n-feasible schedules.

3. Proposed Scheduling Scheme

The scheme first excludes the energy-inefficient frequency
fy such that py−px

fy− fx
>

pz−py

fz− fy
for some fx < fy < fz. Based

on the following Lemma 1, the energy-inefficient frequency
is discarded henceforth. Calculating pk−pk−1

fk− fk−1
> pk+1−pk

fk+1− fk
for

1 < k < K can select all energy-inefficient frequencies.

Lemma 1: If py−px

fy− fx
>

pz−py

fz− fy
for some fx < fy < fz, any

n-Optimal Schedule does not use fy.

proof: See our preliminary study [10]. �

Next, the scheme prepares the minimum-energy sched-
ules for all values of Ctot. It finds each n-Optimal Schedule
for all Ctots. Among the found n-Optimal Schedules, it se-
lects the best n-Optimal Schedule with the least energy con-
sumption for the individual value of Ctot. The n-Optimal
Schedule is found as follows; It chooses a frequency fm that
is nearest to and no smaller than

⌈
Ctot

S [n]

⌉
· 1

D from f1, · · · , fK .

If
⌈

Ctot

S [n]

⌉
· 1

fm
= D, the scheme assigns fm to the Ctot cycles.

In case of
⌈

Ctot

S [n]

⌉
· 1

fm
< D, the scheme assigns fm and fm−1.

To find the transition point C
′
between fm and fm−1, it solves

an equation C
′

fm
+

⌈
Ctot

S [n]

⌉
−C
′

fm−1
= D. Then

C
′
=

fm ·
(⌈

Ctot

S [n]

⌉
− D · fm−1

)
fm − fm−1

. (1)

The following Theorem 1 verifies that the n-Optimal Sched-
ule assigns fm to �C′ � cycles and fm−1 to the remaining(⌈

Ctot

S [n]

⌉
− �C′ �

)
cycles.

Theorem 1: The n-Optimal Schedule assigns fm to �C′ �
cycles and fm−1 to

(⌈
Ctot

S [n]

⌉
− �C′ �

)
cycles.

proof: See our preliminary study [10]. �

In the n-Optimal Schedule, the energy consumption
of each activated core for the time D is

(
C
′ · pm

fm
+(⌈

Ctot

S [n]

⌉
−C

′) · pm−1

fm−1

)
. Its average power consumption (aver-

age energy consumption rate) for the time D is
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C
′ · pm

fm
+

(⌈
Ctot

S [n]

⌉
−C

′) · pm−1

fm−1

D

� pm−1 +
pm − pm−1

fm − fm−1
·
(⌈

Ctot

S [n]

⌉
· 1

D
− fm−1

)
.

(2)

The value of � Ctot

S [n] � · 1
D determines fm, C

′
and the power con-

sumption of the n-Optimal Schedule.
The normalized value of

⌈
Ctot

S [n]

⌉
· 1

D to the maximum fre-

quency,
⌈

Ctot

S [n]

⌉
· 1

D· fK
, is referred to as Core Load and denoted

as Ln. Also, the ratio of the completion time of a task under
the maximum frequency to the deadline, Ctot

D· fK
, is referred to

as Task Utilization and denoted as U. Because Ln =
U

S [n] ,
Ln = U if n = 1. As n increases, Ln becomes much smaller
than U. Then the average power consumption of each acti-
vated core in the n-Optimal Schedule can be formulated as
a function P(Ln) because it is determined by the value of Ln.
From Eq. (2), P(Ln) is⎧⎪⎪⎪⎨⎪⎪⎪⎩

pi if Ln =
fi
fK

pi +
pi+1−pi
fi+1
fK
− fi

fK

· (Ln − fi) if fi
fK
< Ln <

fi+1

fK

which is a convex and piece-wise linear function. If Ln >
1, no schedule can complete this task before the dead-
line. Exploiting the P(Ln) function, we can readily calcu-
late the mean power consumption of each n-Optimal Sched-
ule. When energy overhead for activating and inactivating
cores is not considered, the number of activated cores in the
minimum-energy schedule is determined as

min
1≤n≤N

{ P(Ln) · n · D + pdor · (N − n) · D } (3)

where pdor is the power consumption in the dormant mode.
Now, let us consider the extra energy for activating and

inactivating cores. The extra energy, denoted as Δ, depends
on the number of currently activated cores. When the num-
ber of currently activated cores is Nact, the extra energy re-
quired for the n-Optimal Schedule is calculated as

Δ =

{
Eact · (n − Nact) if n > Nact

Eina · (Nact − n) otherwise,

where Eact and Eina are the activating and the inactivating
energies of a core, respectively. Then Eq. (3) is replaced
with the following formula:

Fig. 1 Evaluation model: (a) DVFS processor, (b) speedup of parallel processing and (c) video stream.

min
1≤n≤N

{ P(Ln) · n · D + pdor · (N − n) · D + Δ }. (4)

The solution to Eq. (4) depends on Ln =
U

S [n] and Nact.
For each Nact, the scheme separately derives and man-

ages the solution to Eq. (4). Given a fixed Nact, the scheme
finds all n-Optimal Schedules for 0 ≤ Ln ≤ 1 (or 0 ≤
U ≤ 1). In order to obtain each n-Optimal Schedule, at
most (K + 1) input values of Ln, i.e., f0

fK
, · · · , fK

fK
, are calcu-

lated. It is unnecessary to calculate the rest of the Ln values
because P(Ln) is a linear function where fi

fK
< Ln <

fi+1

fK
.

The scheme compares the energy consumptions of all the n-
Optimal Schedules with regard to U = Ln · S [n] and selects
the best n-Optimal Schedule with the least energy consump-
tion. The selected minimum-energy schedule is a piece-wise
linear function of U because all the n-Optimal Schedules are
piece-wise linear functions of U. In a linear range, the n and
fm values of the minimum-energy schedule are fixed, yet
the C

′
value varies in accordance with U. The scheme cal-

culates the start and end U values of the linear range and
stores its corresponding n and fm values into a single range
bin of U. This procedure is performed separately for each
Nact. A working example will be given in the next section.

If we know only the n and fm values of the minimum-
energy schedule, we can calculate the transition point C

′

with a given U = Ctot

D· fK
by using Eq. (1), and automatically

generate the schedule assigning fm to �C′ � cycles and fm−1 to(⌈
Ctot

S [n]

⌉
− �C′ �

)
cycles. At runtime, one of the pre-computed

schedules is applied to each real-time task dynamically ar-
riving, in accordance with the given U and Nact.

4. Evaluation

The proposed scheme is compared with the previous method
that executes a task on a single core [1]–[6]. For the sake
of fairness, we assume that the previous method also inac-
tivates unused cores and generates the 1-Optimal Schedule
with a combined use of two discrete frequencies, although
it did not actually consider inactivating unused cores and
was designed over infinitely continuous frequencies. Fig-
ure 1 shows the evaluation model. Figure 1 (a) shows five
available frequencies and their power consumptions (energy
consumption rates) obtained from a well-known DVFS pro-
cessor, the Intel XScale [3]. The values of p0, pdor, Eact and
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Fig. 2 (a) n-Optimal Schedules and (b) the number of cores allocated to
the best schedule.

Eina are set on the basis of 50 nm or 70 nm CMOS technol-
ogy [6], [11]; p0 is 44% of p1, pdor is 3% of p0, Eact is 64 mJ
and Eina is 36 µJ. Figure 1 (b) shows four speedup models of
parallel processing speedups. Mpeg-heavy and Mpeg-light
speedup models are drawn from the parallel MPEG-2 video
task on the Silicon Graphics Challenge multiprocessor [7].
Mpeg-heavy and Mpeg-light are the results of 1408 × 960
and 352×240 resolution video tasks, respectively. Sublinear
and Square-root speedup models are synthetically generated
to represent lower parallel processing speedup. Sublinear
speedup is set with S [n] = (n − 1) × 0.5 + 1. Square-root
speedup is set with S [n] =

√
n for n ≥ 1. N is set to 8.

Figure 1 (c) shows the Group of Pictures (GoP) sizes of a
video stream applied to our evaluation. The video stream is
the encoded image frames of captured real-life scenes. Each
GoP is generated for a second. Scheduler is invoked per a
second and provides a schedule for each GoP in the buffer,
where the deadline of each GoP is one second. The U value
of a GoP with 35,000 bytes is set to 1.

Figure 2 (a) shows the energy consumptions of n-
Optimal Schedules for the XScale DVFS processor, where
Nact = 1 and Mpeg-heavy speedup is used. The n-Optimal
Schedules only when n ≤ 4 are displayed, because those
when n > 4 have larger energy consumption. As the
best schedule, the scheduler selects the 1-Optimal Sched-
ule where 0 ≤ U ≤ 0.52, the 2-Optimal Schedule where
0.52 < U ≤ 0.86, and the 3-Optimal Schedule where
0.86 < U ≤ 1. Their n and fm values are stored into seven
range bins of U: {1, f1} in

(
f0
f5
, f1

f5

]
, {1, f2} in

(
f1
f5
, f2

f5

]
,

{1, f3} in
(

f2
f5
, 0.52

]
, {2, f2} in

(
0.52, f1

f5
· S [2]

]
, {2, f3} in(

f1
f5
· S [2], 0.86

]
, and {3, f2} in ( 0.86, 1.0 ]. Figure 2 (b)

shows the number of cores allocated to the minimum-energy
schedule versus Task Utilization U. ‘N(act)’ denotes Nact.
‘w/o overhead’ denotes the result when neglecting the ex-
tra energy for activating and inactivating cores. Figure 2 (b)
shows that the extra energy affects the decision on the best
schedule.

Figure 3 shows the total energy consumptions of the
video stream when the four speedup models shown in
Fig. 1 (b) are used separately. ‘Previous’ denotes the result
of the previous method, and ‘Proposed with Overhead’ de-

Fig. 3 Energy consumptions against four speedup models.

notes that of the proposed scheme. The proposed scheme
saves more energy of the previous method for higher parallel
processing speedup. The energy saving ratios over the pre-
vious method are about are 60% for Mpeg-heavy, 58% for
Mpeg-light, 42% for Sublinear, and 24% for Square-root.
‘Proposed w/o Overhead’ denotes the energy consumption
of the proposed scheme when neglecting the extra energy for
activating and inactivating cores, i.e., using Eq. (3) instead
of Eq. (4). The energy consumption of ‘Proposed w/o Over-
head’ is slightly larger than that of ‘Proposed with Over-
head’ by about 4% increase on average.
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