
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2431

PAPER

Conflict-Based Checking the Integrity of Linux Package
Dependencies

Yuqing LAN†, Member, Mingxia KUANG†a), and Wenbin ZHOU†, Nonmembers

SUMMARY A Linux operating system release is composed of a large
number of software packages, with complex dependencies. The manage-
ment of dependency relationship is the foundation of building and main-
taining a Linux operating system release, and checking the integrity of the
dependencies is the key of the dependency management. The widespread
adoption of Linux operating systems in many areas of the information tech-
nology society has drawn the attention on the issues regarding how to check
the integrity of complexity dependencies of Linux packages and how to
manage a huge number of packages in a consistent and effective way. Linux
distributions have already provided the tools for managing the tasks of in-
stalling, removing and upgrading the packages they were made of. A num-
ber of tools have been provided to handle these tasks on the client side.
However, there is a lack of tools that could help the distribution editors to
maintain the integrity of Linux package dependencies on the server side. In
this paper we present a method based on conflict to check the integrity of
Linux package dependencies. From the perspective of conflict, this method
achieves the goal to check the integrity of package dependencies on the
server side by removing the conflict associating with the packages. Our
contribution provides an effective and automatic way to support distribu-
tion editors in handling those issues. Experiments using this method are
very successful in checking the integrity of package dependencies in Linux
software distributions.
key words: Linux package dependency, conflict, software distribution, in-
tegrity of dependencies

1. Introduction

With the widespread adoption of open source software [1] in
all areas of society, the integrity of operating systems based
on open source software has become the main direction of
the Linux operating system development. Open source soft-
ware is very often developed in a public, collaborative man-
ner. The source code and certain other rights normally re-
served for copyright holders are provided under a software
license [2] that permits users to study, change, improve and
at times also to distribute the software. These make the in-
teroperability more frequently among open source software.
With the increasing size of open source software, the de-
pendency relationships among open source software pack-
ages become increasingly complex. The integrity of pack-
age dependency is the basis of keeping software and systems
running reliably and stably. How to handle a large number
of complex dependencies among packages has become the
main challenges that maintaining the integrated system sta-
bility and the distribution of software packages.

As a result of the open source movement, Linux is no-

Manuscript received May 9, 2011.
Manuscript revised August 15, 2011.
†The authors are with Beihang University, 100191, China.

a) E-mail: kuangmingxia@cse.buaa.edu.cn
DOI: 10.1587/transinf.E94.D.2431

tonly being gradually understood and used widely by more
and more people, but also being popularly used in com-
mercial applications and becoming one of the mainstream
operating systems. As a general operating system, Linux
with rich functions can support various major hardware and
network, and provide complete applications development
and runtime environment. With the development of open
source technology, Linux operating systems will provide
much more functions which are provided in packages. The
calls among the modules are reflected in the dependencies
among the software packages.

Maintaining the dependency relationships among
packages has always been a difficult task [3]. The main
difficulty resides in the fact that a Linux operating system
has a large number of software packages, with complex de-
pendencies. These dependency relationships could be eas-
ily broken when performing standard life cycle manage-
ment operations on packages in Linux distribution pool (i.e.,
package adding, removal and upgrading), leading to unus-
able and corrupted Linux operating systems.

Linux distribution side, also be referred to as dis-
tribution pool [4], is the server side software package re-
source pool to distribute Linux version and patch though
the network. It is composed of different Linux versions and
patches. Currently, there are a great many Linux distribu-
tions around the world, while Debian [5] is a very large dis-
tribution in the world. Debian has strict procedures from
the applications to the detection of security patches. It is
an operating environment combined with free software, and
integrates with a lot of open source software packages. Re-
cently, the number of packages in Debian has sharply in-
creased, but managing the software packages in the distri-
bution side is usually manually done by distribution editors.
So, the number of distribution editors is also extremely in-
creased. In fact, Debian has already included almost all
packages (nearly more than 30000), which requires a lot of
distribution editors to manage the software packages. The
same problems appear in domestic Linux related versions,
such as NeoShine Linux. The number of NeoShine Linux
server 5.0 packages reaches 2270, and this number is con-
tinuously increasing with the expansion of functions.

To ensure the integrity of Linux package dependencies
of the distribution pool is the basis of distributing and up-
dating continuously through the network. Since the update
of packages persistent changes in the distribution pool, for a
dependency integrity distribution pool, (each package in the
distribution pool can be installed), integrity maintenance re-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



2432
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

quires distribution editors to check the installability of all the
new packages joined to the distribution pool, and check the
dependency integrity if remove some packages from the dis-
tribution pool. Since a distribution version is composed of
thousands of packages, the scale of Linux distribution side
become larger and the manual maintenance costs become
higher. To reduce maintenance costs, we are facing to de-
mand of automated management of packages in the Linux
distribution side, so as to reduce maintenance costs.

The current tools for the management of complex de-
pendencies among packages can be divided into two types
from the use aspect: client-based package dependency man-
agement tools and distribution-based package dependency
management tools. The client-based package dependency
tools can install and upgrade packages with all its dependen-
cies automatically downloaded from software warehouse
through internet. The distribution-based package depen-
dency management tools are used to maintaining the in-
tegrity dependency of the distribution pool. Linux distribu-
tion versions have provided package dependency manage-
ment tools for the client side, such as Debian Linux’ apt-
get [4], RedHat Linux’s yum [6], Suse Linux’ red carpet [7],
etc. Several researchers developed and optimized better
packages management tools (i.e. Smart [8], Optimal [9])
aimed at the incompleteness problems of apt-get and yum.
On the distribution side, the famous Linux operating system
vendors such as RedHat, Debian and Suse have carried out
the relevant work in the field of package dependencies, and
have proposed methods of solving the problems of package
dependencies. Red Hat Enterprise focuses on solving the
package dependencies based on RPM [10] package format
and Debian Linux uses DEB [11] package format to achieve
this purpose. However the research result is the enterprise
inner secrets and the design and implementation cannot be
acquired generally. Domestic (China) manufacturers have
not developed an effective way to solve the package depen-
dency problems, and all these tasks are done manually.

Several researchers use the SAT method to solve the
problem of package dependencies. SAT problem is a ba-
sic NP-complete problem. In recent years, SAT algorithm
has already made a number of representative results through
sustained and in-depth researched [12]–[14]. Paper [15] pre-
sented a formal description of package dependencies and
introduced a set of mapping rules that transform depen-
dency problem into Boolean SAT problem. At last, it is de-
signed a basic algorithm based on the art-of the state SAT
solver MiniSAT. EDOS European project [16] carried out
researches on the decision method of the package depen-
dencies in Linux distribution side. A law was proposed by
the project: Given a package repository R and the package
p, the installable problem of p is an NP-complete problem.
Therefore, through mapping the package dependencies to
SAT problems [17]–[19] and using the SAT mature method,
we can get a satiable solution of package dependencies. The
main idea of this method is to find a solution that makes
all the package dependency satiable. However, the EDOS’
source cannot check the dependency in the distribution side.

The widespread adoption of Linux operating systems,
in some way, has emphasized these problems. How to effec-
tively maintain the relationships among abundant and com-
plex packages has become the challenge that all Linux ven-
dors need to face. Does the new package conflict with other
package or not? Do all dependencies of the new package ex-
ist in the package set or not? Does the original dependency
relationship exist or not, when the package is updated? Dose
the original dependency relationship still maintain or not,
when someone package is deleted or abandoned? How to
quickly develop a dedicated Linux operating system release
which contains all necessary packages? The resolution of
these issues in the final analysis is focused on resolution of
package dependency.

In this paper we attach a great important package de-
pendencies research and propose a new method based on
conflict to check the integrity of Linux package dependen-
cies. The method excludes the conflict associated with a
package to check the integrity of the Linux server distribute
version from the perspective of conflict. The results of our
research can help Linux vendors to maintain large package
bases and improve the quality of software distributions built
on them, by detecting errors and inconsistencies in an ef-
fective, fast and automatic way. Due to the popularity of
RPM and DEB packages in industry, the checking method
supports both of them.

This paper is structured as follows: in Sect. 2, we ad-
dress the related theory. Section 3 presents the algorithm
that we have used to reason on our method, and Sect. 4
shows the results we have gathered from the analysis of
some NeoShine Linux server versions. Finally, in Sect. 5
we draw conclusions.

2. Related Theory

2.1 Package Formats Analysis

This section briefly describes some package formats. Pack-
age metadata file is the file which describes the package
information including the name, version, size, dependen-
cies and conflicts and so on. This paper mainly presents
the method extracting dependency information from pack-
age metadata file and uses the dependency information to
check the integrity of the package dependencies. We focus
on package-based GNU/Linux distributions: the DEB and
the RPM formats. RPM package format is used in Red Hat,
Fedora, SUSE and domestic (China) manufacturers while
DEB is adopted in Debian and Ubuntu. Both of these two
formats are used in current major Linux.

Though DEB and RPM packages are different, they
have a lot of commonalities. In what follows, we describe
the features that are relevant to the topic of this paper: de-
pendency specification.

DEB has two types: binary packages and source pack-
ages. Binary packages can be directly installed while the
source code included in the source packages can be used to
create binary packages. A source package can create mul-



LAN et al.: CONFLICT-BASED CHECKING THE INTEGRITY OF LINUX PACKAGE DEPENDENCIES
2433

tiple binary packages. Each DEB package, binary pack-
age and source package, includes package’s version num-
ber, control files and installation source files. The compo-
sition of a basis DEB package ocaml 3.08.3-8 i386.deb can
be shown as follows:

ocaml 3.08.3-8 i386.deb
• debian-binary (version)
• control.tar.gz

– ostinst (post-install script)
– prerm (pre-removal script)
– postrm (post-removal script)
– md5sums (MD5 sums for data.tar.gz)
– control (package metadata)

• data.tar.gz

– /usr
– /usr/lib
– /usr/lib/ocaml/3.08.3

From its composition, we can find that DEB package
is an actually archive including package’s version and two
compressed files. One of the compressed file contains the
description control information while the other is the instal-
lation file.

RPM is an archive too and is actually an ad-hoc format
explicitly conceived for this purpose. DEB packages can be
produced using standard tools such as ar and tar, so they can
be easily managed. Nevertheless, the most relevant differ-
ence between DEB and RPM package format concerns their
metadata specification. While RPM packages encode it in
a binary form as a part of its ad-hoc archive format, DEB
packages use a textual representation for it, which makes its
processing easier.

Each package uses the unique version as an important
sign. The version number is a key factor to identify the re-
lationship among the packages. The most of dependency
categories described in the software package metadata file
are the same except some special dependency relationship
such as obsoletes and replaces. But these dependency rela-
tionships almost have no impact on the integrity of the pack-
ages. Therefore, this paper extracts three dependencies for
the basis of checking the integrity of the packages [20].

Depends (DEB), Requires (RPM): It is used to express
the dependency packages of present package. If the package
can be installed or run normally, these packages must be in
Linux operating systems.

Conflicts (DEB, RPM): It is used to express the conflict
packages of present package. If the current package can be
normally installed or run, the conflict packages cannot be in
the Linux operating system at the same time.

Pre-Depends (DEB), PreReq (RPM): It is similar to
Depends relationships but it is used to establish a require-
ment on the packages that must be already presented in the
Linux operating system in order to successfully deploy the
packaged component. The difference between Pre-Depend
and Depends is that while Depends package might not be
presented in the Linux operating system when deploying

the packaged component (but only after, so they can be
deployed together with the current component), while Pre-
Depends packages must be already installed even before at-
tempting to deploy the current packaged component.

The dependency relationships of a package are speci-
fied by using a list of package names, optionally with ver-
sion constraints. Each element of the list represents a re-
lationship. When every element of the list is satisfied, the
dependency relationship is satisfied. Actually, an element
of the list doesn’t contain only one package. In the DEB
format package, the element allows several packages with
disjunctive relationship. This is done by using the (“ |”) op-
erator [21]. In this situation, in order to meet the disjunctive
relationship it is sufficient that at least one of the constitut-
ing dependency relationships is met. In other words, one of
these packages is satisfied, the element dependency is sat-
isfied. The element like this is called composite element.
Take the package mysql for example, package name: mysql-
server-5.0, version: 5.0.51a-3ubuntu5.4, the Depends con-
tains the dependency libc6(>= 2.4), this represents pack-
age mysql depends on package libc6 and the version of libc
must greater than or equal to 2.4. If there are two versions of
libc6, 2.4 and 2.6, in a Linux operating system, the Depends
is described as libc6(2.4) or libc6(2.6).

2.2 Relationship Among Packages

In general, the relationship between any two packages can
be divided into three categories: dependency relationship,
conflict relationship and no relationship. Dependency re-
lationship is a very common relationship. To install pack-
age p1 we must first install the package p2 which means
there has a dependency relationship between p1 and p2. De-
pendency relationship can be divided into direct dependency
and indirect dependency. For example, package a provides
the function P which has to use the function Q provided
by package b. We say that the package a depends on the
package b. If the package b depends on package c then
the package a also depends on c. The relationship between
package a and b is called direct dependency and the relation-
ship between package a and c is called indirect dependency.
The dependencies of package a, b and c form a dependency
chain. If b or c is lost, the dependency chain is destroyed.
Conflict relationship is rare among actual packages, and it is
a negative dependency, that is, package p1 and p2 could not
co-exist.

In software package repository, if the dependencies of
every package are existent and there is no conflict between
any two packages, it is called the dependencies of software
package are satisfied, otherwise it is called the dependencies
are not satisfied. In order to ensure stable operation and nor-
mal function of the Linux operating system, we must firstly
ensure the package set repository constituting the operating
system version is dependencies satisfied. It is important for
Linux operating system to be commercial applications.

Inter-package dependencies can be described as a di-
rected graph [22], the relationships among nodes can be



2434
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 1 The relationships composed of nice packages.

divided into dependence relationship and conflict relation-
ship. The “and dependence” and “or dependence” can be
expressed by the extended “and-or” graph [23]. The dotted
line indicates the conflict relationship and solid line denotes
the dependence relationship.

For example, in a Linux distribution, the relationship of
package a is shown in Fig. 1. From this figure, we can find
that the total number of the direct dependency and indirect
dependency of package a is eight. The direct dependencies
of package a are b, c or d, d or e. The direct dependencies
of package b are f and g and so on.

If we want to install package a, we have to install pack-
age b, c or d, d or e. Package c and e cannot co-exist in the
same system for the conflict relationship.

3. Algorithm Design

3.1 Basic Definition

This section will present some definitions to be use in the
following sub-sections and the notions of checking the in-
tegrity of package dependencies.

Definition 1 (Unit package can be installed): The unit
package is a set of files containing metadata, program files,
installation scripts and configuration information. It is the
basis unit composed by software and it is called software
package in the Linux operating system. We focus on the
management of dependency relationship among unit pack-
ages in the Linux operating system, therefore, the unit pack-
age can be installed will be called package in the follow. A
package is a pair (u, v) where u is an identifier and v is a
version, marked as p(u, v). In addition, u(p) is the identifier
of package p and v(p) is the version of package p. We in-
troduce the definition of unit package can be installed that
identify the central property we want to gurantee for each
package present in a package repository.

Definition 2 (Package repository): A package reposi-
tory is a tuple R = (P,D,C) where P is a set of packages,
D : P→ ψ(ψ(P)) is the dependency function (we write ψ(X)
for the set of subsets of X), and C ⊆ P×P is the conflict rela-
tionship. The relationship C is symmetric, i.e., (p1, p2) ∈ C
if and only if (p2, p1) ∈ C for all (p1, p2) ∈ P.

As for a Linux operating system distributions version,
two packages with the same identifier but different versions
conflict, that is, if p1 = (u, v1) and p2 = (u, v2) with v1 � v2,
then (p1, p2) ∈ C.

In a package repository R, the dependencies of each
package p are given by D(p) = {d1, · · · , dk} which is a set
of sets of packages, interpreted as follows. If p is to be in-
stalled, then all its k dependency requirements must be sat-
isfied. For di to be satisfied, at least one of the packages
in di must be available. In particular, if one of the di is an
empty set, it will never be satisfied, and the package p is not
installable. If every package in the package repository R is
dependency satisfied, then all the packages can be installed,
which means the package repository R dependency is inte-
grated. The language to express package relationships (in-
cluding dependence relationship and conflict relationship)
is not as simple as flat lists of component predicates, but
rather a structured language whose syntax and semantics is
expressed by conjunctive normal form (CNF) formulae [20].

For example, Fig. 1 represents the relationships among
the packages in a package repository R.

The relationships among packages can be formalized
as follows:

P = {a, b, c, d, e, f , g, h, i}
D(a) = {{b}, {c, d}, {d, e}}
D(b) = {{ f }, {g}},D(c) = {{g}} (1)

D(d) = {{g, h, i}},D(e) = {{i}}
C = {(c, e), (e, c), (g, h), (h, g)}
Where package a is the target and if you want to in-

stall a, the following packages must be installed: b either c
or d, either d or e. Package c and e, g and h cannot be in-
stalled at the same time. Thus the general form for package
a dependency specification is a conjunction of disjunctions:

a→ (b1
1 ∨ · · · ∨ br1

1 ) ∧ · · · ∧ (b1
n ∨ · · · ∨ brn

n ) (2)

For package a to be installed, each term of the right-
hand side of the above implication must be satisfied. In turn,
the term b1

i ∨ · · · ∨ bri
i when 1 ≤ i ≤ n is satisfied when at

least one of the b j
i with 1 ≤ j ≤ ri is satisfied. If a is a

package in our package repository R, we therefore have

D(a) = {{b1
1, · · · , br1

1 }, · · · , {b1
n, · · · , brn

n }} (3)

Where, D(a)is the direct dependency collection of the pack-
age a.

In particular, if one of the terms is empty (if φ ∈ D(a)),
then package a cannot be satisfied.

Definition 3 (Packages can be installed): For a soft-
ware package repository R and a package p, if all the de-
pendence relationship of the package p is satisfied in the
package repository R, the package p can be installed in the
package repository R.

Definition 4 (Dependency Collection): The depen-
dency collection of the package a refers to the set composed
of all the sets of packages which the package a depends



LAN et al.: CONFLICT-BASED CHECKING THE INTEGRITY OF LINUX PACKAGE DEPENDENCIES
2435

on. We write Dr(a) for the dependency collection of the
package a, if a → (b1

1 ∨ · · · ∨ br1
1 ) ∧ · · · ∧ (b1

n ∨ · · · ∨ brn
n )

then {b1
i , · · · , bri

i } ∈ Dr(a) where 1 ≤ i ≤ n, and if bj
i →

(c1
1 ∨ · · · ∨ cs1

1 ) ∧ · · · ∧ (c1
m ∨ · · · ∨ csm

m ) with 1 ≤ j ≤ ri, then
{c1

i , · · · , csi
i } ∈ Dr(a), where 1 ≤ i ≤ m.

For example, Fig. 1 shows the relationship composed
of nine packages. The dependency collection of the package
a is Dr(a) = {{b}, {c, d}, {d, e}, { f }, {g}, {g, h, i}, {i}}.

Definition 5 (Conflict Collection): We write Dc(a) for
the conflict collection of the package a. The conflict collec-
tion Dc(a) refers to the set composed of all the sets of pack-
ages which conflict with anyone in the dependency collec-
tion Dr(a). We can formalized as follows: if bi is a package,
bi ∈ {b1, · · · , bn} and {b1, · · · , bn} ∈ Dr(a), when package bi

conflicts with package c, then {c} ∈ Dc(a).
For example, Fig. 1 shows the relationship composed

of nine packages. The conflict collection of package a is
Dc(a) = {{c}, {e}, {g}, {h}}.

Definition 6 (Dependency Priority): In the depen-
dency collection Dr(a) of the package a, if D(a) =
{{b1

1, · · · , br1
1 }, · · · , {b1

n, · · · , brn
n }} then the dependency prior-

ity of set {b1
i , · · · , bri

i } is 0 (the superlative), where 1 ≤
i ≤ n. And if we have the set {b1

i , · · · , bri
i } with ri = 1

(which means the set has only one element), and D(bj
i ) ={{c1

1, · · · , cs1
1 }, · · · , {c1

m, · · · , csm
m }} with 1 ≤ j ≤ ri, then the de-

pendency priority of term {c1
t , · · · , cst

t } is 0, where 1 ≤ t ≤ m.
If we have the set {b1

i , · · · , bri
i } with ri > 1 (which means

the set has more than one element), the dependency priority
of {c1

t , · · · , cst
t } is lower than {b1

i , · · · , bri
i }, which is 1, where

1 ≤ t ≤ m. If a package set has many dependency priority’s
values, we only keep the highest dependency priority.

For example, Fig. 1 shows the relationship composed
of nine packages. D(a) = {{b}, {c, d}, {d, e}}, so the de-
pendency priority of {b} is 0, the same with {c, d}, {d, e}.
D(b) = {{ f }, {g}}, so the dependency priorities of { f } and {g}
are 0. D(c) = {{g}}, so the dependency priority of package
{g} is lower than {c, d}, which is 1. From the Fig. 1, we can
see that D(b) = {{ f }, {g}} and D(c) = {{g}}, so the depen-
dency priority of {g} has two values: 0 and 1. According
to the definition of Dependency Priority, we keep the higest
one, so the dependency priority of {g} is 0. D(d) = {{g, h, i}},
so the dependency priorities of {g, h, i} is lower than {c, d} or
{d, e}, which is 1. D(e) = {{i}}, so the dependency priority of
{i} is lower than {d, e}, which is 1.

Definition 7 (Conflict Priority): In the conflict collec-
tion Dc(a) of the package a, if {c} ∈ Dc(a) and the pack-
age c conflicts with package bi where bi ∈ {b1, · · · , bn} and
{b1, · · · , bn} ∈ Dr(a) when n > 1 (which means the set
{b1, · · · , bn} has more than one element), the conflict priority
of {c} is lower than the dependency priority of {b1, · · · , bn}. If
n = 1, then conflict priority of {c} is the same as dependency
priority of package {b1, · · · , bn}. If a package set has many
conflict priority’s values, we only keep the highest conflict
priority.

Following the above example, Fig. 1 shows package c
and e, g and h cannot be installed at the same time. Package

c conflicts with e in the {d, e}, so the conflict priority of {c}
is lower than the dependency priority of {d, e}, which is 1.
Package e conflicts with c in the {c, d}, so the conflict pri-
ority of {e} is lower than the dependency priority of {c, d},
which is 1. Package g conflicts with h in the {g, h, i}, so the
conflict priority of {g} is lower than the dependency prior-
ity of {g, h, i}, which is 2. Package h conflicts with the g
in the {g} and the g in the {g, h, i}, we keep the highest pri-
ority value, so the conflict priority of {h} is the same with
dependency priority of {g}, which is 0.

The Dependency Priority is used to help us calculate
the Conflict Priority. And we introduce the definition of
Conflict Priority in order to provide a processing sequence
of packages in the Conflict Collection.

3.2 Mathematical Description and Theoretical Analysis

Formalization of package direct dependency relationship: as
the definitions of Sect. 3.1, we write Dr and Dc for the de-
pendency and conflict collections respectively, and D for the
direct dependency collections. If there is no dependency re-
lationship between packages p and any other packages in
the repository R, then Dr(p) = φ. If no conflict relationship,
then Dc(p) = φ. Assignment λ on the direct dependency
collection D defined as Dλ(p), is making one assignment of
the disjunction in the collection, which means you only need
to select one package in each disjunction. After assignment,
Dλ(p) is one of direct dependency collections of p.

The dependency satisfaction is also known as the in-
tegrity of dependencies. For a software package repository
R, the dependency satisfaction of package p in the repository
R is an assignment λ, where Dλ(x) is the dependency func-
tion and expresses the direct dependency collection of the
package x. Dnλ(p) denotes Dλ(Dλ(Dλ(. . .Dλ(p) . . .))), for
any one package x of sub-collection p =

⋃

n≥1
Dnλ(p), where

p � D(x), p ⊃ Dλ
r (x) and p

⋂
Dλ

c (x) = φ.
If all the dependency packages of a package exist, the

reason of leading to unsatisfied dependency is the conflict
packages among the dependency collection. The proposed
method can solve the problem of the dependencies. The
method firstly checks the existence of the direct dependency
packages, and then deals with the conflict packages in the
conflict collection. If the dependency packages not exist or
the conflict packages cannot be resolved, the dependencies
of the package are not satisfied. The flow diagram is shown
in Fig. 2.

The key of the method is to process conflict relation-
ships. The conflict relationships can be divided into solv-
able conflict and unsolvable conflict. The solvable conflict
is that the conflict target package is not in the dependency
collection or is in the dependency collection but the pri-
ority is not superlative and can be deleted. The package
which can be deleted is not a superlative package. Delete a
package meanwhile delete the packages which depend on it.
When the compound dependency is only one item, it can-
not be deleted; meanwhile the priority which is 0 cannot be



2436
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 2 The flowchart of algorithm.

deleted.
Take Fig. 1 as a example, if we want to install package

a, we have to install package b, either c or d, and either d or
e. Package c and package e cannot exist in the same system
for the conflict relationship. As described in the first part
of Sect. 3, we defined the symbol Dr(a) as the dependency
collection of the package a, the symbol Dc(a) as conflict
collection of the package a and the symbol D(a) as the di-
rect dependency collection of the package a. The number
joined by the “-” is used to represent the dependency prior-
ity of package. The smaller the number is, the higher the
dependency priority becomes. The direct dependency col-
lection and dependency collection of the package a express
as follows.

D(a) = {{b}, {c, d}, {d, e}}
Dr(a) = {{b − 0}, {c, d − 0}, {d, e − 0}, { f − 0}, (4)

{g − 0}, {g, h, i − 1}, {i − 1}}
In the direct dependency collection D(a), if any one

does not exist, then package a is not installed for losing the
dependence package. If all the dependence packages exist,
we construct the Dc(a) from the Dr(a) and show as follows.

Dc(a) = {{h − 0}, {e − 1}, {c − 1}, {g − 2}} (5)

In the conflict collection Dc(a), the number joined by
the “-” is used to represent the conflict priority of package.
The smaller the number is, the higher the conflict priority
becomes. Then sort the element of the Dc(a) by the priority.

Fig. 3 The dependency relationships of package a.

We will process the conflict packages from high conflict pri-
ority to low. For the element {h−0}, the conflict packages of
package h exist in dependency collection Dr(a) and can be
processed, so we remove the package h from Dr(a). After
processing the element {h − 0}, the result of the Dr(a) and
Dc(a) is

Dr(a) = {{b − 0}, {c, d − 0}, {d, e − 0}, { f − 0},
{g − 0}, {g, i − 1}, {i − 1}} (6)

Dc(a) = {{e − 1}, {c − 1}} (7)

Continue to process the Dc(a) until the element of
Dc(a) is null. After processing the element {e− 1} or {c− 1},
the result of Dr(a) and Dc(a) is:

Dr(a) = {{b − 0}, {c, d − 0}, {d − 0}, { f − 0},
{g − 0}, {g, i − 1}} (8)

Dc(a) = {}
Or

Dr(a) = {{b − 0}, {d − 0}, {d, e − 0}, { f − 0},
{g − 0}, {g, i − 1}, {i − 1}} (9)

Dc(a) = {}
From the result of Dr(a) and Dc(a), we can know the

dependency of the package a is satisfied. A optimum solu-
tion is {b, d, f , g}.

As shown in Fig. 3, suppose package g conflicts with
package d rather than conflict with h, the result of Dr(a) and
Dc(a) is as follows:

D(a) = {{b}, {c, d}, {d, e}}
Dr(a) = {{b − 0}, {c, d − 0}, {d, e − 0}, (10)

{ f − 0}, {g − 0}, {h, i − 1}, {i − 1}}
Dc(a) = {{d − 0}, {e − 1}, {c − 1}, {g − 1}} (11)

Then process the element of the Dc(a) from highest pri-
ority to lowest priority. For the element {d − 0}, the conflict
packages exist in the dependence collection Dr(a) and can
be processed, so we remove the element {d − 0}. After pro-
cessing element “d − 0”, the result of Dr(a) and Dc(a) as



LAN et al.: CONFLICT-BASED CHECKING THE INTEGRITY OF LINUX PACKAGE DEPENDENCIES
2437

follows:

Dr(a) = {{b − 0}, {c − 0}, {e − 0},
{ f − 0}, {g − 0}, {i − 1}} (12)

Dc(a) = {{e − 1}, {c − 1}} (13)

Continue to process element {e − 1} or {c − 1} and the result
of Dr(a) and Dc(a) is as follows:

Dr(a) = {{b − 0}, {c − 0}, {Φ − 0},
{ f − 0}, {g − 0}} (14)

Dc(a) = {}
Or

Dr(a) = {{b − 0}, {Φ − 0}, {e − 0},
{ f − 0}, {g − 0}, {i − 1}} (15)

Dc(a) = {}
There is a null element Φ in the dependency collection

Dr(a), therefore the dependency of the package a cannot be
satisfied.

Hence, to check installability of a package p, firstly, get
the dependency collection and conflict collection of pack-
age p. Then traverse the dependency collection to check
the packages that package p depended on are all present. If
not, then package p is not installable. Otherwise, process
the conflict element of the conflict collection one by one ac-
cording to the conflict priority. If some package in the con-
flict collections could not be processed, the dependency of
package p is not satisfied.

4. Experiment and Analysis

In order to validate the correctness and feasibility of the
checking method, we have developed a tool according to
the checking method. It can be used by a distribution edi-
tor to manage the integrity of Linux package dependencies.
In this section we show some experimental results that we
have gathered by analyzing with our tool of NeoShine Linux
server version 5.0 and NeoShine Linux server version 5.3.
There are eight build version 5.0 and nine build version 5.3.
The result of the checking is shown in Table 1.

Based on the data of Table 1, we have drawn the cylin-
drical statistical diagram Fig. 4 and Fig. 5.

From Fig. 4 and Fig. 5, it is clear to see with the Linux
Server build version increase, the number of packages of the
lack of dependence and the number of unsatisfied depen-
dency are gradual decrease, especially in the Linux Server
5.3 build06-09, the missing dependency packages is zero.

During the experiment, we found that there exist some
conflict packages in the tested Linux versions, but the un-
solvable conflict relationships among the packages don’t ex-
ist in nearly all mature Linux operating systems. As can be
seen from Table 1, at least the 17 tested versions didn’t ap-
pear the unsolvable conflict, i.e., “Number of conflict cannot
be solved” is 0. For example, in NeoShine Server 5.0 build-
09, the package “gnome-spell” which the package “evolu-
tion” depends on didn’t exist and in NeoShine Server 5.3

Table 1 The result of the integrity checking of Linux server dependency.

Fig. 4 NeoShine Linux Server 5.0 dependency check result.

Fig. 5 NeoShine Linux Server 5.3 dependency check result.

build-03, the package “redhat-lab” on which the package
“sblim-cmpi-network-devel” didn’t exist and so on.

During checking the integrity of dependency, some



2438
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

conflict problems were found for the wrong metadata de-
scription. For example, the package “gtk2” appearing
in multiple Linux versions conflict with the “libgnomeui”
whose version less than “libgnomeui-2.15.1cvs20060505-
2”. It is clear that the version description of the package is
wrong or in other words it doesn’t follow the certain norms.
The package metadata information was corrected by com-
municating with the developers.

The problems in the above process of checking were
confirmed by discussing and exchanging with the develop-
ers. This fully shows that proposed method in this paper is
correct. During the experiment, we discovered that some
packages whose dependency is not satisfied can be installed
in special sequence and environment.

The given notions of dependency priority, conflict pri-
ority and conflict-based checking method can be used to ad-
dress issues showing up in the maintenance of large number
of Linux operating systems packages.

5. Conclusion

The package management has become more and more im-
portant for every Linux enterprise. However there is still
a lack of related researches on the distribution package
management. This paper presents a conflict-based check-
ing method of package dependency integrity, by solving
the conflict to find the dependency satisfied solution. The
method completes the integrity check of the distribution side
by checking the dependency integrity of the packages. This
method provides an effective way for the integrity check of
the Linux distribution side.

Compared with the currently existing technology, our
proposed approach has obvious advantages and useful ef-
fects. Conflict relationship, a negative dependency, is rare,
which means p1 and p2 package could not co-exist. Linux
operating system allows each package with one version.
Therefore many conflict packages do not co-exist in one sys-
tem. So from the perspective of the conflict, checking the
package dependencies is more efficient in distribution side.

In summary, the proposed approach has the above
advantages and beneficial effects. There is a significant
progress in technologies and extensive use of industry value.

Acknowledgements

Thank the staff of the China Standard Software CO., LTD
for their help. Without their careful guidance and help, we
cannot accomplish the experiments so smoothly. Thank all
those who helped us.

References

[1] D. Weiss, “Quantitative analysis of open source projects on Source-
Forge,” Proc. First International Conference on Open Source Sys-
tems, pp.140–147, Genova, 2005.

[2] Opensource.org. Opensource licenses.
http://www.opensource.org/licenses

[3] R.D. Cosmo, P. Trezentos, and S. Zacchiroli, “Package upgrades in
FOSS distributions: Details and challenges,” HotSWup’08, 2008.

[4] R.D. Cosmo, B. Durak, X. Leroy, F. Mancinelli, and J. Vouillon,
“Maintaining large software distribution,” New Challenges from the
Foss era. 1st International EASST-EU Workshop on Future Research
Challenges for Software and Services, Vienna, 2006.

[5] Debian Group. Debian Policy Manual.
http://debian.org/doc/debian-policy/, [EB/OL].

[6] Fedora, yum, http://fedoraproject.org/wiki/Tools/yum, accessed Jan.
2010.

[7] derkeiler, Red carpet, http://linux.derkeiler.com/Mailing-Lists/
SuSE/2005-09/2179.html, accessed Dec. 2009.

[8] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner, “OPIUM: Optimal
package install/uninstall manager,” Proc. 29th International Confer-
ence on Software Engineering (ICSE’07), pp.178–188, 2007.

[9] G. Niemeyer, Smart package manager, http://labix.org/smart, 2006
[EB/OL].

[10] E.C. Bailey, Maximum rpm. http://www.rpm.org/max-rpm.
[11] The Debian Project. Debian policy manual.

http://www.debian.org/doc/debian-policy/index.html.
[12] N. Een and N. Sorensson, “An extensible SAPsolver. 6m intem-

ational conference,” SAT 2003. LNCS 2919: 502. 518.
[13] M. Davis and H, Putnam, “A computing procedure for quantification

theory,” J. Association for Computing Machinery, vol.7, pp.20l–215,
1960.

[14] J.P. Marques-Silva and K.A. Sakallah, “GRASP-A new search algo-
rithm for satisfiability,” Proc. International Conference on Computer
Aided Design (ICCAD), 1996.

[15] H. Gu and X.-Z. Ni, “SAT-based analysis of package dependency
problem,” The Ninth Graduate Symposium on Computer Science
and Technology of Chinese Academy of Sciences Institute of Com-
puting Technology, 2006.

[16] EDOS, http://www.edos-project.org/.
[17] J. Marques-Silva, “Practical applications of Boolean satisfiability,”

Discrete Event Systems, 2008. WODES 2008. 9th International
Workshop, pp.74–80, May 2008.

[18] J. Rintanen, K. Heljanko, and I. Niemela, “Planning as satisfiability:
Parallel plans and algorithms for plan search,” Artif. Intell., vol.170,
no.12-13, pp.1031–1080, 2006.

[19] I. Lynce and J. Marques-Silva, “Efficient haplotype inference with
Boolean satisfiability,” National Conference on Artificial Intelli-
gence, July 2006.

[20] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X.
Leroy, and R. Treinen, “Managing the complexity of large free and
open source package-based software distributions,” ASE, pp.199–
208, 2006.

[21] P. Abate, R.D. Cosmo, J. Boender, and S. Zacchiroli, Empirical Soft-
ware Engineering and Measurement.

[22] N. LaBelle and E. Wallingford, Inter-package dependency networks
in open-source software. CoRR, cs.SE/0411096, 2004.

[23] Y.-Q. Lan, X.-G. Duan, J. Gao, W.-B. Zhou, and H. Zhao, “Extrac-
tion methods on Linux package dependency relations,” Information
Engineering and Computer Science, 2009. ICIECS 2009. Interna-
tional Conference, Dec. 2009.



LAN et al.: CONFLICT-BASED CHECKING THE INTEGRITY OF LINUX PACKAGE DEPENDENCIES
2439

Yuqing Lan born in May 1969, Ph.D., As-
sociate Professor in the Computer science and
engineering school of Beihang University, spe-
cialized in software engineering and operating
system, published 38 papers, 21 of them are
included in EI. This work is partially sup-
ported by the National Project of Core Elec-
tronic Devices, High-end General Chips and Ba-
sic Software-“Domestic basic software testing
for integration and application” under Grant No.
2009ZX01045-005-002.

Mingxia Kuang born in Aug. 1986, gradu-
ate student, studying at Beihang University, Re-
search Interest is Software Engineering.

Wenbin Zhou born in July 1985, gradu-
ate student, studying at Beihang University. Re-
search Interest is Software Engineering.


