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PAPER

Modeling Uncertainty in Moving Objects Databases

Shayma ALKOBAISI†a), Wan D. BAE††b), Members, and Sada NARAYANAPPA†††c), Nonmember

SUMMARY The increase in the advanced location based services such
as traffic coordination and management necessitates the need for advanced
models tracking the positions of Moving Objects (MOs) like vehicles. Due
to computer processing limitations, it is impossible for MOs to continu-
ously update their locations. This results in the uncertainty nature of a
MO’s location between any two reported positions. Efficiently managing
and quantifying the uncertainty regions of MOs are needed in order to sup-
port different types of queries and to improve query response time. This
challenging problem of modeling uncertainty regions associated with MO
was recently addressed by researchers and resulted in models that ranged
from linear which require few properties of MOs as input to the models, to
non-linear that are able to more accurately represent uncertainty regions by
considering higher degree input. This paper summarizes and discusses ap-
proaches in modeling uncertainty regions associated with MOs. It further
illustrates the need for appropriate approximations especially in the case
of non-linear models as the uncertainty regions become rather irregularly
shaped and difficult to manage. Finally, we demonstrate through several
experimental sets the advantage of non-linear models over linear models
when the uncertainty regions of MOs are approximated by two different
approximations; the Minimum Bounding Box (MBB) and the Tilted Mini-
mum Bounding Box (TMBB).
key words: moving object, spatiotemporal databases, uncertainty region,
uncertainty modeling, uncertainty approximation, minimum bonding rect-
angle, range queries, false hits

1. Introduction

In recent years, there has been an increasing number
of location-aware spatiotemporal applications that manage
continuously changing data, such as temperature, stock
markets and moving objects (MOs). This paper focuses
on MOs that are specific types of continuously changing
data which are the most commonly used in spatiotemporal
database applications. Tracking systems, mobile services
and sensor-based systems now track millions of Global Po-
sitioning Systems (GPS) and Radio-Frequency Identifica-
tions (RFIDs) equipped location-aware mobile devices that
can report the states of MOs. Medical applications such
as the spatiotemporal distribution of disease incidences and
epidemic propagation can be modeled using space-time de-
pendent probability functions and hence cast as MO prob-
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lems. Environmental applications are also concerned with
MO data. For example, sensors attached to aircrafts are
used to measure oil and chemical spill pollution in the seas.
Homeland security and battlefield monitoring also deal with
MO data. Consequently, these applications require effi-
cient database management systems called Moving object
databases (MODBs), that are able to store, update and query
a large number of continuously changing MOs.

Spatiotemporal range queries [11] are the basis for
most queries in MO databases. The following is an example
of a spatiotemporal range query: “What are the license plate
numbers of the taxis that were at Denver International Air-
port between 10 am and 10:20 am on January 15, 2008?”.
To accurately answer this type of location and time-based
query, it is necessary to maintain the locations of a large
number of MOs over time. Although MOs (taxis in the
example) can continuously move or change, computer sys-
tems cannot deal with continuously occurring changes – this
would effectively require infinite computational speed and
sensor resolution. Thus, each object’s continuously chang-
ing properties (e.g., location and velocity) can be only dis-
cretely updated (e.g., MODB collects MOs positions every
N minutes). Hence, MOs are always associated with a de-
gree of uncertainty, especially when there is a considerable
time gap between two updated values. The discrete updat-
ing interval is moderately chosen such that it is practical to
handle the amount of information. All the possible proper-
ties between two updated values form the uncertainty region
of the MO.

To more efficiently answer spatiotemporal queries, the
cost of the filtering and refinement steps needs to be reduced.
The filtering step in the query processing identifies a set of
candidates that are later checked for the final answer of the
query in the refinement step. By further reducing the size
of uncertainty regions associated with MOs, the approxima-
tions of these regions, which are indexed, are also reduced.
This in turn reduces the the cost of the filtering and refine-
ment is also reduced by narrowing down the number of can-
didates.

We summarize the main research problems considered
in this paper as follows:

• Uncertainty Region Modeling: Since MO databases
store locations at discrete times, the uncertainty re-
gion must include all possible object locations be-
tween two reported times. Uncertainty region model-
ing deals with minimizing the uncertainty regions as-
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sociated with moving objects while covering all pos-
sible locations. In this paper, we categorize the un-
certainty models into two types: linear models which
utilize first degree input to calculate the uncertainty re-
gions of MOs and non-linear models which make use
of second degree input in their calculations.
• Uncertainty Region Approximation: To enable fast fil-

tering, uncertainty regions of MOs are usually approx-
imated with simplified bounding regions. The accu-
racy of the filtering step can be improved by increasing
the region’s approximation accuracy with respect to the
actual region. MO uncertainty regions can be com-
plicated and irregularly shaped. Hence, approxima-
tions such as Minimum Bounding Rectangles (MBRs)
in 2D, or Minimum Bounding Boxes (MBBs) in 3D, are
needed to enable spatial indexes to be used for query
processing.

This paper is an expansion of our earlier work in [2].
In that paper we proposed a model called the Truncated Tor-
nado model that further identifies and removes uncertainty
region areas that cannot be reached by MOs when modeled
using recently proposed uncertainty models. This resulted
in more accurate representation of uncertainty regions asso-
ciated with MOs.

We expand upon that work in this paper for a compre-
hensive study of recently proposed models that are used to
manage uncertainty associated with MOs, as well as pro-
vide a comprehensive study of our proposed model in [2].
We also study how different uncertainty approximations af-
fect the performance of the uncertainty models. The key
contributions of this paper can be summarized as follows:

• We provide an intensive summary of recently proposed
related work in Sect. 3.
• Section 4 provides a comprehensive framework that

unifies the representation used to quantify uncertainty
regions generated by recently proposed models. This
allows researchers to easily understand the main fea-
tures of each model as well as compare the perfor-
mance of each in a unified way.
• In the same section, we also propose an efficient un-

certainty model, the Truncated Tornado, introduced in
[2] that allows more accurate representation of uncer-
tainty associated with MOs over all previously pro-
posed models.
• Section 5 presents Minimum Bounding Box (MBB)

representations of the studied models which are used
to index the uncertainty regions of MOs.
• We provide a more accurate approximation of the un-

certainty regions called the Tilted Minimum Bounding
Box (TMBB) in Sect. 5. The Truncated Tornado model
combined with the Tilted Minimum Bounding Box ap-
proximation provide a comprehensive framework that
efficiently represents, quantifies and accurately approx-
imates the uncertainty regions of MOs.
• In order to evaluate the applicability and efficiency

of the studied models as well as the proposed model,

we index the MBB and TMBB approximations of the
models using R* trees [4]. We show through intensive
experimental evaluations in Sect. 6 that the Truncated
Tornado model combined with TMBB achieves the ex-
pected performance in all cases.

The rest of the paper is organized as follows: Sec-
tion 2 provides applications where uncertainty management
is needed. Related work is discussed in Sect. 3. Section 4
discusses linear and non-linear uncertainty models includ-
ing our proposed Truncated Tornado model and Sects. 5
provides approximations for these uncertainty models. The
discussed models and their approximations are analytically
and experimentally evaluated in Sect. 6. Finally, Sect. 7 con-
cludes the paper.

2. Applications

This section presents four examples of application scenarios
in which uncertainty in locations of moving objects can be
handled efficiently with the proposed framework.

2.1 Traffic Management

Many big cities have started traffic control and manage-
ment projects in order to provide advanced transportation
systems [19]. Traffic management is the process of control-
ling and optimizing the transportation on roads, especially in
highly populated areas. Vehicles that are equipped with GPS
devices or any location aware devices such as cell phones
can report their positions every few seconds to a database.
The data of moving objects’ positions can be managed and
processed to answer queries such as:

- How many cars were in a specific range between 10:00
am and 10:15 am on July 26th 2010?

- Which taxis were in a given area at a specific time?

Since exact positions of vehicles may not be known, it is
only possible to find the vehicles which were possible to
be in the result set. This can be achieved by finding the
vehicles that have their uncertainty region overlapping the
query range.

2.2 Animal Tracking

Animal tracking is another application of MO databases. In
[18], environmental investigators attached satellite transmit-
ters to two elephants released at the same location to track
their movements as a part of research to follow movements
of translocated elephants feeding on plantation and causing
damage worth millions of dollars. The movement of one of
the elephants was very random and covered very large area
and did not follow a group, where the other covered much
less area and was in a group many times. Such behavior of
reported locations can help researchers identify some rea-
sons and solutions to the problem investigated. The differ-
ence in the behavior of the two elephants in the experimental
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result suggests for additional elephants to be sampled in the
same way.

2.3 Health Monitoring

Characterizing tumor motion is one of the spatiotemporal
database applications in health [27]. In radiotherapy, the ob-
jective is to control the tumor by injecting high lethal dose
into the target volume, while trying not to affect the healthy
organs by sparing the nearby tissues. Therefore, it is very
important to quantify the target volume that needs to be af-
fected by the dose, especially when tumors are subject to
movements such as breathing in the case of lung tumor.

In most cases, to deal with the movement of the tumor,
for example tumor expansion while breathing, a larger vol-
ume is considered in treatment. However, if a more accurate
quantification method of the target volume exists by charac-
terizing tumor motion, then large volumes of “good” tissues
and organs can be removed from the target area while still
covering any possible uncertainty.

2.4 Environmental Control

Another application where the proposed model in this pa-
per is expected to achieve outstanding results is protecting
the environment from pollution like oil spills [16], by dif-
ferent means such as tracking ships that cause sea pollution
by spilling oil. It is important to minimize the uncertainty
regions to be able to determine which ship in which region
caused pollution.

3. Related Work

3.1 Uncertainty Modeling

Spatiotemporal data changes continuously over time, how-
ever the database can only deal with discrete changes.
Therefore, the properties of MOs between two reported lo-
cations are subject to uncertainty. Uncertainty is also due
to instrument and measurement error such as errors associ-
ated with the GPS device. Hence, uncertainty is an inherent
aspect in spatiotemporal databases [24], and the locations of
MOs stored in the database may not always represent the
real positions of MOs. To be able to answer spatiotemporal
queries such as “find all taxis that are within a specific area”,
uncertainty must be captured in the spatiotemporal database
systems.

The uncertainty of the dynamic properties of a MO can
be represented as an uncertainty region between two known
locations (reported points). The uncertainty regions includes
all the possible positions an object could have been in be-
tween the reported points. Thus, an uncertainty region can
be parameterized by two reported locations at an interval
t1, t2, respectively. An uncertainty model is a computa-
tional approach to represent the uncertainty regions asso-
ciated with MOs. The path that a MO follows between two
reported locations is called a trajectory. Two main types of

spatiotemporal queries exist based on the authors in [14].
The first is coordinate-based queries that return only proper-
ties (e.g., ID, name, etc.) of MOs, or the number of objects
that satisfy the query. The second type is trajectory-based
queries that require the exact information about objects’ tra-
jectories. A query example of the second type can be “what
are the objects that did not leave a given area for the last ten
minutes”. To answer such a query, the trajectories (location
segments connecting reported positions) of the MOs need to
be retrieved. In this paper, we target in our proposed uncer-
tainty models queries of the first type. An example is “what
MOs intersected a given area at a specific time”. More about
trajectory-based query examples and indexing can be found
in [15].

Many uncertainty models for moving objects have been
proposed based on the underlying applications. The uncer-
tainty model in [26] assumes that the location of a mov-
ing object at any point in time is within a certain distance
d from its last reported location. Based on that assumption,
the uncertainty region of the MO at any location-time in-
stance is represented by a circle of radius d centered at the
reported location. Another model proposed in [26] assumes
only linear movements of objects. The object’s location at
any time instance is bounded by a certain interval along the
movement trajectory. In [17], [24], the moving objects are
assumed to move in straight movements with known ve-
locities. However, objects can deviate from these straight
paths by certain distances. Uncertainty regions of moving
objects in [23], [24] are presented in 3D as cylindrical bod-
ies, which represent all the possible positions between two
reported past locations. In this paper, we refer to that model
as the Cylinder model. The authors in [10] proposed para-
metric space indexing for historical trajectory data. They ap-
proximate known sequences of MO locations of a trajectory
with a single continuous polynomial. Their experimental
results showed that their approximation method was more
accurate than traditional MBRs, and that their proposed PA-
tree [10] resulted in a 20%–60% reduction in the number of
I/Os compared with MBR-based indexes when performing
range queries.

The authors in [13] proposed one of the most common
uncertainty models, showing that when the maximum veloc-
ity of an object is known, the uncertainty region between any
two reported locations can be represented as an error ellipse.
Two consecutive positions are linearly interpolated to pro-
duce a complete trajectory of a moving object. The authors
demonstrated how to process uncertainty range queries for
trajectories using the error ellipse. This error ellipse uncer-
tainty region model is the projection of a three-dimensional
spatiotemporal uncertainty region onto the two-dimensional
data space. Another popular model is found in [8]. It rep-
resents the uncertainty region as an intersection of two half
cones. Each cone constrains the maximum deviation from
two known locations in one movement direction. It also in-
troduces multiple granularities to provide multiple views of
a moving object. We call this model the Cone model.

Similar to the idea proposed in [8], the uncertainty re-
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gion of continuously changing data objects between two re-
ported positions P1 and P2 in [28] is defined to be the over-
lap between two funnels; one defined from P1 to P2 and the
other from P2 to P1. This uncertainty model defines both
past and future spatiotemporal uncertainties of any dimen-
sionality.

Recently in [29], a non-linear extension of the funnel
model named Tornado was presented in [28]. The main idea
of the Tornado model is that many moving objects move
with momentum. This higher degree model reduces the size
of the uncertainty region by taking into account the tempo-
rally varying higher order derivatives, such as velocity and
acceleration. It also defines the uncertainty region to be the
overlap between two funnels defined by 2nd degree func-
tions, each has a shape of a “tornado” –hence the name Tor-
nado model.

3.2 Uncertainty Approximation

Since uncertainty regions can be rather irregular which
makes them computationally expensive and unsuitable for
indexing, approximations of these regions are needed. For
example, MBRs or parametric boundary polynomials [10]
that cover more detailed uncertainty regions of the underly-
ing uncertainty model can be indexed for efficient filtering.

There is a lack of research in investigating the effect of
different object approximations on the false-hit rate. In [5],
the authors investigated six different types of static spatial
objects approximations. Their results indicated that depend-
ing on the complexity of the objects and the type of queries,
the approximations ellipse and rotated bounding box outper-
form the axis-parallel bounding box. It is the reduced num-
ber of false hits that yields a considerable improvement in
total query time when using the proposed approximations.
However, there is a need for similar research in spatiotem-
poral databases.

Research in the field of computational geometry has
resulted in several object approximation solutions. In [6], it
was proven that a minimal area rectangle circumscribing a
convex polygon has at least one side flush with an edge of
the polygon. This fact was utilized in [22], allowing the use
of the “rotating calipers” algorithm to find all minimal rect-
angles in linear time. A solution for approximating objects
in 3D using minimum volume boxes was provided in [12].
The author presented the algorithm for computing the exact
arbitrarily-oriented minimum volume bounding box of a set
of points in R3. His proposed algorithm runs in O(n3). The
authors in [3], proposed an efficient solution of calculating
a (1 + ε)-approximation of the non axis-parallel minimum-
volume bounding box of n points in R3. The running time
of their algorithm is O(nlogn + n/ε3).

The authors in [1] presented MBR approximations
for three uncertainty region models, namely, the Cylinder
model [24], the Cone model proposed in [8] and the
Tornado model presented in [29]. In [2], the authors pro-
posed the Tilted Minimum Bounding Box approximation for
the Truncated Tornado model.

4. Uncertainty Region Modeling

In this section we present the linear and non-linear uncer-
tainty models. We first discuss and summarize three recently
proposed uncertainty models, providing a unified represen-
tation of the models, then we propose a new efficient non-
linear model called the Truncated Tornado. The notations
of Table 1 will be used for the rest of this paper.

4.1 Linear Models

Linear uncertainty models take first degree values as input to
calculate the uncertainty regions as described in this section.

4.1.1 The Cylinder Model

The Cylinder model (Fig. 1) is a simple uncertainty model
that represents the uncertainty region as a cylindrical
body [24]. Any two adjacent reported points, P1 and P2 of
a trajectory segment, are associated with a circle that has a
radius equal to an uncertainty threshold r. The value of r
represents the maximum possible displacement (MD) from
the reported point including the instrument and measure-
ment error, e.

The Cylinder model quantifies the maximum displace-
ment using the maximum velocity Mv of the object and the
time interval between P1 and P2 such that MD = Mv·(t2−t1).
The Cylinder model has the following properties: The two
cross-sections at t1 and at t2 are hyper-circles that are per-
pendicular to dimension d+1 (i.e., the time dimension) and
centered at, respectively, P1 and P2, with their radius: r =
e + MD (see Fig. 1).

4.1.2 The Cone Model

The Cone model uses the maximum velocity Mv of the
moving object to calculate the maximum displacement [8].
However, as displayed in Fig. 2, the maximum displace-
ment, MD, is a function of time t in the Cone model. Each
direction defines a funnel that has its top as a circle with ra-
dius equal to e centered at one of the reported points and its
base as a circle that is perpendicular to the time dimension
at the other reported point. The overlapping region of the
two funnels generated between two adjacent reported po-
sitions defines the uncertainty region of Cone (see Fig. 2).
The boundary of the uncertainty region is the maximum pos-
sible deviation of an object travelling between P1 and P2

during T. The maximum displacement at a given time t is
disp(t) = Mv · t, and the maximum displacement MD is de-
fined as MD = Mv · (t2 − t1).

The Cone model defines the minimum and maximum
future and past locations of the moving object at a given time
t as follows:

The minimum possible future position along dimension i:

f 1
min(t) = (P1i − e) − disp(t) (1)
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Table 1 Notations.

Notation Meaning

P1i reported position of point 1 in the ith dimension
P2i reported position of point 2 in the ith dimension
t1 time instance when P1 was reported
t2 time instance when P2 was reported
t any time instance between t1 and t2 inclusively
T time interval between t2 and t1, T = t2 − t1

V1i velocity vector at P1 in the ith dimension
V2i velocity vector at P2 in the ith dimension
d space dimensionality (time dimension is not included)
e instrument and measurement error

Mv maximum velocity of an object
Ma maximum acceleration of an object
MD maximum displacement of an object

MBRCylinder MBR of Cylinder

MBRCone MBR of Cone

MBRTornado MBR of Tornado

MBREstTornado MBR of EstTornado

MBRTruncated Tornado MBR of Truncated Tornado

lowi lower bound of an MBR in the ith dimension
highi upper bound of an MBR in the ith dimension

Fig. 1 Uncertainty regions in 2D (space-time) generated by the Cylinder
model.

The maximum possible future position along dimension i:

f 1
max(t) = (P1i + e) + disp(t) (2)

The minimum possible past position along dimension i:

p1
min(t) = (P2i − e − MD) + disp(t) (3)

The maximum possible past position along dimension i:

p1
max(t) = (P2i + e + MD) − disp(t) (4)

The “ f ” stands for future position starting from P1 while the
“p” stands for past position starting from P2.

Fig. 2 Uncertainty regions in 2D (space-time) generated by the Cone
model.

4.2 Non Linear Models

Non-linear models consider second degree input values in
their calculation of the uncertainty regions as discussed in
the following models.

4.2.1 The Tornado Model

Both the Cylinder and the Cone models assume that a mov-
ing object can instantly reach the maximum velocity from
the current velocity. However, moving objects in reality
move with momentum, i.e., they need some time to change
their velocities. Thus, many moving objects in a lot of
cases (e.g. vehicles) move with a certain acceleration that is
bounded by a maximum value. This provides the idea of a
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Fig. 3 Uncertainty regions in 2D (space-time) generated by the Tornado
model.

2nd degree uncertainty model called the Tornado model [29].
The Tornado model uses both the maximum velocity Mv and
the maximum acceleration Ma of the moving object to cal-
culate the maximum displacement, taking into consideration
both directions: from P1 to P2 using V1 as an initial velocity
and from P2 to P1 using V2 as an initial velocity (see Fig. 3).

Let displ1 and displ2 be, respectively, the first-degree
and second-degree displacement functions defined as fol-
lows:

displ1(V, t) = V · t
displ2(V, a, t) =

∫ t

0
(V + a · x)dx ≈ V · t + (a/2) · t2

where V is velocity, a is acceleration and t is time. In addi-
tion, let tMv be the amount of time required to reach the max-
imum velocity Mv, given an initial velocity Iv and a maxi-
mum acceleration Ma, then we have: tMv = (Mv − Iv)/Ma,
when Mv > Iv (where Iv = V1 for P1 and Iv = V2 for P2).

The movement of an object is modeled as follows: an
object accelerates its speed with the maximum acceleration
until it reaches Mv (i.e., displ2). Once it reaches Mv, it trav-
els at Mv (i.e., displ1). This is a realistic approximation of
most moving objects. Then, given a location-time < P,V, t >
(i.e., a d ≥ 1 dimensional location), where position P is as-
sociated with a time t and a velocity V , an object is chang-
ing its velocity towards Mv at a rate of Ma along dimension i
when D1 = displ1(Mv, t − tMv) and D2 = displ2(V,Ma, tMv).
The position of the object along dimension i after some time,
t, from the start time ts (i.e., t1) is defined by the following
function:

f pos(P1i,V1i,Mv,Ma, t, i) =

{
P1i + D2 + D1 if tMv < t

P1i + D2 otherwise

Similarly, the position of the object before some time,
t, from the start time ts (i.e., t2) is defined as follows:

p pos(P2i,V2i,Mv,Ma, t, i) =

{
P2i − D2 − D1 if tMv < t

P2i − D2 otherwise

The first case (i.e., tMv < t) in the above functions is
the case when the object reaches the maximum velocity Mv
in a time period that is less than t. Hence, the position of

the object is evaluated by a curve from ts to tMv applying the
maximum acceleration and by a linear function from tMv to t.
However, the second case is the case when the object cannot
reach Mv between ts and t, thus the position of the object
is only calculated using a non-linear function that uses the
maximum acceleration Ma. When the range of velocity and
acceleration of the object is [−Mv,+Mv] and [−Ma,+Ma],
respectively, the Tornado model defines the future and past
maximum displacements of the object as follows:

The minimum possible future position along dimension i:

f 2
min(t) = f pos(P1i,V1i,−Mv,−Ma, t, i) (5)

The maximum possible future position along dimension i:

f 2
max(t) = f pos(P1i,V1i,+Mv,+Ma, t, i) (6)

The minimum possible past position along dimension i:

p2
min(t) = p pos(P2i,V2i,+Mv,+Ma, t, i) (7)

The maximum possible past position along dimension i:

p2
max(t) = p pos(P2i,V2i,−Mv,−Ma, t, i) (8)

The funnel formed between f 2
min(t) and f 2

max(t) corre-
sponds to all possible displacements from P1 during T and
the funnel formed between p2

min(t) and p2
max(t) corresponds

to all possible displacements from P2 during T . The area
formed by the overlapping regions of the two funnels is
the uncertainty region generated by the Tornado model (see
Fig. 3).

4.2.2 The Truncated Tornado Model

In this section we present our proposed model, the Trun-
cated Tornado. The main idea behind the Truncated Tor-
nado model, is the following observation: objects moving
with momentum cannot make extreme changes in their ve-
locity. Their positive and negative accelerations are limited,
hence they need some time to change their velocities from
one direction to the opposite direction, thus, the right and
left corners Pmax and Pmin shown in Fig. 4 are impossible to
be reached by the moving object, during the time interval t1
to t2 while traveling from P1 to P2, unless we assume infinite
acceleration, which is unrealistic. However, these extreme
points of the Tornado uncertainty region imply that there are
still sub-regions within the calculated uncertainty region that
can be removed. Hence, removing unreachable sub-areas of
the uncertainty region by calculating the furthest point (C
in Fig. 5) an object can reach given its maximum accelera-
tion, and yet being able to go back and reach the interval of
the other direction would greatly reduce the volume of the
uncertainty region.

We calculate the furthest point C in the Truncated Tor-
nado model as follows:
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Fig. 4 Uncertainty region of the Tornado model.

Fig. 5 Point of no safe return (case a).

Case a: Assume that the two intervals and trajectories
are as shown in Fig. 5.
We say that Ps is the point of no safe return for g if Ps is
the rightmost point on the trajectory g such that when the
object (car) starts changing direction at Ps then it will touch
the trajectory f (at point R), i.e., the object is within the
boundary of the maximum possible deviation. Since any
realizable trajectory between the two intervals must remain
within the boundary defined by f and g, it is clear that the
point C (which is the rightmost point on the decelerating
trajectory started at Ps) can be used as a cut point for the
right boundary of the MBR encompassing the uncertainty
region. This boundary is indicated in the figure by the dotted
line.

The question is how to calculate the points Ps and C.
We show how to do this when both f , g are parabolas first
(case a) and then we show how to modify the functions when
Ps and R are on the linear part of g and f , respectively, i.e.,
when the maximal velocity is reached before Ps going from
P1 to P2 and before R going from P2 to P1 (case b).

Upon turning the situation by 90 degrees counterclock-
wise, we see that f , g in Fig. 5 are parabolas given by
f (x) = ax2 + b1x + c1, g(x) = ax2 + b2x + c2. (We use
the same quadratic coefficient a since the maximal acceler-

ation Ma is the same for f and g, namely 2a.) Note that
b1 � b2 since the parabolas f , g are not nested.

Let x0 be the x-coordinate of the point Ps. The decel-
eration trajectory started at Ps is again a parabola, and it can
be given by h(x) = −ax2 + ux + v. We must determine u, v
and x0.

We want h to stay below f at all times, hence −ax2 +

ux + v ≤ ax2 + b1x + c1 for every x. Equivalently, k(x) =
2ax2+(b1−u)x+(c1−v) ≥ 0 for every x. Since we want h to
touch f , we want k to be a parabola that touches the x-axis.
Equivalently, we want the discriminant (b1−u)2−4(2a)(c1−
v) to be equal to 0. This yields

v = c1 − (b1 − u)2/(8a) (9)

Analogously, we want h to stay below g at all times,
hence −ax2+ux+v ≤ ax2+b2x+c2 for every x. Equivalently,
k(x) = 2ax2 + (b2 − u)x + (c2 − v) ≥ 0 for every x. Since we
want h to touch g, we want k to be a parabola that touches
the x-axis. Equivalently, we want the discriminant (b2−u)2−
4(2a)(c2 − v) to be equal to 0. This yields

v = c2 − (b2 − u)2/(8a) (10)

The parabola h must satisfy both ((9)) and ((10)), there-
fore, we can set ((9)) = ((10)), eliminate v from the equation,
solve for u and then substitute to find v. Solving for u we get

u = 4a
c2 − c1

b1 − b2
+

1
2

(b1 + b2) (11)

(Here we use the observation that b1 � b2.)
It is now easy to find the cut point C, as this is the vertex

of the parabola h. Notice that we only need to calculate u to
find C since C = u

2a .
Finally, the reverse time problem (going from P2 to P1)

is precisely the forward time problem: we are looking for a
parabola that stays below and touches both f and g, hence
the reverse time parabola coincides with the forward time
parabola.

The same technique needs to be applied to find the cut
point C′ on the left boundary of the calculated MBR, i.e.,
the minimum extreme point of the uncertainty region. In
this case, upon turning the situation by 90 degrees counter-
clockwise, we see that f , g are parabolas given by f (x) =
−ax2 + b1x + c1, g(x) = −ax2 + b2x + c2 and h is a parabola
given by h(x) = ax2 + ux + v and we need h to stay above f
and g at all times and touches them.

Case b: The other case is when Mv is reached by the
moving object going from P1 to P2 and going from P2 to
P1. In this case, both Ps and R are on linear parts of g and
f , respectively (see Fig. 6).

f and g are lines given by f (x) = −Mvx + b1, g(x) =
Mvx + b2. (We use the same linear coefficient Mv since the
maximal velocity is the same for f and g, namely Mv.)

Similarly, let x0 be the x-coordinate of the point Ps.
The deceleration trajectory started at Ps is again a parabola,
and it can be given by h(x) = −ax2 + ux + v.

Just like the first case, we want h to stay below f at all
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Fig. 6 Point of no safe return (case b).

times and hence, −ax2 + ux + v ≤ −Mvx + b1 for every x.
Equivalently, k(x) = ax2−(u+Mv)x+(b1−v) ≥ 0 for every x.
Since we want h to touch f , we want k to be a parabola that
touches the x-axis. Equivalently, we want the discriminant
(u + Mv)2 − 4a(b1 − v) to be equal to 0. This yields

v = b1 − (u + Mv)2

4a
(12)

Analogously, we want h to stay below g at all times and
hence −ax2 + ux + v ≤ Mvx + b2 for every x. Equivalently,
k(x) = ax2 + (Mv − u)x + (b2 − v) ≥ 0 for every x. Since we
want h to touch g, we want k to be a parabola that touches
the x-axis. Equivalently, we want the discriminant (Mv −
u)2 − 4a(b2 − v) to be equal to 0. This yields

v = b2 − (Mv − u)2

4a
(13)

We can now solve for u. Setting ((12)) = ((13)), we get

u =
a(b1 − b2)

Mv
(14)

We have now found u and hence C for the case when R
and Ps are on the linear part of f and g respectively. Similar
calculations can be done to find C′ on the left boundary of
the calculated MBR, i.e., the minimum extreme point of the
uncertainty region.

Obviously, there are two other cases that need to be
considered when calculating C and C′, depending on the
locations of Ps, R and P′s, R′, respectively. Note that the
solution amounts to a quadratic equation in all cases.

The uncertainty region example shown in Fig. 7 is gen-
erated by this model when both Ps and R for the minimum
and maximum calculations lie on the curved part of g and f ,
respectively.

Notice that both the Tornado and the Truncated Tor-
nado models use the same maximum acceleration Ma in the
positive and negative directions. For some straightforward
modifications to the equations discussed above for calcu-
lating the extreme point C, one can incorporate the case
where the maximum positive acceleration is different from

Fig. 7 Uncertainty region in 2D generated by the Truncated Tornado
model.

the maximum negative acceleration. This is a very common
case with many moving objects such as vehicles. For sim-
plicity, we decided to only include the special case of having
the same Ma for both the positive and negative directions.

5. Uncertainty Region Approximation

In this section, we discuss the Minimum Bounding Rectan-
gle (MBR) approximation in 2D or the Minimum Bounding
Box MBB in 3D of the uncertainty regions generated by the
Cylinder model, the Cone model, the Tornado model and
the Truncated Tornado model. Then, we propose a new un-
certainty approximation of moving objects called the Tilted
Minimum Bounding Box (TMBB).

5.1 Minimum Bounding Box (MBB) Approximation

To calculate the size of an MBR of each uncertainty model,
we need to calculate the minimum value and maximum
value of the uncertainty region generated by any two consec-
utive reported points in each dimension. We will use the no-
tations Cylinder, Cone, Tornado and Truncated Tornado to
refer to both, the uncertainty models and the corresponding
MBR models for the rest of this paper.

5.1.1 The Cylinder Model in MBB

Recall that the Cylinder model quantifies the maximum
displacement using the maximum velocity Mv of the ob-
ject and the time interval between P1 and P2 such that
MD = Mv · (t2 − t1). The two cross-sections at t1 and at
t2 are hyper-circles that are perpendicular to dimension d+1
(i.e., the time dimension) and centered at, respectively, P1

and P2, with their radius: r = e + MD.
The two points that define MBRCylinder in the ith dimen-

sion can be determined as follows:

lowi(MBRCylinder) = min{P1i, P2i} − r

highi(MBRCylinder) = max{P1i, P2i} + r (15)

Note that the calculation of the MBR of the Cylinder
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Fig. 8 MBR of the Cylinder model (MBRCylinder).

Fig. 9 MBR of the Cone model (MBRCone).

model (see Fig. 8) is simple and straightforward with little
computational overhead.

5.1.2 The Cone Model in MBB

While the Cylinder model provides a simple and fast esti-
mation of MBRs, its MBR includes large areas (volumes in
3D) that cannot be reached by the moving objects even in
the worst case, i.e., the area which cannot be reached by an
object moving with the maximum velocity from P1 to P2

during T .
As displayed in Fig. 9 and as discussed earlier, the

maximum displacement, MD, is a function of time t in
the Cone model. Moreover, the maximum displacement
from both directions are considered in the calculation of
MBRCone.

To calculate MBRCone, recall Eqs. (1) to (4). The
cross point between f 1

min(t) and p1
min(t) defines the theoretical

lower bound of the MBR in the negative direction between
P1 and P2. Similarly, the cross point between f 1

max(t) and
p1

max(t) defines the theoretical upper bound of the MBR in
the positive direction. To find the two cross points, one can
solve f 1

min(t) = p1
min(t) and f 1

max(t) = p1
max(t) for t to obtain:

lowi(MBRCone) = P1i − e − P1i − P2i + MD
2

highi(MBRCone) = P1i + e +
P2i − P1i + MD

2
(16)

Note that the calculation of MBRCone is also simple

Fig. 10 MBR of the Tornado model (MBRTornado).

and straightforward with little computational overhead.

5.1.3 The Tornado Model in MBB

The estimation of MBRTornado is basically similar to that
of MBRCone, however, Tornado uses curves to represent
the maximum displacement over time. Recall that the Tor-
nado model defines the future and past maximum displace-
ments of the object in Eqs. (5) to (8).

Figure 10 shows the output of these functions between
P1 and P2. To calculate MBRTornado, one needs to deter-
mine the lower and upper bounds of the uncertainty region in
every space dimension. In most cases, the lower bound can
be the intersection of f 2

min(t) and p2
min(t). The upper bound

can be the intersection of f 2
max(t) and p2

max(t). Hence, the fol-
lowing set of equations need to be solved for t to find the two
cross points: f 2

min(t) = p2
min(t) for lowi and f 2

max(t) = p2
max(t)

for highi. However, in some cases, lowi can be still greater
than P1i − e or P2i − e (similarly, highi can be smaller than
P1i + e or P2i + e). Thus, MBRTornado is defined as:

lowi(MBRTornado) = min{P1i − e, P2i − e, lowi}
highi(MBRTornado)=max{P1i+e, P2i+e, highi} (17)

To calculate the two cross points, one needs to solve
a set of quadratic equations. The number of equations that
need to be solved for each dimension is eight. For exam-
ple, Fig. 11 shows the four possible cases of intersections
between f 2

min(t) and p2
min for one dimension.

5.1.4 The Truncated Tornado Model in MBB

To calculate the MBR of the uncertainty region shown in
Fig. 7, it is sufficient to choose Max{P1 + e, P2 + e,C} for
the maximum boundary, and to choose Min{P1 − e, P2 −
e,C′} for the minimum boundary, where C in the first set is
calculated based on the maximum functions and C′ in the
second set is calculated based on the minimum functions
discussed in the previous section. This should be applied
for each space dimension to calculate the MBB that encloses
the uncertainty volume.
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Fig. 11 Cases of intersection between f 2
min(t) and p2

min(t).

5.2 Tilted Minimum Bounding Box (TMBB) Approxima-
tion

The MBB approximation greatly reduces the complexity of
the geometry it represents. Another important feature of the
MBB is the simple and fast execution of spatial operations
such as the test for intersections. Consequently, the MBB is
highly used as an approximation method. However, MBBs
provide an inaccurate filter for the refinement step. The area
of the MBB can differ a lot from the actual object being
approximated which results in returning a large number of
candidates to the query, which in turn increases the number
of false hits.

The uncertainty regions generated by the Truncated
Tornado model are rather “tilted” in shape in which tra-
ditional (axis-parallel) MBBs are most likely not close to
the optimal approximations of the regions. The advantage
of the Truncated Tornado model can be strengthened by a
more accurate approximation that takes the tilted shape of
the regions into account and not only the extreme points of
the uncertainty region. We investigate the Tilted Minimum
Bounding Boxes (TMBBs) as approximations of the uncer-
tainty regions generated by the Truncated Tornado model.
Figure 12 shows an example of the TMBR of an uncertainty
region produced by the Truncated Tornado model vs. the
axis-parallel MBR calculated in a 2D time-space dimension.

When compared with axis-parallel MBBs in 3D,
TMBBs, which are minimum volume bounding boxes that
relax the axis-aligned property of the MBBs, generally al-

Fig. 12 MBR vs. TMBR of Truncated Tornado.

low geometries to be bounded more tightly with a fewer
number of boxes [7]. Attempts to evaluate TMBBs on spa-
tial data have resulted in proving that TMBB represent more
accurate approximations of spatial datasets compared to
MBBs [5]. Similar research has not been done yet (to the au-
thors knowledge) on spatiotemporal datasets that deal with
uncertainty regions. For the following reasons, we decide
to investigate the TMBBs as an approximation method for
the uncertainty regions generated by the Truncated Tornado
model:

- Unlike spatial data, spatiotemporal data have move-
ment directions associated with time. MOs continu-
ously move over time, at least in one direction which
provides a trend (direction) to the generated uncertainty
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regions. This tilted direction in uncertainty suggests
using a more general MBB enclosing the uncertainty
region that accommodates the movement direction in
order to more accurately approximate the uncertainty
region.

- Unlike spatial data, spatiotemporal data can grow in
dimension and hence, it is more important to reduce
the volume of the uncertainty approximation since the
advantage of reduction can be applied for every di-
mension. However, exact solutions to calculating the
TMBB is only done for the 2D [22] and 3D cases [12].

When calculating the TMBB of the uncertainty region
generated by the Truncated Tornado such as the one shown
in Fig. 7, other points such as Ps and R might be the extreme
points defining the TMBB. Hence we identify all the ex-
treme points that need to be considered as follows:
R, C and Ps of the maximum direction (upper boundary) in
the x-dimension need to be calculated and the corresponding
y-values (at specific time instance when the x-values are cal-
culated) are assigned to these points. Similarly, R, C and Ps

in the y-dimension need to be calculated and the correspond-
ing x-values (at specific time instance when the y-values are
calculated) are assigned to these points. This results in six
points calculated in 3D. The same calculation set needs to
be done for the minimum direction (lower boundary) by cal-
culating R′, C′ and P′s in both the x and y dimensions which
results in 6 other points. The other extreme points are P1−e,
P1 + e, P2 − e and P2 + e.

Given six points in 3D calculated for the upper bound-
ary, six points in 3D calculated for the lower boundary and
finally four points in 3D (two top and two bottom), we calcu-
late the TMBB enclosing the uncertainty region of the Trun-
cated Tornado model using the approximation method of
[3]. Given a set of points in 3D, their algorithm calculates an
approximation of a minimal tilted MBB enclosing the set of
points. The TMBBs of the uncertainty regions generated by
the Truncated Tornado model resulted in orders of magni-
tude reductions in the volume compared to the axis-parallel
MBBs as will be demonstrated in the next section.

6. Performance Evaluation

6.1 Analytical Evaluation

In this section we present an analytical evaluation of the
Truncated Tornado approximated by the TMBB in order to
provide an insight into the performance of the proposed un-
certainty and approximation models before going into the
detailed experimental evaluation. We first start by providing
a general cost model for range queries that does not relate to
a specific indexing structure and evaluate the approximation
quality of TMBB vs. MBB. We then introduce a cost model
proposed in [21] for range queries when using the R-tree as
an index structure and dicuss the cost of our models.

6.1.1 Approximation Effect on Query Performance

The analysis in this section follows the approach of [7] and
[25]. The authors provided a general cost model for the eval-
uation of range queries on objects indexed by MBBs and
TMBBs. In our case, the objects are the uncertainty regions
generated by the different models. The total cost of finding
objects represented by general bounding volume (approx-
imation) hierarchies that intersect a range query q can be
represented by the following function: Cost = Cost of filter-
ing + Cost of refinement, hence, the equation can be written
as follows:

Cost=NBoundingVolume ·CBoundingVolume+NOb ject ·COb ject

where, NBoundingVolume: is the number of tests for bounding
volumes intersecting q,
CBoundingVolume: is the cost of testing for a bounding volume
intersecting q,
NOb ject: is the number of tests for data objects (uncertainty
regions) intersecting q,
COb ject: is the cost of testing for a data object intersecting q

The time for refinement dominates the time for the fil-
ter step and the access frequency to the exact object by
a range query depends greatly on the approximation qual-
ity [9]. The choice of the bounding volume whether it is
MBB or TMBB affects NBoundingVolume, CBoundingVolume and
NOb ject. The Truncated Tornado model’s uncertainty re-
gions when approximated by TMBB result in low values
for NBoundingVolume by decreasing the number of intersections
with q as well as low values for NOb ject by decreasing the
false-hits. However, they would result in high CBoundingVolume

values compared to the Cone model and the Tornado model
when approximated by MBB as they require higher number
of operations to be evaluated [7], [25]. On the other hand,
TMBBs have a much higher pruning power because of their
higher approximation quality compared to MBBs [5].

Approximation quality of a bounding volume measures
the “tightness” of the bounding volume with respect to the
original object; the smaller the false area within the approx-
imation, the higher the quality of the approximation. Fig-
ure 13 demonstrates the ratio of the approximation quality
of the TMBB compared to the MBB using the synthetic and
real datasets. Datasets generation and parameters are de-
scribed in detail in Sect. 6.2.1. As TMBBs provide much
higher approximation quality to uncertainty regions gener-
ated by the Tornado and Truncated Tornado models, they
lead to a much smaller candidate set NOb ject for the refine-
ment step compared to MBBs, so the CPU cost during the
refinements step will therefore be less.

Since the bottleneck in typical range queries on spatial
and spatiotemporal data has been the I/O cost which is rep-
resented by the number of nodes accessed using an index
structure, we present a cost model utilizing R-trees in the
next section.
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(a) Synthetic dataset 11 (b) Real dataset

Fig. 13 Approximation quality improvement of TMBB over MBB.

Table 2 Synthetic and real data sets and system parameters.

datasets reported records parameters
AVG Vel. MAX Vel. MAX Acc. Mv Ma

synthetic Group 1 17.69 - 45.99 21.21 - 49.49 7.09 - 7.13 55 8
Group 2 12.52 - 32.51 15.00 - 35.00 5.02 - 5.04 55 8

Dataset 11 17.76 20.61 6.41 55 8

real San Diego 11.44 36.25 6.09 38.89 6.5

6.1.2 Query Performance Using R Tree

One of the most recent cost models for range queries on un-
certainty regions proposed in [21] is to estimate the number
of node accesses which corresponds to the number of I/O
operations when performing a range query on R tree indexed
uncertainty regions generated by the proposed models.

Assuming that the entire data space is a unit workspace
in 3D, the cost model is defined as follows: given an R tree
R and a query q, let hR be the height of the tree, NR,L be the
number of nodes at level L, and S R,L be their average sizes.
Then, the expected number of node accesses to answer q is
defined as follows:

Ntotal =

hR−1∑
L=1

intersect(NR,L, S R,L, q) (18)

where intesect(N, S , q) = N ·∏3
k=1(S k+qk) and S i, qi are the

average extent of N MBBs and query q, respectively.
From the equation, the number of nodes accessed at a

certain level L of the R tree depends on the average extent
of the node rectangles at level L (S R,L) which in turn de-
pends on the average extents of the rectangles it encloses. It
should be clear now that reducing the sizes of the MBBs of
the uncertainty regions directly result in reducing the num-
ber of nodes accessed, and hence, reducing the total I/O cost.
As will be demonstrated in our experimental evaluation,
Sect. 6.2, the Truncated Tornado model succeeds in substan-
tially reducing the uncertainty regions associated with each
object, and therefore, reducing their MBB approximation,
yielding low I/O cost compared to the other models.

6.2 Experimental Evaluation

6.2.1 Datasets and Experimental Methodology

We evaluated the proposed models with both synthetic and
real datasets. In all experiments, we assumed vehicles as
moving objects. However, the proposed models can be ap-
plied to any moving objects.

Our synthetic datasets were generated using the “Gen-
erate Spatio Temporal Data” (GS T D) algorithm [20] with
various parameter sets such as varied velocities and differ-
ent directional movements (see Table 2). On top of GS T D,
we added a module to calculate the velocity values at each
location. Each group consisted of five independent datasets
(datasets 1 − 5 in group 1 and datasets 6 − 10 in group
2). Each dataset in group 1 was generated by 200 objects
moving towards Northeast with a rather high average veloc-
ity. Each dataset in group 2 was generated by 200 objects
moving towards East with a lower average velocity than the
datasets in group 1. For the datasets in group 1, we var-
ied the average velocity between 17.69 m/s and 45.99 m/s,
and for the datasets in group 2, the average velocity varied
between 12.52 m/s and 32.51 m/s. As a specific example,
dataset 11 was generated by 200 objects moving towards
Northeast but more towards East (i.e., the velocity in the x
direction is greater than the velocity in the y direction) with
an average velocity equal to 17.76 m/s. Each object in the
eleven synthetic datasets reported its position and velocity
every second for an hour.

The real data set was collected using a GPS device
while driving a car in the city of San Diego in California,
U.S.A. The actual position and velocity were reported every
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one second for a total period of 20 minutes. The average of
the recorded velocities was 11.44 m/s. Table 2 shows the av-
erage velocity of the moving objects, the maximum recorded
velocity and the maximum acceleration of the moving ob-
ject. The last two columns show the maximum velocity and
maximum acceleration values that were used in the calcula-
tion of the MBRs for each model.

Our evaluation of the models are based on two mea-
surements. First, we quantified the volume of MBRs us-
ing each model. Second, given a range query, we measured
the number of overlapping MBRs. This indicates how effi-
ciently a range query can be evaluated using each model. In
our experiments, we varied the size of the range queries.
The range queries were generated randomly by choosing
a random point in the universe, then appropriate x, y ex-
tents (query area) and t extent (query time) were added to
that point to create a random query region (volume) in the
MBR universe. The MBRs of each model for both the syn-
thetic and real datasets were calculated using time interval
TI (time interval of MBRs) equal to 5, 10, 15 and 20 sec-
onds to investigate the impact of the update interval on the
query performance using each model. We performed all our
experiments on an Intel based computer running MS XP op-
erating system, 1.66 GHz CPU, 1 GB main memory space,
using Cygwin/Java tools.

6.2.2 Uncertainty Models in MBB Approximation

In this section, we evaluate the proposed MBR models for
the Cylinder, Cone, Tornado and Truncated Tornado models
using both synthetic and real data sets.

(1) A. Cylinder Vs. Cone Vs. Tornado using MBB

Figure 14 (a) shows the average volume of the MBRs gen-
erated by each model for synthetic dataset 11. The x-
axis represents the time interval (TI) used to calculate the
MBRs. The y-axis (logarithmic scale) represents the av-
erage volume of the MBRs. Regardless of the TI value,
the Cone model resulted in much smaller MBRs than the
Cylinder model. The Tornado model resulted in even much
smaller MBRs compared to the Cone model. Another obser-
vation is that the larger the TI value is, the less advantage we
gain from the Tornado model compared to the Cone model.
When T I is large, all calculated MBRs are very large be-
cause the maximum velocity is assumed during most of the
time interval (T ) between any two reported points, regard-
less of the model.

The results using the real dataset showed the same
trends compared to the synthetic data results. Figure 14 (b)
shows the average volumes of the MBRs generated by each
model for the San Diego dataset. The x-axis represents the
time interval TI that is used to calculate the MBRs. The
y-axis (logarithmic scale) represents the average volume of
the MBRs in cubic meters. Regardless of the TI value, the
Cone model resulted in much smaller MBRs than the Cylin-
der model. Also, the Tornado model resulted in even much
smaller MBRs compared to the Cone model.

(a) Synthetic dataset 11

(b) Real dataset

Fig. 14 Average MBR volume of each model.

Next, we generated and evaluated 4000 random queries
to synthetic dataset 11. We varied the query area between
0.004% and 0.05% of the area of the universe and varied the
time extent of the query between 2 minutes and 8 minutes.
Figure 15 shows the average number of intersecting MBRs
per 1000 queries that each model resulted in while varying
TI.

In all cases, the Tornado model resulted in an or-
der of magnitude less number of intersections than the
Cone model. This is because the Tornado model produced
much smaller MBRs than the Cone model. Notice that the
Tornado model has more advantage over the Cone model for
smaller values of TI as explained in the previous result. For
the same reason, the Cone model outperformed Cylinder re-
sulting in much less number of intersections.

In Fig. 16, we generated 4000 random queries for the
real dataset. We varied the query area between 0.004% and
0.05% of the area of the universe and varied the time extent
of the query between 2 minutes and 8 minutes. Figure 16
shows the average number of intersections per 1000 query
that each model resulted in when varying TI. All obser-
vations on the synthetic dataset results hold with the real
dataset.

In addition to comparing the number of intersections
each MBR model resulted in, we performed experiments on
synthetic dataset 11 indexed by R* tree to compare the ac-
tual false hits. The buffer was set to 10% of the number
of nodes of the tree. Figure 17 shows the number of false
hits each MBR model resulted in, using 1000 randomly gen-
erated queries varying TI. The query area varied between
0.004% and 0.05% and the time extent between 2 and 8 min-
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Fig. 15 Average number of intersections per 1000 query for synthetic dataset 11.

Fig. 16 Average number of intersections per 1000 query for the real dataset.

utes. In all cases, the Tornado model resulted in less number
of false hits than the Cone model since the Tornado model
produced much smaller MBRs than the Cone model. For
the same reason, the Cone model outperformed the Cylin-
der model resulting in much less number of false hits.

(2) B. Cone Vs. Tornado Vs. Truncated Tornado using
MBB

In this section, the performance of the Truncated Tornado
model is illustrated in terms of the volume of MBBs approx-
imating the uncertainty regions produced by this model. We
compare the results to the Tornado model, the most recently



2454
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 17 Number of false hits for synthetic dataset 11.

(a) Synthetic dataset 11 (b) Real dataset

Fig. 18 MBB volume comparison of the Truncated Tornado, Tornado and Cone models.

proposed uncertainty model as well as to the standard Cone
model proposed in [8].

Figure 18 (a) and (b) show the average volume of the
MBBs generated by the the Truncated Tornado, the Tor-
nado and the Cone models using both the real and synthetic
datasets. The average reduction in the volume of the Trun-
cated Tornado MBBs for the synthetic data set over all TI
values was 60% over the Tornado model and 90% over the
Cone model. The average reduction in the volume was 45%
over the Tornado MBBs and 82% over the MBBs of the
Cone model, using the real dataset. The reduction rate in
the MBB volume for both datasets was obtained based on
the reduction rate in the uncertainty region volume that is
produced by the Truncated Tornado model. The Truncated
Tornado model produced uncertainty regions with extreme
points that are included within the extreme points of the un-

certainty regions generated by the Tornado model, this re-
sults in smaller MBB approximations of the uncertainty re-
gions of the Truncated Tornado model for the same TI value
used to calculate the MBBs of the Tornado uncertainty re-
gions. Since most moving objects move with average ve-
locities less than their maximum velocities, the Tornado and
Truncated Tornado models outperformed the Cone model,
which assumes that the maximum velocity is reached at all
times which therefore creates larger uncertainty regions, and
hence, larger MBB volumes.

Next, we generated and evaluated 5000 random range
queries using the MBBs calculated by the Truncated Tor-
nado, the Tornado and the Cone models for the real dataset.
We varied the query area between 0.004% and 0.16% of the
area of the universe and varied the time extent of the query
between 2 minutes and 8 minutes.
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(a) Real dataset with TI = 10 (b) Real dataset with TI = 20

(c) Synthetic dataset 11 with TI = 10 (d) Synthetic dataset 11 with TI = 20

Fig. 19 Truncated Tornado vs. Tornado vs. Cone with 5000 queries using MBBs.

Figure 19 (a) and (b) show the number of intersecting
MBRs that each model resulted in for the real data set when
TI=10 and TI=20, respectively. In both cases, the Truncated
Tornado model resulted in much less intersections compared
to the Tornado model. The reduction of the number of inter-
sections is more significant when comparing the Truncated
Tornado model to the Cone model. The average reduction
of the Truncated Tornado model over the Tornado model in
terms of number of intersections over all query sizes was
26% for TI=10 and 34% for TI=20. The reduction over the
Cone was 51% and 60% for TI=10 and TI=20, respectively.
Results when using other TI values showed similar trends.

Finally, we performed the same range query experi-
ments using R* trees to simulate practical implementation.
We generated and evaluated 5000 random range queries to
the MBBs calculated by the Truncated Tornado, the Tor-
nado and the Cone uncertainty models for the synthetic
dataset. The evaluation metric in this experimental part
is the number of false-hits caused by random queries per-
formed on the R* trees. The cache size was set to 10% of
the data size and we varied the query area between 0.004%
and 0.16% of the area of the universe and varied the time
extent of the query between 2 minutes and 8 minutes.

Figure 19 (c) and (d) show the number of false-hits
that each model resulted in when TI=10 and TI=20, respec-
tively. In both cases, the Truncated Tornado model resulted
in much less number of false hits compared to the the Tor-
nado and to the Cone models. The reduction in the number
of false hits was 10% over the Tornado model and 47% over
the Cone model when TI=10, and 34% over the Tornado

model and 55% over the Cone model when TI=20. This
demonstrates that the reduction achieved in the MBB vol-
ume directly resulted in the reduction of false-hits.

6.2.3 The Effect of TMBB Approximation

In this section, the TMBB approximation is evaluated by
comparing the average volume of the TMBBs of the un-
certainty regions generated by the Tornado and the Trun-
cated Tornado models to the average volume of the axis-
parallel MBBs in order to demonstrate the high accuracy of
the TMBB compared to the MBB when approximating the
same objects, namely, the uncertainty regions.

We first compared the volume of the TMBBs approxi-
mating the Tornado and Truncated Tornado uncertainty re-
gions to that of the axis-parallel MBBs of the same regions
using the real and synthetic datasets. Figure 20 (a) and (b)
show the average volume of the TMBBs and the MBBs
generated by the Tornado model for the synthetic and real
datasets, respectively. Figure 20 (c) and (d) show the same
for the Truncated Tornado model. The x-axis represents the
time interval (TI) used to calculate the TMBBs and MBBs.
The y-axis represents the average volume of the calculated
TMBBs and MBBs (logarithmic scale). The TMBB re-
sulted in an average reduction of 98% and 95% over the
axis-parallel MBB for the synthetic and real dataset, respec-
tively using the Tornado model. The reduction was 95% for
the synthetic and 78% for the real dataset using the Trun-
cated Tornado model. This high reduction in volume is due
to the tighter approximation of the TMBB compared to the
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(a) Tornado with Synthetic dataset 11 (b) Tornado with Real dataset

(c) Truncated Tornado with Synthetic dataset 11 (d) Truncated Tornado with Real dataset

Fig. 20 TMBB volume vs. MBB volume.

(a) Tornado with TI = 10 (b) Tornado with TI = 20

(c) Truncated Tornado with TI = 10 (d) Truncated Tornado with TI = 20

Fig. 21 TMBB vs. MBB with 5000 queries for real dataset.

MBB for this “tilted” shape of the uncertainty region. The
“tilted” and “elongated” shape of the uncertainty regions
generated by the Tornado and Truncated Tornado models
is more accurately captured by the TMBB as apposed to the
parallel-axis MBB since the TMBB can follow the direction
of movement of the object and, hence, reduce the volume of
the uncertainty regions’ approximations.

Next, we generated and evaluated 5000 random range
queries to the TMBBs and MBBs of the Tornado and Trun-
cated Tornado models used in the previous experiment. We
varied the query area between 0.004% and 0.16% of the
area of the universe and varied the time extent of the query
between 2 minutes and 8 minutes. Figure 21 (a) and (b)
show the number of intersecting TMBBs and MBBs that the
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Tornado model resulted in when TI=10 and TI=20, respec-
tively. In both cases, the TMBB resulted in much less inter-
sections compared to the axis-parallel MBBs since TMBBs
result in smaller average volumes compared to MBBs as
was illustrated in earlier results. The reduction in the num-
ber of intersections of TMBB compared to MBB was 27%,
34% when TI=10 and TI=20, respectively. Figure 21 (c) and
(d) show the number of intersections with the TMBBs and
MBBs of the Truncated Tornado model. The reduction of
TMBB over MBB in this case was 23% when TI=10 and
31% when TI=20. This illustrates the direct effect of the
higher accuracy of the TMBB on the selectivity of the range
queries.

6.2.4 Truncated Tornado + TMBB Evaluation

In this section, we show the effect of combining the Trun-
cated Tornado and TMBB approximation method. This
demonstrates the accuracy of representing uncertainty re-
gions using the Truncated Tornado uncertainty model com-
bined with a “good” approximation method, say the TMBB.

We first compared the volume of the TMBBs approxi-
mation of the Truncated Tornado uncertainty regions to the
volume of the axis-parallel MBBs of the Tornado and Cone
models using the real and synthetic datasets. Figure 22 (a)
and (b) show the average volume of the TMBBs generated
by the Truncated Tornado and the average volume of the
MBBs generated by the other two models using the syn-
thetic and real datasets, respectively. The x-axis represents
the time interval (TI) used to calculate the MBBs. The
y-axis represents the average volume of the TMBBs and

(a) Synthetic dataset 11

(b) Real dataset

Fig. 22 Truncated Tornado in TMBB vs. Tornado and Cone in MBB.

MBBs (logarithmic scale). The Truncated Tornado com-
bined with TMBB resulted in an average reduction of 93%
and 97% over the axis-parallel MBB of the Tornado and
Cone models, respectively, using the real dataset. The re-
duction when using the synthetic dataset was 99% over both
the Tornado and Cone models. This reduction is due to the
accuracy and efficiency in modeling the uncertainty regions
generated by the Truncated Tornado model using the TMBB
approximation.

Next, we generated and evaluated 5000 random queries
to the TMBBs and MBBs calculated in the previous re-
sult for the real dataset. We varied the query area between
0.004% and 0.16% of the area of the universe and varied
the time extent of the query between 2 minutes and 8 min-
utes. Figure 23 (a) and (b) show the number of intersecting
TMBBs of the Truncated Tornado model and the number of
intersecting MBBs of the Tornado and Cone models when
TI=10 and TI=20, respectively. In both cases, the TMBBs
of the Truncated model resulted in much less intersections
compared to the axis-parallel MBBs of the other models
since the Truncated Tornado results in much smaller uncer-
tainty regions compared to the Tornado and Cone models.
Also, TMBBs result in significantly smaller average vol-
umes compared to MBBs as they more accurately approx-
imate the uncertainty regions. The reduction in the num-
ber of intersections of the Truncated Tornado TMBBs was
42% over Tornado MBBs and 62% over Cone MBBs when
TI=10. When TI=20, the reduction over Tornado MBBs
was 47% and was 68% over Cone MBBs. Similar results
were obtained using other query sizes and TI values.

(a) TI = 10

(b) TI = 20

Fig. 23 Intersections of Truncated Tornado in TMBB vs. Tornado,
Cone in MBB.
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This result demonstrates the high efficiency obtained
by the Truncated Tornado model in reducing the uncertainty
regions, combined with the TMBB, an accurate approxima-
tion of the uncertainty regions generated by the proposed
uncertainty model.

7. Conclusions

The primary focus of this paper has been to design and im-
plement spatiotemporal models that are able to efficiently
manage, quantify and query uncertainty regions associated
with Moving Objects (MOs). In particular, this work inves-
tigated recently proposed uncertainty models, namely, the
Cylinder, the Cone, the Tornado and the Truncated Tornado
models.

The Tornado model for managing the uncertainty of
continuously moving objects was particularly of interest as
it utilizes higher-degree input compared to the Cylinder and
Cone models that only take first degree values as input. In
the two-phase (filtering and refinement) query processing,
the minimality (or selectivity) of the approximation deter-
mines the false-hit ratio of the filtering phase, which trans-
lates into the cost of the refinement step; the minimality of
the uncertainty model determines the final false-hit ratio of
the query.

A practical framework called the Truncated Tornado
model was proposed which managed to identify and elim-
inate unreachable object locations from the uncertainty re-
gions calculated by the Tornado model, thus significantly
reducing uncertainty region size and hence, reducing false
hits.

To improve the filtering step in the query process,
Sect. 5 covered Minimum Bounding Rectangle (MBR) ap-
proximations for the uncertainty regions generated by each
of the following models: the Cylinder, the Cone the Tornado
and the Truncated Tornado. By doing so, we were able to
use R*-trees to index the irregularly shaped uncertainty re-
gions.

Experiments on real and synthetic datasets showed that
the Tornado model resulted in orders of magnitude reduc-
tion in the average volume compared to the Cylinder and
Cone models which, in turn, resulted in reducing the number
of false hits by 69% over the Cylinder model and 29% over
the Cone model on average. We then showed how to com-
bine the Truncated Tornado model with an efficient uncer-
tainty region approximation, the Tilted Minimum Bounding
Box (TMBB), that represented the “tilted” shape of the un-
certainty regions more accurately. The Truncated Tornado
model combined with TMBB resulted in an average volume
reduction of 96% and 98% over the axis-parallel MBBs of
the Tornado and Cone models, respectively. This resulted
in reducing the number of intersections with randomly gen-
erated range queries by 42% over the Tornado MBBs and
62% over the Cone MBBs.
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