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PAPER

Measuring the Similarity of Protein Structures Using Image
Compression Algorithms

Morihiro HAYASHIDA†a) and Tatsuya AKUTSU†, Members

SUMMARY For measuring the similarity of biological sequences and
structures such as DNA sequences, protein sequences, and tertiary struc-
tures, several compression-based methods have been developed. However,
they are based on compression algorithms only for sequential data. For in-
stance, protein structures can be represented by two-dimensional distance
matrices. Therefore, it is expected that image compression is useful for
measuring the similarity of protein structures because image compression
algorithms compress data horizontally and vertically. This paper proposes
series of methods for measuring the similarity of protein structures. In the
methods, an original protein structure is transformed into a distance ma-
trix, which is regarded as a two-dimensional image. Then, the similarity
of two protein structures is measured by a kind of compression ratio of the
concatenated image. We employed several image compression algorithms,
JPEG, GIF, PNG, IFS, and SPC. Since SPC often gave better results among
the other image compression methods, and it is simple and easy to be modi-
fied, we modified SPC and obtained MSPC. We applied the proposed meth-
ods to clustering of protein structures, and performed Receiver Operating
Characteristic (ROC) analysis. The results of computational experiments
suggest that MSPC has the best performance among existing compression-
based methods. We also present some theoretical results on the time com-
plexity and Kolmogorov complexity of image compression-based protein
structure comparison.
key words: image compression, universal similarity metric, protein struc-
ture comparison

1. Introduction

Understanding of protein structures is one of the important
topics in bioinformatics and computational biology. In par-
ticular, classification of protein structures is important and
thus many studies have been done and several databases
have been developed such as SCOP [1] and CATH [2]. Clas-
sification of protein structures is usually done based on some
measure of the similarity between protein structures.

However, an agreement on which is the best similar-
ity measure is not yet obtained and a variety of structure
comparison methods have been proposed. Most existing
methods are based on protein structure alignment. Vari-
ous methodologies have been employed for protein struc-
ture alignment, which include double dynamic program-
ming [3], iterative improvement [4], combinatorial exten-
sion [5], comparisons of distance matrices [6], use of partial
order graphs [7], contact map overlap [8], artificial neural
networks using the convex hull representation of a protein
structure [9], grouping atoms for interaction sites [10], and
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partial geometric hashing [11]. In most of structure align-
ment methods, some scoring function is defined for mea-
suring the quality of the obtained alignment. Then, the
structure alignment problem is defined as finding a structure
alignment with the optimal or near optimal score. However,
score functions are defined in more or less ad-hoc manners
and there is no consensus or theoretical justification. Fur-
thermore, many of existing structure alignment methods are
not very efficient.

Shibuya et al. developed a linear-time protein struc-
ture searching algorithm [12]. However, their problem of
reporting all substructures similar to a query structure from
a database has been proved to be NP-hard, and it is diffi-
cult to solve the problem if there are many insertions and
deletions.

Krasnogor and Pelta [13], Barthel et al. [14], and Shah
et al. [15] proposed a novel approach to measuring the simi-
larity of protein structures, and developed the decision sup-
port system ProCKSI for protein structure comparison and
other tasks. Their method is similar to the contact map
overlap (CMO) approach [8]. In their method, each protein
structure is transformed into a 0-1 matrix, which is further
regarded as a 0-1 sequence. Then, two protein structures are
compared based on the compression ratio of the sequence
obtained by concatenating two 0-1 sequences. They ap-
proximated Kolmogorov complexities by the compression
ratios, and calculated the universal similarity metric (USM)
proposed by Li et al. [16]. Their method is quite simple to
implement and very fast. They demonstrated the usefulness
of the method by means of application to clustering of pro-
tein structures. It is worthy to mention that several works
have been done on measuring the similarity of biological
sequences based on data compression approach [16], [17].

Though the approach by Krasnogor and Pelta is novel
and useful, the distances between residues are truncated into
0 or 1. As a result, the similarity measure depends on the
threshold, which should be determined by trial and error.
Pelta et al. and Terrazas et al. also addressed this prob-
lem [18], [19]. The same drawback applies to CMO [8].

Ferragina et al. proposed three similarity measures by
approximating the USM, that is, UCD (Universal Compres-
sion Dissimilarity), NCD (Normalized Compression Dis-
similarity), and CD (Compression Dissimilarity) [20]. They
experimentally tested these measures by using 25 existing
compressors for some kinds of biological data such as DNA
sequences, protein sequences, protein secondary and tertiary
structures. They concluded that the combination of UCD or
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NCD and UPGMA (Unweighted Pair Group Method with
Arithmetic Mean) should be used, and as for compressors,
PPMd [21], [22] and Gencompress [23] are able to give the
best results in most cases.

On the other hand, similarity measures based on pro-
tein sequence comparison have been studied. Dai and
Wang proposed similarity measures using protein sequence
space [24]. They obtained 20 sets of similar amino acids,
called star sets, according to the substitution matrix such
as BLOSUM62 [25] and PAM40 [26], and defined the se-
quence space for a protein sequence to be the set of all the
sequences obtained by replacing each amino acid of the pro-
tein sequence with an element of the star set. Then, dissim-
ilarity measures are calculated as distances using frequen-
cies of k consecutive amino acids. They reported that the
sequence space is able to provide more information than the
protein sequence only and contributes to the classification
accuracy to classes of CATH, especially for less redundant
datasets. However, the accuracy is not considered to be suf-
ficient for practical use, and it is considered that there is a
limit on the classification using only protein sequences.

In this paper, we try to overcome such drawbacks us-
ing the compression based approach and a very simple idea.
We employ image compression in place of sequence com-
pression. It is expected that two-dimensional relationships
that are not obtained by only sequence compression are ob-
tained by image compression. Each distance matrix (not 0-1
matrix) is directly compressed by using an image compres-
sion algorithm. We examine the following image compres-
sion algorithms: JPEG, GIF, PNG, IFS, and SPC. We find
that the classification results by SPC is the best among these
compression algorithms. However, in a simple application
of image compression algorithms, the concatenated image
may include an extra region because images are usually rep-
resented as rectangular shapes. Therefore, we propose a
methodology to avoid use of the extra region by modify-
ing SPC. We apply the proposed methods to clustering and
classification of protein structures as in [13], [20], [24].

The organization of the paper is as follows. We begin
with a brief review the methods by Krasnogor and Pelta [13]
and Ferragina et al. [20]. Next, we present our proposed
methods. Then, we describe details and results of compu-
tational experiments, and provide several theoretical results.
Finally, we conclude with future work.

2. Methods

2.1 Structure Comparison Using Sequence Compression

Krasnogor and Pelta [13] and Ferragina et al. [20] employed
sequence compression to measure the similarity of two pro-
teins. Their methods are based on the universal similar-
ity metric (USM), which was originally proposed by Li et
al. [16]. USM is based on Kolmogorov complexity. The
Kolmogorov complexity K(o) of an object o is defined to
be the length of the shortest program P for a Universal
Turing Machine U that is required to output o [27]. That

is, K(o) is defined by K(o) = min{|P| | P is a program
such that U(P) = o}, and is considered to be a measure
of the amount of information contained in o. Besides, the
conditional Kolmogorov complexity of o1 given o2 is de-
fined by K(o1|o2) = min{|P| | P is a program such that
U(P, o2) = o1}, where U(P, o2) = o1 means that program
P outputs o1 when o2 is given. Based on these, information
distance between two objects o1 and o2 can be defined as
max{K(o1|o2),K(o2|o1)}. Since this distance is not normal-
ized, USM was proposed as a normalized measure [16]:

USM(o1, o2) =
max{K(o1|o2),K(o2|o1)}

max{K(o1),K(o2)} .

It is well-known that Kolmogorov complexity of a
given object is not computable [27]. Thus, Krasnogor and
Pelta, and Ferragina et al. employed sequence compression
algorithms such as ‘compress’, ‘gzip’, and ‘bzip2’ com-
mands in UNIX. Let C(s) be the size of the compressed se-
quence of s. They used C(o1) and C(o1 · o2)−C(o2) in place
of K(o1) and K(o1|o2) respectively, where o1 · o2 denotes
the concatenation of two sequences o1 and o2. Ferragina
et al. used protein amino acid sequences, TOPS string of
secondary structure elements with and without the contact
information [28], and ATOM lines from the PDB entry [29]
as the sequences ok for protein Pk. They proposed three
kinds of similarity measures, UCD (Universal Compression
Dissimilarity), NCD (Normalized Compression Dissimilar-
ity), and CD (Compression Dissimilarity) by approximating
USM with the size of compressed sequence C(s) as follows:

UCD(o1, o2)

=
max{C(o1 · o2) −C(o1),C(o2 · o1) −C(o2)}

max{C(o1),C(o2)} ,

NCD(o1, o2)

=
min{C(o1 · o2),C(o2 · o1)} −min{C(o1),C(o2)}

max{C(o1),C(o2)} ,

CD(o1, o2)

=
min{C(o1 · o2),C(o2 · o1),C(o1) +C(o2)}

C(o1) +C(o2)
.

On the other hand, Krasnogor and Pelta used a 0-1 se-
quence obtained from a contact map Mk of protein structure
Pk as the sequence ok, where Mk[i, j] = 1 if the distance
between the Cα atom of ith residue and that of jth residue is
less than threshold θ, otherwise Mk[i, j] = 0. ok is obtained
by simple raster scanning of matrix Mk.

2.2 Similarity Metric Based on Image Compression

We define a contact map Mk of protein Pk as the distance

matrix between residues as Mk[i, j] =
√

(rk[i] − rk[ j])2,
where rk[i] denotes the three-dimensional coordinate of ith
Cα atom of Pk.

We transform the contact map Mk to a raw image for-
mat, PPM (Portable Pixel Map). PPM can represent (28)3 =

16777216 colors using 3 bytes memory for a pixel, where
each byte is used for red, green, and blue, respectively, zero
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Fig. 1 Examples of images and concatenated images for proteins
(a) 1ash and (b) 1aa9. (c) The image o1 of 1ash, which is filled with black
color to the height of 1aa9. (d) The image o2 of 1aa9. (e) The concatenated
image o1 · o2 of 1ash and 1aa9.

means black color, and 16777215(= (28)3 − 1) means white
color. We transform Mk[i, j] to the corresponding pixel with
the color of the integer part of cMk[i, j], where c is a con-
stant, and we set c = 4 · (28)2 = 262144 in the experiment
section. The upper, middle, and lower bytes of cMk[i, j]
are set as red, green, and blue, respectively. If cMk[i, j]
is greater than or equal to (28)3 = 16777216, we set the
color white. Almost all values of cMk[i, j] for the evaluated
proteins are less than the value (28)3. Figures 1 (c) and (d)
show examples of such images for proteins 1ash and 1aa9
(Figs. 1 (a) and (b)), respectively. In order to concatenate
two images horizontally, the two images must have the same
height. Therefore, we fill the smaller image with black color
to the height of the other (See Figs. 1 (c) and (e)).

Krasnogor and Pelta approximated K(o1|o2) of USM
by C(o1 · o2)−C(o2) [13]. However, C(o1 · o2) is not always
equal to C(o2 · o1). Therefore, we approximate K(o1|o2) by
max{C(o1 · o2) − C(o2),C(o2 · o1) − C(o2)} = max{C(o1 ·
o2),C(o2 · o1)} − C(o2). Then, the approximated USM for
image compression, ACD (Anticommutative Compression
Dissimilarity), is given as follows:

ACD(o1, o2)

=
max{C(o1 · o2),C(o2 · o1)} −min{C(o1),C(o2)}

max{C(o1),C(o2)} .

It should be noted that the USM approximated by
Krasnogor and Pelta, UCD(o1, o2), NCD(o1, o2), and
ACD(o1, o2) become the same value if C(o1 ·o2) = C(o2 ·o1),
and both of UCD and NCD are able to give better classifica-
tion accuracy than CD [20].

2.2.1 Image Compression Algorithms

We employed the following image compression algorithms.

(1) JPEG

JPEG is usually lossy compression. An image is split into
blocks of eight by eight pixels. A two-dimensional forward
discrete cosine transform (DCT) is calculated for all blocks.
After quantization, the image is compressed using Huffman
coding [30].

Fig. 2 Illustration on the construction of a multiresolution pyramid struc-
ture by S (Sequential) transform. S transform is alternately applied to the
columns and rows of an image. The region of “HH”, where high values
are concentrated, is transformed by S transform repeatedly. Note that S
transform is similar to the Haar wavelet transform.

(2) GIF

GIF is based on the Lempel-Ziv algorithm [31], which is
a dictionary coder. It reads an input sequence, constructs
a dictionary dynamically, and replaces the sequence with
words of the dictionary.

(3) PNG

PNG is also based on the Lempel-Ziv algorithm [31], and
uses Huffman coding, where PNG has been developed to
replace GIF. The compression rate of PNG is often higher
than that of GIF.

(4) IFS

IFS stands for Iterated Function Systems, is a quadtree-
based fractal image coder/decoder, and was implemented
by Polvere and Nappi [32]. The software called Mars
is available from http://inls.ucsd.edu/˜fisher/Fractals/Mars-
1.0.tar.gz. Note that the software can accept only grayscale
images using one byte memory for a pixel as raw image
files.

(5) SPC

SPC is a lossless image compression, and was developed by
Said and Pearlman [33]. It uses a simple pyramid multires-
olution scheme enhanced with predictive coding, and con-
tains S (Sequential) transform, which is similar to the Haar
wavelet transform, and P (Prediction).

In S transform, a sequence T [i] is transformed to two
sequences H[i] and L[i] with half the length so that the av-
erage variance of the two sequences is smaller than the vari-
ance of the original sequence if the correlation coefficient of
T [2i] and T [2i + 1] is larger than 1

3 . To be more precise,
L[i] = T [2i] − T [2i + 1] and H[i] = �(T [2i] + T [2i + 1])/2�.
Note that in the Haar wavelet transform, L[i] = (T [2i] −
T [2i + 1])/2 and H[i] = (T [2i] + T [2i + 1])/2, and L[i] and
H[i] can be non-integer values although in the S transform
they are always integers. Since L[i] often has small variance
in image compression, we can reduce the errors of linearly
predicted values for L[i] using H[i]s and L[i + 1]. It should
be noted that the distances between a residue and two con-
secutive residues for protein Pk, Mk[i, j] and Mk[i, j+1], are
often almost the same, and thus L[i] also has small variance
as well as the case of usual images.

These transformations are done alternately to the
columns and rows of an image, and the obtained region of
“HH” is transformed repeatedly (See Fig. 2). It is expected
that two-dimensional relationships that are not obtained by
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only sequence compression are obtained by transforming
the columns and rows alternately and repeatedly, as well as
other image compression algorithms.

Finally, the sequence that is obtained from the trans-
formed image by simple raster scanning is encoded using
arithmetic [34] or Huffman coding.

The software is available from http://www.cipr.rpi.edu/
research/SPIHT/EW Code/lossless.tar.gz. Note that the
software can accept only grayscale images as raw image
files.

2.3 Modification of SPC (MSPC)

In order to apply image compression algorithms, images
must have rectangular shapes. However, the concatenated
image cannot be of a rectangular shape if the lengths of two
protein sequences are different. To avoid such cases, we
filled the space with black color.

In addition to a simple filling method, we propose a
modified procedure of SPC, called MSPC, because SPC of-
ten gave better results among the other image compressions,
JPEG, GIF, PNG, and IFS, in the experiments, and SPC is
simple and easy to be modified. SPC contains two parts
of procedures, S+P transform for two-dimensional data and
sequence encoding by arithmetic or Huffman coding (See
the previous section). In order to obtain the compression
size of the combined image of two images o1 and o2 corre-
sponding to two proteins, C(o1 · o2), MSPC transforms o1

and o2 individually by S+P transform, where o1 and o2 are
not filled with black color, and are directly calculated from
the distance matrices M1 and M2, respectively. It should be
noted that S transform is applied the same number of times
for both of o1 and o2. After these transforms are done alter-
nately to the columns and rows of each image, the two trans-
formed images are transformed into two sequences by sim-
ple raster scanning, respectively. Then, the sequence for o1

is concatenated ahead of that for o2, and finally the concate-
nated sequence is encoded by arithmetic or Huffman coding
(See Fig. 3). Although MSPC is applied to two proteins for
measuring the similarity in this paper, we can apply it to
more than two proteins for the purpose of multiple align-
ments of protein structures.

3. Results on Computational Experiments

3.1 Data

We used two datasets, the Chew-Kedem dataset [35] and
the Sierk-Pearson dataset [36], which were also used in
[13], [20], [24]. The Chew-Kedem dataset contains pro-
teins and domains identified by their PDB codes. We ob-
tained their PDB-style files with coordinates from the PDB
database as follows (See Table 1): 17 globins (1ash, 1babA,
1babB, 1eca, 1flp, 1hlb, 1hlm, 1ithA, 1lh2, 1mba, 1myt,
2hbg, 2lhb, 2vhb, 2vhbA, 3sdhA, 5mbn), 2 mainly al-
pha proteins except globins (1cnpA, 1jhgA), 7 mainly beta
(immunoglobulin) proteins (1cd8, 1cdb, 1ci5A, 1hnf01,

Fig. 3 Comparison of compression procedures of SPC and MSPC. Com-
pression procedures for obtaining the compression size of the concatenated
image C(o1 · o2) from two images o1 and o2 corresponding to two pro-
teins. (a) Procedure of SPC. The concatenated image o1 · o2 is transformed
by S+P transform. (b) Procedure of MSPC. The images o1 and o2 are
individually transformed to multiresolution image data by S+P transform,
and are transformed into two sequences by simple raster scanning, respec-
tively. Then, the transformed sequences are concatenated and encoded by
arithmetic or Huffman coding. Note that S transform is applied the same
number of times for both of o1 and o2.

Table 1 The Chew-Kedem dataset. It contains 19 mainly alpha pro-
teins, 7 mainly beta proteins, and 10 alpha-beta proteins. Each superfamily
of CATH is as follows. a Globins, b EF-hand, c Trp Operon Repressor;
Chain A, d Immunoglobulins, e Enolase-like, N-terminal domain, f P-loop
containing nucleotide triphosphate hydrolases, g Glutamine Phosphoribo-
sylpyrophosphate, subunit 1, domain 1, h Divalent-metal-dependent TIM
barrel enzymes.

Class of CATH Superfamily Proteins
Mainly alpha 1.10.490.10a 1ash, 1babA, 1babB, 1eca, 1flp, 1hlb,

1hlm, 1ithA, 1lh2, 1mba, 1myt, 2hbg,
2lhb, 2vhb, 2vhbA, 3sdhA, 5mbn

others 1cnpA (1.10.238.10b),
1jhgA (1.10.1270.10c)

Mainly beta 2.60.40.10d 1cd8, 1cdb, 1ci5A, 1hnf01,
1neu, 1qa9A, 1qfoA

Alpha-beta 3.30.390.10e 1chrA1, 2mnr01, 4enl01

3.40.50.300 f 1aa9, 1gnp, 1qraA, 5p21, 6q21A
others 1ct9A1 (3.60.20.10g),

6xia (3.20.20.150h)

1neu, 1qa9A, 1qfoA), 3 enolase-like, N-terminal domains
(1chrA1, 2mnr01, 4enl01), 4 P-loop containing nucleotide
triphosphate hydrolases (1aa9, 1gnp, 1qraA, 5p21, 6q21A)
and 2 other mixed alpha-beta proteins (1ct9A1, 6xia). The
Sierk-Pearson dataset contains 86 proteins and domains (20
mainly alpha proteins, 26 mainly beta proteins, and 40
mixed alpha-beta proteins) (See Table 2). We used the
archive, SP-86-ATOM.tar.gz, provided by Ferragina et al. on
their supplementary material web page [20], which consists
of ATOM lines in the PDB entry for each protein domain.

3.2 Experiments

For each pair of proteins included in the Chew-Kedem
dataset and that in the Sierk-Pearson dataset, we generated
two raw image files, o1 and o2, and the two concatenated
image files, o1 ·o2 and the reverse, o2 ·o1, from the two three-
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Table 2 The Sierk-Pearson dataset. It contains 20 mainly alpha proteins,
26 mainly beta proteins, and 40 alpha-beta proteins.

Class of CATH Proteins
Mainly alpha 1ad6A, 1ao6A5, 1bbhA0, 1cnsA1, 1d2zD0, 1dat00,

1e12A0, 1eqzE0, 1gwxA0, 1hgu00, 1hlm00, 1jnk02,
1mmoD0, 1nubA0, 1quuA1, 1repC1, 1sw6A0, 1trrA0,
2hpdA0, 2mtaC0

Mainly beta 1a8d02, 1a8h02, 1aozA3, 1b8mB0, 1bf203, 1bjqB0,
1bqyA2, 1btkB0, 1c1zA5, 1cl7H0, 1d3sA0,1danU0,
1dsyA0, 1dxmA0, 1et6A2, 1extB1, 1nfiC1, 1nukA0,
1otcA1, 1qdmA2, 1qe6D0, 1qfkL2, 1que01, 1rmg00,
1tmo04, 2tbvC0

Alpha-beta 1a1mA1, 1a2vA2, 1akn00, 1aqzB0, 1asyA2, 1atiA2,
1auq00, 1ax4A1, 1b0pA6, 1b2rA2, 1bcg00, 1bcmA1,
1bf5A4, 1bkcE0, 1bp7A0, 1c4kA2, 1cd2A0, 1cdg01,
1d0nA4, 1d4oA0, 1d7oA0, 1doi00, 1dy0A0, 1e2kB0,
1eccA1, 1fbnA0, 1gsoA3, 1mpyA2, 1obr00, 1p3801,
1pty00, 1qb7A0, 1qmvA0, 1urnA0, 1zfjA0, 2acy00,
2drpA1, 2nmtA2, 2reb01, 4mdhA2

dimensional structures. For MSPC, the compression size is
calculated not from a concatenated image but from a pair
of images. We applied the above compression algorithms,
JPEG, GIF, PNG, IFS, SPC, and MSPC, respectively, to the
raw files, and calculated ACD(o1, o2) and NCD(o1, o2). We
obtained hierarchical clustering results using the single link-
age, average linkage, and Ward method [37].

These experiments were done in a single processor core
on a PC with Xeon X5460 3.16 GHz CPUs and 8 GB mem-
ory under the Linux (version 2.6) operating system, where
the gcc compiler was used with optimization option -O2.
The source codes implemented in this paper and the results
on the similarity matrices are available on our supplemen-
tary information web page http://sunflower.kuicr.kyoto-u.
ac.jp/morihiro/imgcomp/. The average compression elapsed
time by MSPC that obtains C(o1), C(o2), and C(o1 · o2) for
each protein pair of the Sierk-Pearson dataset was 0.030 sec-
onds. It is suggested that compression-based methods in-
cluding MSPC are very efficient.

3.2.1 ROC Curves and F-Measures

In order to evaluate the similarity measure, we used Re-
ceiver Operating Characteristic (ROC) analysis [38] as in
[20], [24]. We considered the binary classification problem
whether a pair of proteins is contained in the same CATH
class or not. For the dataset having N proteins, each of(

N
2

)
pairs is classified in either class ‘T’ (the pair is in the

same CATH class) or ‘F’ (the pair is not in the same CATH
class). An ROC curve is plotted using the sensitivity (the
true positive rate, T P/(T P + FN)) and one minus the speci-
ficity (the false positive rate, FP/(T N + FP)) for a binary
classification predictor as the threshold changes, where T P,
FP, T N, and FN are the numbers of true positives, false
positives, true negatives, false negatives, respectively. The
area under the curve (AUC) is often used as a measure of
overall classification accuracy. The AUC for a random clas-
sifier takes the value around 0.5, and then the ROC curve lies
along the diagonal. The closer the ROC curve comes to the

(a) ACD

(b) NCD

Fig. 4 ROC curves for the Chew-Kedem dataset measured by (a) ACD
and (b) NCD using image compressions, JPEG, GIF, PNG, IFS, SPC, and
MSPC.

upper left point, (0, 1), the better the classification accuracy
is. The AUC for a perfect classification is 1.

As another evaluation method, we used F-measure
which was used also in [20]. We employed their program,
f-measure.pl, that is available on their supplementary ma-
terial web page. F-measure is defined to be the harmonic
mean of the precision (P = T P/(T P + FP)) and the recall
(the true positive rate, R = T P/(T P + FN)) as 2PR

P+R , where
the bast value is 1.

Figures 4 and 5 show ROC curves for the Chew-Kedem
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(a) ACD

(b) NCD

Fig. 5 ROC curves for the Sierk-Pearson dataset measured by (a) ACD
and (b) NCD using image compressions, JPEG, GIF, PNG, IFS, SPC, and
MSPC.

and Sierk-Pearson datasets measured by ACD and NCD us-
ing image compressions, JPEG, GIF, PNG, IFS, SPC, and
MSPC, respectively. We can see from the figures that the
results using MSPC were better than those using other com-
pression algorithms, JPEG, GIF, PNG, IFS, and SPC for
both datasets and for both similarity measures. It is sug-
gested that our modification to the concatenation of two
images works well for measuring the similarity of protein
structures.

Table 3 Results on AUC and F-measure for the Chew-Kedem dataset
measured by ACD and NCD using image compressions, JPEG, GIF, PNG,
IFS, SPC, and MSPC.

Compression AUC F-measure by ACD
algorithm by ACD Single Average Ward
JPEG 0.6051 0.6502 0.6722 0.7660
GIF 0.7365 0.7440 0.8210 0.8210
PNG 0.7545 0.7947 0.7930 0.7613
IFS 0.2674 0.5875 0.5737 0.6114
SPC 0.7296 0.8274 0.8367 0.8838
MSPC 0.8565 0.8211 0.8516 0.9445
Compression AUC F-measure by NCD
algorithm by NCD Single Average Ward
JPEG 0.6020 0.6641 0.6722 0.7660
GIF 0.7381 0.7440 0.8210 0.8210
PNG 0.7469 0.7947 0.7930 0.7613
IFS 0.2885 0.5929 0.5767 0.6114
SPC 0.7267 0.8274 0.8367 0.8838
MSPC 0.8687 0.8211 0.8781 0.9445
Krasnogor and Pelta [13] 0.7957 0.8379 0.8379 0.8379
Dai and Wang [24] 0.86 - - -

Table 4 Results on AUC and F-measure for the Sierk-Pearson dataset
measured by ACD and NCD using image compressions, JPEG, GIF, PNG,
IFS, SPC, and MSPC. The result by Ferragina et al. a is that of the com-
pression algorithm, ‘BwtMtfRleRc fast’, with the similarity measure, UCD
and NCD, where the F-measure was the best for SP-86-ATOM [20].

Compression AUC F-measure by ACD
algorithm by ACD Single Average Ward
JPEG 0.4988 0.5485 0.5387 0.5234
GIF 0.4866 0.5454 0.5455 0.5303
PNG 0.4978 0.5414 0.5299 0.5248
IFS 0.4807 0.5540 0.5559 0.5390
SPC 0.5227 0.5352 0.5251 0.5407
MSPC 0.6228 0.5724 0.6197 0.6056
Compression AUC F-measure by NCD
algorithm by NCD Single Average Ward
JPEG 0.4949 0.5473 0.5378 0.5265
GIF 0.4870 0.5513 0.5386 0.5316
PNG 0.4906 0.5402 0.5366 0.5248
IFS 0.4827 0.5428 0.5599 0.5234
SPC 0.5195 0.5277 0.5335 0.5265
MSPC 0.6052 0.5621 0.5966 0.6046
Krasnogor and Pelta [13] 0.5033 0.5581 0.5377 0.5497
Ferragina et al. [20] - - 0.5791a -
Dai and Wang [24] 0.575 - - -

Tables 3 and 4 show the results on AUC and F-measure
for the Chew-Kedem and Sierk-Pearson datasets measured
by ACD and NCD using image compressions, JPEG, GIF,
PNG, IFS, SPC, and MSPC, respectively. For the Chew-
Kedem dataset, we can see from the table that the AUC for
MSPC measured by NCD was the best, was better than that
by Krasnogor and Pelta, where their method is based on the
compression of contact maps from protein structures, and
was comparable with that by Dai and Wang, where their
method is based on the compression of protein sequences. In
the F-measures, the Ward method gave the best score when
we used MSPC as the compression method. For the Sierk-
Pearson dataset, the AUC for MSPC measured by ACD was
the best, and was better than those by Krasnogor and Pelta,
and Dai and Wang. The F-measures for the result using
the average linkage method (UPGMA), MSPC and ACD,
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was the best, and was better than those by Krasnogor and
Pelta, and Ferragina et al. It should be noted that the Chew-
Kedem dataset is high redundant with respect to protein se-
quences, the Sierk-Pearson dataset is less redundant [24],

(a) JPEG (b) GIF

(c) PNG (d) IFS

(e) SPC (f) MSPC

Fig. 6 Clustering results using the Ward method for the Chew-Kedem dataset measured by ACD.
Applied image compression algorithms are (a) JPEG, (b) GIF, (c) PNG, (d) IFS, (e) SPC, and (f) MSPC,
respectively. The number in parenthesis denotes the superfamily of CATH.

and the combination of MSPC and ACD was able to mea-
sure the similarity of protein structures with less redundant
sequences better than the other method.

Figure 6 shows the clustering results using the Ward
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method for the Chew-Kedem dataset measured by ACD for
the compression algorithms, JPEG, GIF, PNG, IFS, SPC,
and MSPC. We can see from the figures that MSPC classi-
fied the dataset best as shown in the previous results. MSPC
misclassified only two mainly alpha proteins, 1cnpA was
classified in mainly beta class, and 2vhb was in alpha-beta
class. However, MSPC recognized that the cluster of mainly
alpha proteins was more similar to that of alpha-beta pro-
teins than that of mainly beta proteins, and classified 3
proteins in the superfamily 3.30.390.10 and 5 proteins in
3.40.50.300 correctly (See Table 1).

4. Theoretical Analysis

In the previous sections, we proposed the methods for mea-
suring the similarity of protein structures. In this section,
we consider the problem of comparing protein tertiary struc-
tures by image comparison from a view point of alignment
of distance matrices [6], and analyze the time complexity. It
should be noted that problems we define here are very sim-
ilar to those of the contact map overlap (CMO), and results
concerning the time complexity are derived by using tech-
niques similar to those for CMO [39]–[41].

Next, we derive a relationship between our defined
problem and Kolmogorov complexity. Furthermore, we
qualitatively explain using the entropy the reason why
MSPC achieves higher compression ratios than SPC.

4.1 Time Complexity

In the computational experiments, we used the Chew-
Kedem and Sierk-Pearson datasets. The compression ra-
tio of GIF and PNG for the raw image files was more than
0.408, and that of JPEG, usually used as lossy compres-
sion, was more than 0.283. Therefore, in practice, dis-
tance matrices with size n × n can be regarded to be com-
pressed to Θ(n2 log m) bits, where m denotes the maximum
of pixel values and we assume that each distance is trun-
cated into O(log m) bits. On the other hand, a distance ma-
trix is theoretically calculated from n three-dimensional co-
ordinates and thus the matrix might be compressed into
O(n log m) bits. For example, if n = 50, that is, a protein
contains 50 amino acids, and the distance matrix with size
50 × 50 is compressed to O(n log m) bits, then the compres-
sion ratio would be about 1/50 = 0.02. However, the above
experimental results suggest that the sizes of compressed
images are stillΘ(n2 log m) bits in practice. Therefore, in the
following, we will assume that distance matrices are com-
pressed to Θ(n2 log m) bits.

In order to analyze similarities between such distance
matrices, we consider an alignmentσ = {(i1, j1), · · · , (ik, jk)}
(1 ≤ i1 < · · · < ik ≤ n1, 1 ≤ j1, · · · , jk ≤ n2) between the dis-
tance matrices M1 with size n1×n1 and M2 with size n2×n2,
where position il (l = 1, · · · , k) in a protein corresponds to
jl in the other protein and σ can be considered as the func-
tion defined by the domain D(σ) = {i1, · · · , ik} and σ(il) = jl
(l = 1, · · · , k). Then, we consider the following problem,

where we use scoring functions simpler than that in [6] for
the purpose of theoretical studies.

Problem 1: Given two distance matrices M1 = (xi j), M2 =

(yi j), and a positive integer k (≤ min{n1, n2}), find an align-
ment σ with size |D(σ)| = k that minimizes

f1(M1,M2, σ) =
∑

i∈D(σ)

∑
j∈D(σ)

(xi j − yσ(i)σ( j))
2. (1)

Theorem 1: Problem 1 is NP-hard.

Proof. We show that there exists a polynomial-time re-
duction from the maximum clique (Max-Clique) problem.
Max-Clique is defined as follows: Given an undirected
graph G(V, E) with a set of vertices V and a set of edges
E and a positive integer k, determine whether or not there is
a k-clique in G. We define two matrices M1 = (xi j) with size
k × k and M2 = (yi j) with size |V | × |V | from an instance of
Max-Clique as follows.

xi j =

{
0 (i = j)
1 (i � j)

(2)

yi j =

{
0 (i = j or (i, j) � E)
1 ((i, j) ∈ E)

(3)

Then, there exists a k-clique if and only if there exists σ
such that f1(M1,M2, σ) = 0. Furthermore, a k-clique can
be constructed from such σ in polynomial time. Therefore,
there exists a polynomial-time reduction from Max-Clique,
which is NP-complete. �

In addition, Problem 1 has no polynomial-time algo-
rithm with a guaranteed approximation ratio unless P=NP
because the minimum value can be 0.

We can also consider the problem of maximiz-
ing the number of aligned pairs under the condition of
f1(M1,M2, σ) = 0 and the problem of maximizing the num-
ber of matched pixels.

Problem 2: Given two distance matrices M1 = (xi j),
M2 = (yi j), find an alignment σ with maximum k such that
f1(M1,M2, σ) = 0.

Problem 3: Given two distance matrices M1 = (xi j), M2 =

(yi j), and a positive integer k, find an alignment σ with size
|D(σ)| = k that maximizes

f2(M1,M2, σ) =
∑

i∈D(σ)

∑
j∈D(σ)

δ(xi j, yσ(i)σ( j)), (4)

where δ(x, y) = 1 if x = y, otherwise 0.

Theorem 2: Both Problem 2 and Problem 3 are NP-hard.

Proof. We use the same reduction as in the proof of The-
orem 1. Then, it is straight-forward to see that it is a
polynomial-time reduction for both problems. �

Unlike Problem 1, there exists an approximation algo-
rithm for Problem 3.

Theorem 3: Problem 3 can be approximated within a fac-
tor of O(n) in polynomial time.
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Proof. For each i0, i′0 (1 ≤ i0 ≤ n1, 1 ≤ i′0 ≤ n2), we find
an optimal alignment σi0,i′0 between two sequences xi0 j (1 ≤
j ≤ n1) and yi′0 j′ (1 ≤ j′ ≤ n2) that maps xi0i0 to yi′0i′0 using
dynamic programming as follows. For i < i0, i′ < i′0,

D[i, i′] = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D[i − 1, i′ − 1] + δ(xi0,i, yi′0,i′)
D[i − 1, i′]
D[i, i′ − 1]

, (5)

and for i > i0, i′ > i′0,

D[i, i′] = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D[i + 1, i′ + 1] + δ(xi0,i, yi′0,i′)
D[i + 1, i′]
D[i, i′ + 1]

, (6)

where the initialization of the matrix is straight-forward.
Let si0,i′0 be the score of the alignment σi0,i′0 ,

∑
j∈D(σi0 ,i

′
0
)

δ(xi0 j, yi′0σi0 ,i
′
0

( j)). Then, the algorithm outputs the alignment
σi0,i′0 that maximizes si0,i′0 . The maximum of si0,i′0 is at least
1/n of the maximum of f2(M1,M2, σ), and the algorithm
runs in polynomial time. �

It is to be noted that this O(n) approximation ratio is
meaningful because the size of the input is Θ(n2 log m) bits.

4.2 Kolmogorov Complexity

Suppose that an optimal alignment σ with size k such that
f1(M1,M2, σ) = 0 is obtained for the matrices M1 and M2

by solving Problem 2. Then, we can construct M2 from
M1 as follows. First, we delete d1 (= n1 − k) rows and
d1 columns from M1 that are not included in D(σ). Next,
we add d2 (= n2 − k) rows and d2 columns. This proce-
dure requires O(d1 log n) bits for the specification of rows
and columns to be deleted, and O(d2n log n log m) bits for
the addition of d2 columns and rows. Therefore, we have
the following for the Kolmogorov complexities K(M1) and
K(M2).

Theorem 4: For distance matrices M1 and M2,

K(M2) ≤ K(M1) + O(d2n log n log m) + O(d1 log n),

K(M1) ≤ K(M2) + O(d1n log n log m) + O(d2 log n).

Since it can be assumed from the previous subsection
that distance matrices are compressed to Θ(n2 log m) bits in
practice, it means that the Kolmogorov complexity of M1 is
not so large compared with that of M2 if the distance (d1+d2)
between M1 and M2 is small.

Let M3 = (zi j) be the concatenated image of M1 = (xi j)
with size n1 × n1 and M2 with size n2 × n2 (n1 < n2), where
zi j = xi j for i, j ≤ n1. Then, the size of M3 is n2 × (n1 + n2),
and (n2 − n1) × n1 is the additional black-colored region.
Since O(log n) bits are needed for specifying the black re-
gion, K(M3) ≤ K(M1) + K(M2) + O(log n). This gives an
upper bound of the compressed size of concatenated images.

The S transform in SPC tries to reduce the entropy of
images. We can assume that |xi j − xi( j+1)| for j < n1 is rel-
atively small because the distance between the Cα atom of
jth residue and that of ( j + 1)th residue is small. Then, it

should be noted that the entropy of the region indicated by
‘L’ in Fig. 2 is also small for individual images of M1 and
M2. However, for the concatenated M3, since zi(n1+1) = 0,
|zin1 − zi(n1+1)| = xin1 , and the value will not be vertically
transformed by the S transform again because it is in the
L region. Although the value is horizontally transformed
by the S transform, it is considered that the entropy of the
transformed HL region (see Fig. 2) is still high. Thus, since
MSPC does not handle such a black region, the compression
size of the concatenated image by SPC can be larger than
that by MSPC if the concatenated image includes the black
region. In fact, in the computational experiments, the ratio
of protein pairs that the compression size by SPC was larger
than or equal to that by MSPC was 0.993. It suggests that
MSPC approximates the Kolmogorov complexity more ac-
curately than SPC in most cases, and MSPC can estimate the
similarity of protein structures more accurately than SPC.

5. Conclusions

We proposed an image compression-based approach to mea-
suring the similarity of protein structures, and applied them
to the Chew-Kedem dataset and the Sierk-Pearson dataset.
The results on ROC analysis and F-measure for our pro-
posed method MSPC, which is obtained by modifying SPC
image compression algorithm, were the best among sev-
eral image compression algorithms, were better than that by
Krasnogor and Pelta, and were comparable to or better than
that by Dai and Wang for the Chew-Kedem dataset. Al-
though the results for the Sierk-Pearson dataset were not so
good for all the methods, those for MSPC were better than
those by Krasnogor and Pelta, Ferragina et al. and Dai and
Wang where Krasnogor and Pelta, and Ferragina et al. use
protein structure data, and Dai and Wang uses only sequence
data. Moreover, the result on the elapsed time showed that
MSPC is very efficient.

Almost all image compression algorithms have been
developed based on the property that neighbor pixels often
have similar colors in images. Unlike sequence compres-
sion, image compression algorithms compress data horizon-
tally and vertically. However, it is considered from the clus-
tering result that MSPC does not always compresses similar
substructures located at distant locations sufficiently. There-
fore, it is expected that better similarity measure can be ob-
tained by improving some image compression algorithm as
we modified SPC and obtained MSPC in this paper. In ad-
dition, values handled by image compression algorithms are
restricted to integers of a few bytes. In this paper, we trans-
formed distances between residues of a protein to integers.
In future work, we would like to develop compression algo-
rithms for distances with real values.
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