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Movement-Imagery Brain-Computer Interface: EEG Classification
of Beta Rhythm Synchronization Based on Cumulative Distribution

Function
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SUMMARY  We developed a novel movement-imagery-based brain-
computer interface (BCI) for untrained subjects without employing ma-
chine learning techniques. The development of BCI consisted of sev-
eral steps. First, spline Laplacian analysis was performed. Next, time-
frequency analysis was applied to determine the optimal frequency range
and latencies of the electroencephalograms (EEGs). Finally, trials were
classified as right or left based on S-band event-related synchronization us-
ing the cumulative distribution function of pretrigger EEG noise. To test
the performance of the BCI, EEGs during the execution and imagination
of right/left wrist-bending movements were measured from 63 locations
over the entire scalp using eight healthy subjects. The highest classification
accuracies were 84.4% and 77.8% for real movements and their imageries,
respectively. The accuracy is significantly higher than that of previously re-
ported machine-learning-based BCIs in the movement imagery task (paired
t-test, p < 0.05). It has also been demonstrated that the highest accuracy
was achieved even though subjects had never participated in movement im-
ageries.

key words: electroencephalogram (EEG), brain-machine interface (BCI),
event-related synchronization (ERS), spline Laplacian, Hilbert transform

1. Introduction

A brain-computer interface (BCI), also known as a brain-
machine interface (BMI), is a system that enables commu-
nication using signals from the brain [1]. It is known that &
(8-13Hz) and B (> 16 Hz) rhythms decrease (event-related
desynchronization, ERD) and increase (event-related syn-
chronization, ERS) when people execute or imagine move-
ments, e.g., bending the wrist and tapping the foot, and the
sources of the rhythms depend on which body part they
move or imagine [2].

A number of movement-imagery-based BCIs have
been reported [3]-[10]. Most movement-imagery-based
BClIs classify trials by extracting the ERD and/or ERS of
a and B rhythms during right- and left-movement imageries.
However, the change in the @ rhythm is relatively slow com-
pared with that in the 8 rhythm [2],[11]. This may be an
obstacle in improving the information transfer rate (ITR).

To classify right- and left-hand-movement imageries
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based on ERD/ERS in  rhythm, the majority of recent BCIs
use machine learning techniques, such as a support vector
machine (SVM) [4],[5]. However, the machine-learning-
based BClIs require many training data sets to learn, and we
cannot obtain sufficient data sets easily due to the exhaus-
tion of subjects during long training sessions. In addition,
untrained subjects may not always execute trials properly,
especially in the movement imageries. As a result, the clas-
sifier may learn inappropriate trials and classify trials im-
properly.

Common spatial patterns (CSPs) are among the most
successful spatial filters for obtaining features of ERD and
ERS for machine learning [6]. Although BClIs that are based
on CSP achieve high accuracy in some cases, CSPs are dis-
advantageous in that they require a large number of elec-
trodes to obtain good results [12]. Moreover, they do not
work well in the presence of large artifacts [13]. BClIs re-
quiring a smaller number of electrodes can be more robust
and allow quicker and easier preparation.

Another method used to classify trials is the extraction
of 5 ERS after movement imagery [3]. This is based on the
fact that 8 rhythm exhibits a larger and faster change after
the movements or their imageries in ERS than during the
movements or their imageries in ERD [2],[11]. Therefore,
we focused only on 8 ERSs after the movements or their
imageries to classify them into right or left. This may allow
BClIs in this study to achieve higher values of ITR than those
reported previously.

The main objective of this study is to develop
movement-imagery-based BClIs for untrained subjects with-
out employing machine learning techniques. Instead, we use
the neurophysiological information only where and when 8
ERS significantly increases. Thresholds for the significant
increase were determined based on the cumulative distribu-
tion function (CDF) of the measured EEG noise.

2. Methods
2.1 Subjects

Eight right-handed male subjects (aged 21-24 years) partic-
ipated in the experiments. Informed consent was obtained
from all the subjects. The procedures described here were
approved by the local institutional ethics committee. Sub-
jects had never participated in movement or movement im-
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Fig.1 Timing of movement or its imagery task.

agery experiments.
2.2 Task

The subjects sat in a chair in front of a 21” monitor at a
distance of 0.50 m. Figure 1 shows an overview of the task
procedure. A fixation point was constantly presented on the
monitor and the subjects stared at it. The cues, “right hand”
or “left hand,” appeared for 3.0s. After this, the cues dis-
appeared for 1.5-2.5s. This was defined as one trial and 50
trials was defined as one run. The subjects were instructed
to execute or imagine brisk wrist-bending movements fol-
lowing the visual cues indicating the right or left hand. One
session consisted of 4 kinds of runs: right hand movement,
left hand movement, right hand movement imagery, and left
hand movement imagery. The subjects performed two ses-
sion. Thus, the total number of trials was 400. A short break
was given after a run.

2.3 Data Set

In offline analysis, trials were split into two data sets: a train-
ing set (first half of trials), which were labeled as left hand
and right hand, and an unlabeled test set (last half of trials).

2.4 EEG Recordings

A 96-channel EEG system (Bio-logic, Inc., USA) was used
to record EEGs from 63 locations on the entire scalp us-
ing eight healthy subjects (Fig.2). The arrangement of the
electrodes followed the international 10-20 electrode sys-
tem. All electrode impedances were kept below 10kQ.
Reference electrodes were placed on the right and left ear-
lobes (REFR, REF; ) and the grounded electrode was placed
on the left mastoid. Electro-oculograms (EOGs) were also
measured to detect eye blinks with electrodes placed in the
vicinity of both eyes (EOGL1, EOGL2, EOGR2, and FP1
in Fig.2: FP1 was also used as an EEG electrode). The
EEGs and EOGs were band-pass filtered (0.1-100 Hz) and
sampled at 256 Hz.

2.5 Data Processing

Figure 3 shows the flow chart of data processing and classi-
fication. Details are as follows.
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Fig.2  Arrangement of electrodes. Reference electrodes were placed
on the right and left earlobes (REFR, REF;)) and the grounded electrode
(GND) was placed on the left mastoid. EOGL1, EOGL2, EOGR2, and
FP1 were EOG electrodes: FP1 was also used as an EEG electrode. The
squares show the region for classification. Electrodes, which are used by
CSPs, are surrounded with a dashed line.
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2.5.1 Preprocessing

First, the data were high-pass filtered (0.1 Hz) to eliminate
long-lasting drift components. In this study, trials including
EOGs over 150 4V were assumed to contain eye blink ar-
tifacts. Second, the artifacts were eliminated using an auto-
matic elimination method for eye blink artifacts [14], which
used both principal component analysis (PCA) and inde-
pendent component analysis (ICA). Third, we performed
spline Laplacian (SL) analysis [15] and obtained signals sy,
where k is a subscript indicating an EEG channel name
(k € {FP1,FPZ,---,02}). In SL analysis, the Laplacian of
the potentials at all surface locations is estimated by spline
functions instead of local potentials. The physical meaning
of the Laplacian operation is the calculation of the gradi-
ent of the radial surface current density entering the scalp
through the skull [16].

2.5.2 Parameter Determination

Time-frequency analysis with wavelets [17] was applied to
the preprocessed data of the training set to determine the
optimal parameters, such as latency duration [7s, #g] and fre-
quency range [ f., ful of the EEGs. An advantage of wavelet
analysis, compared with the short-time fast Fourier trans-
form (FFT), is that each frequency component could be ad-
justed to its scale. We used the complex Morlet wavelet,

2
Y, f)=A exp (—#) X exp 2nift), @))
o

t

where A = (0', ﬁ) 1/2, 2oy - f = 7,and i = V—1. The
time-variant energy Ey (¢, f) of the signal s;(¢) in a frequency
band around f is the squared norm of the convolution of a
complex wavelet with the signal

Ex(t, f) = ¥, ) * si(D)]*. 2)

The asterisk denotes convolution and |-| denotes the absolute
value.

E(t, f) were averaged over all trials. The obtained
mean value was defined as Ei(t, f). We assumed that
the EEGs during the pretrigger period were white Gaus-
sian noise and were independent and identically distributed
(i.i.d.). On the basis of this assumption, the probability den-
sity of s;(#) was considered to be a normal distribution, and
that of E(¢, f) was also a normal distribution if the num-
ber of samples compared to the mean was large enough,
i.e., if the number of trials was large enough. Ei(t, f) was
standardized by the mean p(f) and the standard deviation
(S.D.) ok(f) during the pretrigger duration is

Ei(t, /) — u(f)
or(f) ’
In this study, zx(¢, f) was calculated, where f = 1,2, --,60.

The parameters fi, fu, ts, and g were determined by calcu-
lating the area over the significant increase (z(¢, f) > 2.58,

(. f) = 3)
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p < 0.005) in the z; maps.
To analyze in a certain band [ fi, fi], we introduced the
index

1
Zult; fis fu) = > . @)

fa- i+l
This index was depicted by a topographical method. The
channel that indicated the most significant change was
detected from time-frequency analysis. The channels
that showed the most significant change during right-
and left-hand movements or their mental simulation were
defined as CHgr and CHp, respectively (CHg,CHp €
{FP1,FP2,---,02}).

2.5.3 Classification

The EEGs of the test data set analyzed with SL analysis
were band-pass filtered (fL — fy), and we obtained §,,(f)
(m € {CHg,CH_}). We assume §,(¢) in the pretrigger du-
ration was a white Gaussian noise. Each §,,(¢) is standard-
ized with the mean, fi,,, and the S.D., 6, in the pretrigger
duration as

Em(t) - /Jm

Om

Up (1) = ()
and we obtained u,,(f). After this, their envelopes were
calculated using a Hilbert transformation [18], which has
widely been used to obtain envelopes in other BCIs[19],
[20]. The Hilbert transform ii,,(t) or H as a function of time
u,(t) was defined by

U (T

)
o dr, 6)

1 00
Hiun ) = 1) = |

where P denotes the Cauchy principal value. The amplitude
of the envelope of u,,(?) is

V) = JuR () + 22(0). (7)

Next we calculated the differential signals of vcp, () and
ven, (1), and obtained deg, (1) = ven, (f) — ven, (1), den, (1) =
vew, () — verg (0.

Finally, we compared the total durations in which dcy,
and dcy, exceeded their thresholds, as explained in the fol-
lowing section, during the latency [fs , 7z]. The channel that
indicated a longer duration was defined as the significant
change channel. If the significant change channel was CHg,
the trial was assumed to be a right-hand movement or its
imagery.

If both signals of CHr and CH, do not exceed their
thresholds, the trial is classified into ‘neither’. Therefore,
BCI-CDF classify trials into three classes (right, left, nei-
ther).

2.5.4 Setting of Thresholds

The probability density function (PDF) of the white Gaus-
sian noise is the normal distribution function, N(x|u, o),
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where u is the mean and o is the S.D. The PDF of an en-
velope of the white Gaussian noise (x ~ N(0,0?)) is the
Rayleigh distribution, defined as

2
_ ﬁexp(—;‘?), for x > 0,
() { 0, for x < 0.

®)

In what follows, we assumed the signal was standardized,
i.e., o = 1. We derived the PDF of the differential signal
of two envelopes of white Gaussian noises (x ~ N(0, 1)), as
follows:

Jx—x(0) = fx(x) * fx(=x)
Zf fx(T+x) fx(r)dr, )

and we finally obtain

2 2
Jx-x(x) = exp (—%)['41' exp (_%)

+(— \/’_8“2 + g)erfc(%)] (10)

The function erfc(x) is the complementary error function.
Refer the Appendix for more details on the derivation of
Sx-x().

We defined the CDFs of N(x|u,0?), fx(x), fx—x(x)
as O(x| /1,0'2), Fx(x), Fx_x(x), respectively. To calcu-
late percentage points, we defined the inverse functions
of O(x|p,0?), Fx(x), Fx-x(x) as @ '(a|u,0?), Fy'(a),
F ;(l_x(a/), respectively, where « is the significant level and
0<a<l.

In this study, we developed a BCI, BCI-CDF (BCI us-
ing CDFs of differential signals of the envelopes, d,,(¢)). Be-
cause a was set to 0.01, which was chosen from the sig-
nificant level commonly used in statistics, the thresholds of
each signal, u,,(?), v,,(?), and d,,(t), were determined as fol-
lows:

. [ (1-2]0,1) =258
@ ”'"(t)'{ o210, 1) = ~2.58
(ii) vu0): F5'(1 - @) = 3.03
(iii) dn(): Fi' (1 - @) = 2.43

2.6 Comparison with Other Methods

To compare BCI-CDF with previously reported BCIs that
used machine learning techniques, we also classified the test
data set as follows. First, eye blink artifacts were removed
and then band-pass filtering was applied. After this, fea-
ture vectors were obtained from the preprocessed test data
set using CSPs. In this study, the six most important CSPs
were used, that is, six-dimension vectors were obtained us-
ing CSPs. Next, the feature vectors were classified us-
ing SVM [4] (BCI-SVM). Our implementation of SVM was
based on the LIBSVM library [21].

We selected electrodes as shown in Fig. 2 when using
CSPs to avoid noisy channels for improving classification
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Table 1  The channel, latency, and frequency band, where the most sig-
nificant changes were observed.
Subject Task Channel Latency Frequency
(CHg , CH) [ms] [Hz]
S1 Movement CIP, C2P 770-3000 16-40
Imagery CIP, C2P 850-3000 16-37
S2 Movement CIP, C2P 930-3000 16-37
Imagery CIP, C2P 940-3000 16-37
S3 Movement ClL,C2 960-3000 18-32
Imagery CL, C2 2160-3000 16-36
S4 Movement CIP, C4P 1000-3000 16-34
Imagery CIP, C4A 2000-3000 16-34
S5 Movement Cl, C4 990-3000 16-22
Imagery C3p, C4 570-3000 16-26
S6 Movement C3,C2 820-3000 22-26
Imagery C3,C2 1720-3000 17-32
S7 Movement CIP, C4 1290-3000 20-33
Imagery CzZ, C2P 1290-3000 17-22
S8 Movement CIP,C2 820-3000 16-37
Imagery CzZ,C2 620-3000 16-33
Table2  Number of accurately classified trials (classified trials) and ITR.
The unit of ITR is bit per minute.
Subject Task BCI-CDF BCI-SVM
Acc. ITR Acc. ITR
S1 Movement | 81(96) | 4.32 | 83(97) | 493
Imagery 63 (81) | 2.29 | 55(100) | 0.09
S2 Movement | 71(94) | 2.23 74 (99) 2.19
Imagery 60 (83) | 1.48 | 46(100) | 0.06
S3 Movement | 66 (85) | 2.38 | 56 (100) | 0.12
Imagery 50(68) | 1.36 | 53(100) | 0.03
S4 Movement | 66(94) | 1.37 | 66 (100) | 0.90
Imagery 53(79) | 0.82 | 66(100) | 0.90
S5 Movement | 43 (65) | 0.60 | 55(98) | 0.13
Imagery 44 (64) | 0.80 | 43 (100) | 0.17
S6 Movement | 42 (65) | 049 | 51(98) | 0.01
Imagery 42(63) | 0.62 | 52(100) | 0.01
S7 Movement | 58 (94) | 0.45 | 67(100) | 1.02
Imagery 40(69) | 0.15 | 63 (100) | 0.59
S8 Movement | 57(90) | 0.56 | 55(99) | 0.09
Imagery 43(74) | 0.17 | 52(100) | 0.01

accuracy, whereas all EEG electrodes were used in the pre-
processing. Weights of the scalp CSP maps were large in the
outmost region of the electrode configuration. As described
in a previous study [10], this is considered to be neurophys-
iologically implausible. Actually, the accuracy was chance
level when we used all electrodes for CSPs.

ITR is often used to compare the performances among
BCIs and measure system improvements [22]. The ITR in
bits per trial is defined as follows:

B = log,(No) + plogy(p) + (1 = p)logy 7. (1)
C

where p represents the accuracy and N, is the number of
classes (In this study, N. = 2). When we calculate ITR, we

assumed that the time of the trial is 5.5 s and that B is O for
trials that are not classified.

3. Results

Figure 4 illustrates the time-frequency analysis and the SL
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Time-frequency maps [zx(f, f)] and the topography of Z(t; fi, fu) at the peak latency in the

condition of (a) left-hand movement, (b) right-hand movement, (c) left-hand-movement imagery, and
(d) right-hand-movement imagery in subject 1. The range of latency and frequency for classification is
surrounded by a black rectangle. Channels C1P and C2P are each surrounded by a black circle.

maps at the peak latency of the -band ERS in subject 1.
A strong 8 ERS was observed in the vicinity of the con-
tralateral motor cortex in all the subjects after they executed
right/left wrist-bending movements or their imageries. The
channels showing the most significant ERS in subject 1 were
C1P and C2P in the left and right hemispheres, respectively.
Table 1 shows the channels, latency duration, and frequency
band where the most significant changes were observed.
The channels in the movements and their imageries were
the same in subjects 1, 2, 3, and 6. In contrast, the chan-
nels in the movements and their imageries were different in
subjects 4, 5, 7, and 8.

Time courses of u,,(t), v,,(¢), and d,,(¢) in a right-hand-
movement task in subject 1 are shown in Fig.5. The to-
tal duration in which ucp, (¢), ven, (1), and dep, (1) exceeded

their thresholds was longer than those of ucy, (¢), ven, (7),
and dcy, (1), respectively. Therefore, BCI-CDF can classify
this trial as “right.” Both ucp, (f) and ucy, (1), or both vey, (£)
and vcy, (¢), exceeded the thresholds, whereas dcp, (f) ex-
ceeded but dcy, (f) did not exceed the threshold. Because
the signals are expected to change significantly only at the
observed channel (in this case, CHR), d,,(¢) is a better index
than u,,(t) or v,,(¢) for the classifier.

The classification accuracy using the test data set is
shown in Fig.6. The difference in the mean accuracy of
BCI-CDF and BCI-SVM may appear to be small, espe-
cially with movement. However, the mean accuracy with
BCI-CDF is significantly higher than that with BCI-SVM
(p < 0.05). The highest accuracy for real movements in
all the subjects was 84.4% and that for their imagery was
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Fig.5 Time courses of band-pass filtered waves, (a) ucmg(¢), (d) ucp (¢), enveloped waves,
(b) veug (1), (€) veny (1), and differential waves, (¢) dcng (¢), (f) uch; (1) in a right-hand movement in
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row) exceeds the threshold is longer than that of CHy, (lower row).
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Fig.6  Means of classification accuracy in (a) real movement and (b) their imageries. An asterisk (*)

denotes significant difference (paired ¢-test, p < 0.05).

77.8% with BCI-CDF. The accuracies in subjects 7 and 8
were lower (about 60%) than those in the other three sub-
jects (about 70% or above) in the movement imageries. This
suggests that the modulation of the S rhythm in subjects 7
and 8 is smaller than that in other subjects.

Table 2 shows the number of accurately classified trials
(classified trials) and the ITR. The BCI-SVM classifies all
trials into two classes (the number of classified BCI-SVM
trials was not 100 because noisy trials were removed from
the classified trials). In contrast, BCI-CDF does not classify
all trials. The ITR results are also shown in Table 2. The
mean ITR with BCI-CDF is higher than that with BCI-SVM
(p <0.05).

4. Discussion

BCI-CDF does not use the absolute value of signals but clas-
sifies them on the basis of total duration in which they ex-
ceed the thresholds. Even if large spike noises were con-
tained in the EEGs in CHgr or CH, BCI-CDF can classify
them precisely. On the other hand, a classifier based on the
absolute value of signals may lead to incorrect results when
large spike noises occur in the EEGs in CHy or CHj..
Moreover, BCI-CDF considers differential signals,
dcng (¢) and dcy, (f). If the total duration in which long-
lasting noise, e.g., eye movement artifacts, exceeds the
threshold, a classifier based only on u,(¢#) or v,(f) may
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give incorrect results. This is because the total duration in
which EEGs from brain activity exceed the threshold be-
comes shorter than that of noises and actual activity could
be ignored. In this situation, the differential signals in two
channels allow the noises to cancel each other, and thus the
classifier’s accuracy may improve.

In this study, although we used only two channels,
i.e. CHg and CHy, for the classification, BCI-CDF requires
many EEG electrodes to eliminate eye-blink artifacts and
perform SL analysis. However, a method for eliminating
the artifacts in only a small number of EEG electrodes has
been reported [23], and the number of electrodes needed to
perform SL analysis can be reduced by localizing electrodes
in the vicinity of the sensorimotor cortex. BCI-SVM with
CSP can mathematically classify trials using two channels.
However, as described in the Introduction, CSP requires a
large number of electrodes to obtain good results[12]. If
BCI-SVM classifies trials using only two channels, the ac-
curacy decreases. In contrast, the accuracy of BCI-CDF is
significantly higher than that of BCI-SVM although BCI-
CDF classifies trials having fewer channels than BCI-SVM.

BCI-CDF adopts the parameters of optimal frequency
band, channels, and latency that were identified from the
training data. In this sense, BCI-CDF may be considered
for adopting machine learning techniques, especially when
the parameters are identified automatically. However, BCI-
CDF adopts parameters that correspond to neurophysiolog-
ical information. In contrast, SVM adopts parameters that
do not directly correspond to neurophysiological informa-
tion, suggesting that we cannot explain the role played by
each parameter. This is an obstacle in improving accuracy.

CSP, which is adopted by BCI-SVM for feature extrac-
tion, depends heavily on the identified latency because it cal-
culates the covariance matrix during latency. However, for
a given subject in different trials, the latency when ERS is
observed could differ. This results in misclassification. In
contrast, BCI-CDF does not require the latency duration for
classification because the threshold is determined such that
it does not exceed the maximum value during the latency
period in which no significant ERS is observed. In fact, the
waves of CHg and CH{, scarcely exceed the threshold during
the latency period that is not identified, as shown in Fig. 5.
Although BCI-CDF may perform accurately without a rea-
son to identify latency, BCI-CDF should adopt the identified
latency to improve robustness for artifacts.

BCI-SVM classifies all trials into two classes whereas
BCI-CDF does not classify all trials. This is an impor-
tant characteristic of BCI-CDF that they classify trials into
three classes (right, left, neither) unlike BCI-SVM into two
classes (right, left). In other words, BCI-CDF detects tri-
als that are difficult for classification and do not classify the
trials. Therefore, BCI-CDF is useful for subjects to train
how to modulate 8 rhythms for improving accuracy. The
thresholds are determined by the noise level only. This sug-
gests that we can extend BCI-CDF to an asynchronous BCI,
which does not require any stimuli, e.g., visual cues, for the
classification.
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BCI-SVM may improve accuracy to output “neither”,
i.e., to adopt three-class classifier such as BCI-CDF. One
possible way to find “neither” trial is to use threshold for
posterior probability in each class. However, the issue con-
cerns how to determine the threshold on the posterior proba-
bility. In BCI-CDF, the threshold is determined by CDF and
the significant level.

One reason for the improved accuracy in BCI-CDF is
to select trials for classification. However, note that this is
not the only reason for improved accuracy. There are some
cases for which the number of accurately classified trials by
BCI-CDF exceeds that by BCI-SVM even after removing
some of the bad trials. Moreover, when we consider the
removal of bad trials, one half of the removed trials must be
subtracted from all of the accurately classified trials because
the accuracy of the removed trials is assumed to be 50%.
However, that is not necessarily the case. Therefore, the
accuracy improvement in BCI-CDF was not accomplished
solely by the removal of bad trials.

5. Conclusion

Our results demonstrated that the developed BCI (BCI-
CDF) achieved higher classification accuracy than that
of previously reported machine-learning-based BCI (BCI-
SVM), especially for the movement imageries (paired #-test,
p < 0.05). This may be because the machine-learning-based
BClI classified trials into two classes even though improperly
executed trials may have existed in the movement imageries.
In contrast, BCI-CDF classified trials into three classes.

It demonstrated that the highest accuracy was achieved
even though the subjects had never participated in the move-
ment and their imagery experiments. In future work, we will
develop a real-time feedback system to achieve high accu-
racy using our BCIL.
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Appendix:

The derivative of fy_x

fx-x(x) is an even function. Hence, in what follows, we
consider only x > 0.

Sx-x(x)

o0 2
f (T+x)exp(—u)
0 2

2
T eXp (—%) dr

B3
2

0 2
f we™ du

2

oA ool
3]

= fm—%u(e"‘z)’ du

Replacing f; e du by %erfc(x), we finally obtain (10).
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