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Matching Handwritten Line Drawings with Von Mises Distributions
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SUMMARY A two-dimensional shape is generally represented with
line drawings or object contours in a digital image. Shapes can be divided
into two types, namely ordered and unordered shapes. An ordered shape
is an ordered set of points, while an unordered shape is an unordered set.
As a result, each type typically uses different attributes to define the local
descriptors involved in representing the local distributions of points sam-
pled from the shape. Throughout this paper, we focus on unordered shapes.
Since most local descriptors of unordered shapes are not scale-invariant,
we usually make the shapes in an image data set the same size through
scale normalization, before applying shape matching procedures. Shapes
obtained through scale normalization are suitable for such descriptors if the
original whole shapes are similar. However, they are not suitable if parts
of each original shape are drawn using different scales. Thus, in this paper,
we present a scale-invariant descriptor constructed by von Mises distribu-
tions to deal with such shapes. Since this descriptor has the merits of being
both scale-invariant and a probability distribution, it does not require scale
normalization and can employ an arbitrary measure of probability distri-
butions in matching shape points. In experiments on shape matching and
retrieval, we show the effectiveness of our descriptor, compared to several
conventional descriptors.

key words: shape descriptor, shape matching, shape retrieval, von Mises
distribution, scale invariance

1. Introduction

Shape matching means considering the correspondence be-
tween shapes, each of which is generally represented with
line drawings or object contours in a digital image. Thus,
shape matching is a fundamental issue in digital image pro-
cessing, line drawing interpretation, and character handwrit-
ing recognition [1]-[4].

Shapes can be divided into two types, namely ordered
and unordered shapes, where the former is an ordered set of
points, and the latter is an unordered set. In general, ordered
and unordered shapes employ different shape attributes to
define their local descriptors. For instance, curvature, which
is frequently used as a local descriptor [5]-[8], is applicable
to ordered shapes only, because it depends on the ordering
of points. On the other hand, unordered shapes make use
of attributes that do not depend on the ordering of points.
Local descriptors for unordered shapes are, therefore, more
versatile in practice, because we do not have to assume an
order of the points in the shape. In this paper, we focus
on unordered shapes, and henceforth, they are referred to
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simply as the shapes.

Recently, several local descriptors for (unordered)
shapes have been proposed [9], [10]. However, since the de-
scriptors are not scale-invariant, as a preprocess we need to
apply scale normalization to the shapes in an image data
set to ensure that they are the same size. This is useful for
such descriptors in matching shapes if the original whole
shapes are similar in shape, but not if parts of each original
shape are drawn with different scales. Accordingly, in this
paper, we present a scale-invariant descriptor that can deal
with shapes of this latter type and does not require scale nor-
malization. Since this descriptor is a probability distribution
described by a mixture of von Mises distributions, we can
employ an arbitrary measure of probability distributions as
the matching cost function of points. Using various shapes
in the drawing and gesture data sets, we show that our de-
scriptor is more effective in shape matching and retrieval
than several conventional descriptors.

This paper is organized as follows. First, we explain the
basics of shape matching with local descriptors in Sect. 2.
Our descriptor is presented in Sect. 3, and compared with
the conventional descriptors in Sect. 4. Finally, we give our
conclusion in Sect. 5.

2. Matching with Local Descriptors

A shape is represented by line drawings or object contours.
To reduce the computational cost of matching shapes, we
usually sample some points from the shape and focus on
these points. A set of points sampled from a shape is called a
sample set, and an element in the set is called a sample point.
Since a shape is described as a set of points, shape matching
is, in fact, finding the correspondence between the sample
set of one shape and that of another. Shape recognition relies
on this correspondence.

2.1 Dissimilarity between Shapes

Let S| and S, denote shapes, and S 1 and 32 their respective
sample sets. We generally define a correspondence between
the shapes by a many-to-one map M : S; - S,. Givena
matching cost function (MCF) C : S 1 sz — R, the optimal

correspondence in terms of C is expressed as
m e argmin !
MeM(81.5:)

~

> C.MpY), (1)
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where

M(Sl,Sz) def {

MIM:8 - S} )
Intuitively, the MCF in (1) quantifies how different the local
distributions of sample points around p and M(p) are. Using
the optimal correspondence, the dissimilarity between the
shapes is defined as

def

d(S1,8)E — > Cp. M (p) + 7 (|81].134]).

PE~§ 1

3)

where the second term gives a non-negative real number,
which tends to a large value as the difference between the
numbers of sample points increases. Dissimilarity is funda-
mental to shape recognition.

2.2 Local Descriptors and their Cost Functions

A number of shape matching methods have been pro-
posed [6]-[12]. The difference between these methods lies
essentially in their choice of MCF. A local descriptor rep-
resenting the local distribution of sample points around one
point in the shape is involved in the MCF. In this section, we
briefly introduce several local descriptors and their MCFs,
which are typically used in shape matching.

(1) Distance Set

The distance set (DS)[9] expresses the local distribution
around a sample point of the shape by a set of distances
between that point and others. If the number of elements in
the set is fixed as n, the set is called the n-DS. For any shape
S, the n-DS around p € S is defined by

50(p) E ALY, .. (P}, 4)

where /;(p) denotes the I;uclidean distanAce between P and
the i-th nearest point in S. For all p € 8| and g € S5, the
MCEF of the n-DS is given by

[; Ly
Cos (pr) Emin{ L 3" i) - Ww"e@,
7 & max {1(p). Lo ()]

&)
where [;(p) € s,(p) and ly;(q) € s,(q) hold for all i, and

def
{

¢l¢:{l,....n} = {l,...,n}
Vi, j [¢(l) = ¢(J) =i=j]}. (6)

In short, the DS around a sample point quantifies the dis-
tance between that point and another. Since the DS depends
on the distance, it is not scale-invariant.

Example 1 (DS): Consider the sample set 3={(2, 1),(1,2),
(3,4),(4,3),(5,1),(3,1)} of a shape S. Let p =
(2,1). Since the Euclidean distances between p and
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(1,2), (3,4), (4,3), (5, 1), 3,1) are V2, V10,22, 3, 1,

respectively, the 3-DS around p is written as s3(p) =

(1, V2,22,

(2) Shape Context

The shape context (SC) [10] expresses the local distribution
around a sample point of the shape with a histogram. For
any shape S, the SC around p € S with respect to the b-th
bin is defined by

p(b) def

(e S\tpt | = p ebin) . )

where \ denotes the difference between the sets, and bin(b)
means the b-thbin for b = 1, ..., B. B denotes the total num-
ber of bins. We should note that p’ — p is a vector quantity
with magnitude and direction. For all p € 81 and g € Sz,
the MCEF of the SC is given by

5 (Rp®) - hy(B))

def 1
CSC (p’ Q) == = = ) (8)
2 ; hy(b) + hy(b)
with the convention 0/0 = 0, where
- ot Np(D)
hy(b) E — ©)
5y (b)
de h (b)
hy(b) € . (10)
2ip=1 hy(b)

In short, the SC around a sample point depends not only on
the distance between the point and another, but also on the
angle between the x-axis and the vector formed by the two
points. This dependence on distance implies that the SC is
not scale-invariant either.

Example 2 (SC): A bin, illustrated in Fig. 1, represents a
plane region partitioned by some lines passing through the
origin and by circles centered on the origin (see [10] for the
details). In the figure, the broken line represents the partition
between bins, the dot depicts a sample point of the shape,
and the number in a bin indicates the bin number. Table 1
gives the SC around p in Fig. 1.

2.3 Scale Effect and Scale Normalization

Usually the raw shape data obtained from line drawings of

Fig.1 Bins around a sample point p.
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(a) Case in which the whole drawings are similar.
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(b) Case in which corresponding parts of the
drawings are similar.

Fig.2  Line drawings of the digit “3”.

Table 1
b 1 2 3 4 5 6 7 8 9 10 11 12
hy) 0 0 0 0 0 1 1 3 1 1 2 0

SC around p.

an image data set are different in scale. Since most local de-
scriptors, such as the DS and SC, are not scale-invariant, as a
preprocess we first need to make the shapes the same size by
scale normalization, and then we can sample various points
of the shapes to create their sample sets. Scale normalization
simply means magnifying or reducing the entire shape. It is
effective for such descriptors if the original whole shapes are
similar, but not so effective if parts of each original shape
are represented by different scales. For example, consider
the line drawings in Fig. 2, which appear to depict the same
digit. Since the left and right drawings in Fig. 2 (a) have sim-
ilar proportions, we can readily find the correspondence be-
tween the drawings through scale normalization. The right
drawing in Fig.2 (b) has been deformed by uniformly re-
ducing the upper part of the left drawing and by uniformly
magnifying the lower part. This means that different parts
of the shape are expressed using different scales. Although
these whole drawings may differ in similarity, they are the
same digit in human recognition. In this case, it is difficult
for non-scale-invariant descriptors to yield a correct corre-
spondence even with scale normalization. As a result, such
descriptors frequently fail to find the correct correspondence
between their shapes. Accordingly, the purpose of this pa-
per is to provide a scale-invariant descriptor that copes well
with this problem.

3. A Novel Local Descriptor

We have explained that conventional descriptors cannot deal
with shapes, parts of which are drawn with different scales,
even when scale-normalization is applied in advance. In this
section, we present a novel local descriptor to manage such
shapes.

3.1 Mixture of von Mises Distributions

Neither the DS nor the SC is scale-invariant, because they
depend on the distance between sample points of a shape.

0.8

e /.»\
0.7r . F@O|n/2,2) A
- ——m f(0|37/2,4) ‘,/ \

Fig.3  vMDs with different parameters.

Our descriptor refers only to an angle of deviation, and
hence it is obviously scale-invariant. The proposed descrip-
tor expresses the local distribution around a sample point
by a mixture of von Mises distributions (vMDs) [13], [14].
With 8 measured in radians, let f be the vMD defined as
£0160.m def ez);p (mcos (6 — 6p))

0

) (11)
exp (mcos6)de’

for any 6y and m > 0. As shown in Fig. 3, the vMD is peri-
odic with period 27, and its parameters 6y and m correspond
to the mean and concentration of the distribution, respec-
tively. For any shape S, the mixture of vMDs around p € S
under a fixed m is given by

det 1

i O1p) S = > f(0]angg=p).m), (12)

T g\

where ang (¢ — p) denotes the angle of deviation determined
by the angle between the x-axis and the vector g—p. Figure 4
illustrates the angle of deviation. Since the mixture of vMDs
is a probability distribution, we can use an arbitrary measure
of probability distributions to calculate the MCF. Now, we
employ the symmetric divergence (for an example, see [15])
to define the MCF of the mixture of vMDs as follows. For
all p e 31 and g € 32,

ef 1
Cwv (o) & 5D 1) o 1))
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Fig.4  Angle of deviation.

1
+ 5D W Clg) llom ¢ 1)) 13)

where D is the information divergence, for example,

v (@1p)

do.
v (@lg)

(14)

271
D (0 - 1p) lom g ) & fo 0 (81p) log

Other typical measures of probability distributions should
be the relative entropy [14] and the RDSP [15]. In fact, we
tested these measures in the experiments in Sect. 4, and ob-
tained the almost same results as the symmetric divergence.
Hence, in this paper, we use the symmetric divergence to
represent a measure involved in the MCF.

Since the mixture of vMDs is scale-invariant, if the
original whole shapes are similar, then they are the same in
terms of matching with the mixture of vMDs. Furthermore,
since the mixture of vMDs is a local descriptor, even if parts
of each original shape are drawn with different scales, it is
effective for matching shapes with such similar parts.

Remark 1 (Measure Selection): The optimality of mea-
sures is strongly application dependent. So, whenever con-
sidering an application of shape matching, we need to se-
lect an appropriate measure. If there is some knowledge
about ideal properties of the MCF in the application, then
we might select an effective measure using the most of the
properties. For example, if the MCF needs to be symmet-
ric taking an application into account, then we have to use
a symmetric measure such as the symmetric divergence. In
addition to being symmetric, if the MCF needs to satisfy the
triangle inequality, then the RDSP should be better. Thus,
we could select an appropriate measure when ideal proper-
ties of the MCF is available.

Remark 2 (Rotation Invariance): The mixture of vMDs is
not a rotation-invariant descriptor. However, we can pro-
vide a rotation-invariant matching by sliding the mixture of
vMDs along the 6-axis, that is, by defining the MCF by

of . |1
Cwv (p, @) € min {ED(vm C+0 1) llow - 19))

1
3D (0n 1) o (- + 6 1))

¢ [0, 271)}, (15)

instead, where for example, D (v, (-+ 8" |p)llvm(lg))
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Fig.5 Sample points of a diamond-shaped line drawing.

means

D (0 (- + 6" 1) llom (-19))

def

2 7
m (0 + 6
0

do. 16
o @10) (16)

3.2 Implementation

Since the mixture of vMDs in (12) is a continuous function,
it needs to be discretized in the implementation. Since the
vMD has period 2m, we consider it over the discretized in-
terval defined by

2 4 AT -1
@T"éf{o,—”,—",...,u}. (17)
7T T

Substituting @7 for the domain of the vMDs gives the fol-
lowing approximations of (11) and (14):

T exp(mcos (60— 6y))

f(©0160,m) = 3 o oxp (M3 6)’ (18)
2 m 9
D (om (- 1p) llom (- 19)) ~ 7” D v (@1p)log —’; Ee'é’;
0e@r m
(19)

These approximations are used in the experiments.

Example 3 (Mixture of vMDs): Figure 5 depicts the sam-
ple points of a diamond-shaped line drawing. The mixture
of vMDs around sample point p depicted in the figure is ob-
tained by making a mixture of seven different vMDs. Fig-
ure 6 plots this using m = 10 and T = 60.

3.3 Examples of Shape Matching

Using line drawings of the same class, we show that our
descriptor can deal with shapes, parts of which differ in
scale. The scale normalization and sampling preprocesses
used here are as follows.

Scale Normalization: Scale normalization is performed by
magnifying or reducing the whole shape so as to make
its bounding box a fixed area of 40000 in keeping with
the aspect ratio of the box. This is done before sam-

pling.
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Fig.7  Correspondence produced by the DS MCF.
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Fig.8 Correspondence produced by the SC MCF.

Sampling: Sampling implies uniformly extracting 21
points from each shape to create its sample set.

Figures 7 and 8 show examples of sample points ob-
tained through both scale normalization and sampling of
the drawings in Fig. 2 (b) with the DS and SC, respectively,
applied to these. Meanwhile, since the mixture of vMDs
is scale-invariant, it does not require shapes to be scale-
normalized. Thus, the mixture of vMDs was applied to the
sample points shown in Fig.9, obtained through sampling
only.

The left shape in each example is called a query shape.
The right shape, which is a deformation of the query shape,
is called a database shape. We employed the MCFs for the
10-DS, SC, and mixture of vMDs to obtain the optimal cor-
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Fig.9  Correspondence produced by the MCF for the mixture of vMDs.

respondence in terms of (1) between the query and database
shapes. The parameters for the 10-DS, SC, and mixture of
vMDs were set so as to achieve the best respective perfor-
mance. Concretely, the parameters in each descriptor were
determined by running a number of trials with different pa-
rameter values. In computing the mixture of vMDs, m = 10
and T = 30 were used.

The resulting correspondences are shown in Figs. 7, 8,
and 9, respectively. The sample points of the query shape
are labeled with successive numbers between 1 and 21. The
numbering of a sample point on the database shape implies
a correspondence with the point with the same number on
the query shape. Unnumbered points on a database shape
have no correspondence with points on the query shape. We
see that only the mixture of vMDs yields the correct cor-
respondence. Although the scale-normalized shapes were
used differently from those to which the mixture of vMDs
was applied, we confirm that the 10-DS and SC failed to
find the correct correspondence (see, for example, points la-
beled 3, 7, and 9 in Figs. 7 (b) and 8 (b)). One reason for the
poor result using the DS is that this descriptor is basically
meant to be used to find a one-to-one correspondence, and
not the many-to-one correspondence discussed here. These
results suggest that our descriptor copes with the scale effect
problem explained in Sect. 2.3.

4. Experiments

Using two shape data sets, we compared our descriptor with
several conventional descriptors.

4.1 Drawing Data Set

The drawing data set available from [16] is a set of sym-
bol shapes. Figure 10 shows all the line drawings in the data
set, which consists of 100 shapes, each of which is classified
into one of 25 classes. There are four shapes in each class.
We employed the MCFs for the 10-DS, SC, and mixture of
vMDs to calculate the dissimilarity in (3). In addition, for
reference purposes, we compared all the above descriptors
and the integral invariant (INI) descriptor [11]. This com-
parison examines the differences between matching meth-
ods for ordered and unordered shapes. Since shapes used in
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Fig. 10

the INT are required to be ordered and closed, we provided a
reasonable order of the shape points using the recorded time
of each point and made the shapes closed by simply con-
necting the first and last points of the shape points in keeping
with the INI. In contrast to the matching schema based on
a search with MCFs, matching with the INI is based on dy-
namic programming. The scale normalization and sampling
performed here are the same as those discussed in Sect. 3.3.
We should note that the second term in (3) is always zero in
this case, because all the shapes have the same number of
sample points. Moreover, the parameters for the 10-DS, SC,
INI, and mixture of vMDs were tuned to achieve the best re-
spective performance. In computing the mixture of vMDs,
m =10 and T = 30 were used.

Each shape was used in turn as the query shape, and
matched against all 100 shapes. The retrieval rate was com-
puted by counting the number of shapes in the same class
that were found in the first five most similar matches (top
five matches). Since the number of shapes in the same class
is at most four, the total number of correct matches, when
all the shapes are selected in turn as queries, is at most 400.
Thus, the overall retrieval rate for the top five was calculated
as the ratio of the number of actual correct matches to 400.
The retrieval rate for the top ten was defined similarly. The
effectiveness of the local descriptor is measured by the re-
trieval rate, which is frequently employed in shape retrieval
evaluation (see [9], for example).

Table 2 gives the resulting retrieval rates for the four
descriptors. The values for the 10-DS, SC, and INI in paren-
theses indicate the retrieval rates derived from the shapes

Line drawing data.

Table 2  Retrieval rates for the drawing data set.
descriptor retrieval rate (%)
for the top five  for the top ten
DS 69.25 80.5
(66.5) (75)
SC 93.25 95.25
(89) (92.5)
INI 84.5 88.25
(79.25) (83)
Mixture of vMDs 95.25 98.25

obtained through sampling only. These values imply that
scale normalization improves shape matching. We confirm
from the table that our descriptor is more effective in shape
retrieval than the 10-DS, SC, and INI.

Figures 11, 12, and 13 show examples of the resulting
correspondence obtained by the 10-DS, SC, and mixture of
vMDs, respectively. The database shape in each example is
a deformed query shape drawn by transverse stretch. Again,
we see that only the mixture of vMDs produced the correct
correspondence. Thus, our descriptor is relatively insensi-
tive to a shape being stretched, because it does not depend
on the distance between sample points, but exploits only the
angle of deviation in (12).

4.2 Gesture Data Set
The gesture data set available from [17] consists of 17 query

shapes and 980 database shapes of hand contours. Figure 14
shows the query shapes, each of which depicts a gesture.
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Table 3  Retrieval rates for gesture data set.
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(a) Sample points of a query
shape.

(b) Sample points of a database
shape.

Fig.11  Correspondence obtained by the DS MCF.
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Fig.12  Correspondence obtained by the SC MCFE.
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Fig.13  Correspondence obtained by the MCF for the mixture of vMDs.

Each database shape is classified into one of the 17 gesture
classes represented by the query shapes. In this data set, the
numbers of database shapes in each of the classes are dif-
ferent. We employed the MCFs for the 20-DS, SC, INI, and
mixture of vMDs to calculate the dissimilarity in (3). The
scale normalization is the same as that discussed in Sect. 3.3,
and we uniformly extracted 40 points from each shape in

sampling. Moreover, the parameters for the four descriptors
were tuned to achieve the best respective performance. In
computing the mixture of vMDs, m = 9 and T = 30 were
used.

Each query shape was matched against all 980 database
shapes. The retrieval rate was computed by counting the
number of database shapes of the same class that were found
in the first 30 most similar matches. The overall retrieval
rate for the top 30 was calculated as the ratio of the number
of actual correct matches to the total number of possible cor-
rect matches. The retrieval rates for the top 40 and 50 were
defined similarly. The effectiveness of the local descriptor is
measured by the retrieval rates.

Table 3 gives the resulting retrieval rates for the four
descriptors. In addition, similar correspondences to Figs. 7—
9 and Figs. 11-13 were observed. Again, we confirm from
the table that our descriptor is more effective in shape re-
trieval than the others.

5. Conclusion

We presented a scale-invariant descriptor defined as the mix-
ture of vMDs. Using various shapes in the drawing and
gesture data sets, we showed that our descriptor can han-
dle shapes, parts of which are drawn with different scales,
and it is more effective in shape matching and retrieval than
several conventional descriptors.

Just as the parameter settings of the conventional de-
scriptors, such as the DS, SC, and INI, have a great influ-
ence on their performances, so that of the mixture of vMDs
has a great influence on its performance. So, establishing an
effective method for finding good parameters of the mixture
of vMDs is an important future work.
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