
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2523

LETTER

A Novel Sequential Tree Algorithm Based on Scoreboard for MPI
Broadcast Communication

Won-young CHUNG†a), Member, Jae-won PARK†, Seung-Woo LEE††, Won Woo RO†b),
and Yong-surk LEE†c), Nonmembers

SUMMARY The message passing interface (MPI) broadcast commu-
nication commonly causes a severe performance bottleneck in multicore
system that uses distributed memory. Thus, in this paper, we propose a
novel algorithm and hardware structure for the MPI broadcast communica-
tion to reduce the bottleneck situation. The transmission order is set based
on the state of each processing node that comprises the multicore system,
so the novel algorithm minimizes the performance degradation caused by
conflict. The proposed scoreboard MPI unit is evaluated by modeling it
with SystemC and implemented using VerilogHDL. The size of the pro-
posed scoreboard MPI unit occupies less than 1.03% of the whole chip,
and it yields a highly improved performance up to 75.48% as its maximum
with 16 processing nodes. Hence, with respect to low-cost design and scal-
ability, this scoreboard MPI unit is particularly useful towards increasing
overall performance of the embedded MPSoC.
key words: MPI, broadcast communication, multicore, distributed mem-
ory, MPSoC

1. Introduction

Message passing is the most common programming model
for distributed memory systems and is often used in parallel
High Performance Computing (HPC), such as cluster-based
systems [1]. Although message passing is generally used
for HPC clusters, there is growing interest in using mes-
sage passing for embedded applications [2]. The Message
Passing Interface (MPI) standard specifies the Application
Programming Interface (API) for a message passing library.
Presently, it is the de facto standard for message passing.

The MPI standard includes a wide variety of point-to-
point and collective communication functions. The collec-
tive operations currently defined by MPI offer a high-level
interface to the user. They insulate the user from implemen-
tation details and provide with MPI implementers the free-
dom to optimize their implementation for specific architec-
tures. That is, although collective algorithms do not provide
unique functionality per se, collective operations allow for
significant advantages in programmability, safety, and per-
formance [3].

Given these advantages, MPI parallel programming

Manuscript received May 26, 2011.
Manuscript revised July 23, 2011.
†The authors are with the Department of Electrical and Elec-

tronic Engineering, Yonsei University, Seoul, Korea.
††The author is with the Future Network Research Division,

ETRI, Daejeon, Korea.
a) E-mail: wychung@mpu.yonsei.ac.kr
b) E-mail: wro@yonsei.ac.kr
c) E-mail: yonglee@yonsei.ac.kr

DOI: 10.1587/transinf.E94.D.2523

frequently draws on collective operations. A profiling study
revealed that some applications spend more than eighty per-
cent of transfer time in collective operations. Among the set
of collective operations, MPI Bcast and MPI Allreduce are
two important examples [4]. Open source MPI implementa-
tions of the collective operations generally assume that the
target is a collection of compute nodes connected by a cen-
tral switch (e.g. Ethernet and InfiniBand). These implemen-
tations generally have poor performance as the machine is
scaled to several thousands of nodes. It is therefore essen-
tial for MPI implementations to provide high-performance
collective operations.

Recently, many researchers have focused on ‘optimal
implementation’ that provides a set of available collective
algorithms according to the given system environment. The
ultimate goal of such endeavors has been to improve collec-
tive operation. It is critical to note that the optimal imple-
mentation of a collective operation for a given system de-
pends on many factors, including physical topology of the
system, number of processes involved, message size, com-
municator size, and the location of the root node [5]. In the
case of the MPI library cell, a collective operation is con-
verted to point-to-point operation routine by a collective al-
gorithm that is selected based on those factors.

Moreover, among all the collective communication
primitives, the MPI Bcast operation is relatively simple but
of great importance. The MPI Bcast routine is a one-to-all
form of communication that copies data in the memory of
the root process into the other processes in the same com-
municator. Many algorithms have been suggested as means
to perform broadcast operation. Optimal implementation
for MPI Bcast is also a process that applies broadcast al-
gorithms according to key factors such as message length
and the number of processing nodes.

Despite the existence of many studies on optimal im-
plementation, there have been no studies exploring the state
of processing nodes. If the synchronous communication of
other nodes is detected, the sequence of transmission is set
by the state of processing nodes so that it reduces broadcast-
ing time. As a result, this study proposes a novel scoreboard
broadcast algorithm that applies a sequential tree while re-
ferring to the state of processing nodes. Additionally, we
design a scoreboard MPI hardware unit that applies the pro-
posed scoreboard algorithm. To then design the scoreboard
MPI hardware unit, a standard mode MPI hardware unit [6]
from the previous study is modified.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



2524
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

2. Related Works

One of the studies on effective MPI broadcast operation
focuses specifically on broadcast algorithms. Beginning
with the sequential tree algorithm, in which the root node
sends an individual message to all participating nodes, many
broadcast algorithms are suggested. These include, for ex-
ample, a chain tree, binomial tree, binary tree, minimum
spanning tree (MST), distance MST, hybrid (by Van de
Gejin) broadcast, and modified Van de Gejin broadcast.
By including one of these algorithms that improves perfor-
mance and is easy to implement in MPI library cell, broad-
cast operation is converted to a bundle of point-to-point op-
erations.

Secondly, a study on how to include some of these al-
gorithms in the MPI library cell and select algorithms based
on the information of the MPI function is in progress [7].
The MPI Bcast routine is as follows.

MPI Bcast(void *buffer, int count, MPI Datatype

datatype, int root, MPI Comm comm.)

In other words, message size can be assessed through
“buffer”, “count”, and “datatype”, the location of the root
node through “root”, the communicator size, and the num-
ber of processes through “comm.”. As a result, the algorithm
can be selected using this information.

Thirdly, a study on accelerating point-to-point commu-
nication by designing hardware that processes MPI com-
munication remains in progress [1]. If the hardware for
MPI communication is used, the throughput is increased to
a greater extent than when the software is used, and the
Clock Per Instruction (CPI) of processor is increased be-
cause a hardware accelerator processes the MPI commu-
nication. Due to these advantages, a standard mode MPI
hardware unit was proposed and designed in our previous
study [6].

Despite this plethora of studies, there have been no
studies considering the state of the processing node. Fig-
ure 1 highlights why the state of the processing node is im-
portant during the broadcast. In Fig. 1, processing node A is
broadcasting sequentially to B, C, and D. Each processing
node has one input and one output data port, which is the
general structure. Let us now assume that the transmit or-
der is 1, 2, and 3 according to the algorithm. In this case, if
communication between B and D is ongoing, transmission
1 is delayed until the communication is completed. If pro-
cessing node D sends larger size data, then transmission 1

Fig. 1 The importance of the processing node state.

is delayed even further. Given that transmission 1 has not
completed, transmission 2 and 3 cannot proceed. If the data
is transmitted in the order of 3, 1, 2 or 3, 2, 1, the broadcast-
ing time can be shortened. Likewise, if the root node can
detect whether the other leaf nodes are communicating, the
order of transmission can be decided as 3, 1, 2, or 3, 2, 1.
In this study, to check the status of each processing node,
a scoreboard register that records the status is added to the
previously designed MPI unit [6].

3. Proposed Algorithm & Architecture

Given the aforementioned factors, this study proposes a
novel sequential tree algorithm based on the scoreboard.
Figure 2 clarifies the method used to implement the broad-
cast algorithm. In Fig. 2 (a), which is a general design
method, the MPI program is compiled and linked with the
MPI library cell at the user level. Through this flow, the
MPI Bcast operation is converted into a bundle of point-
to-point operations by a relevant broadcast algorithm. Fig-
ure 2 (b) indicates the design method that this study pro-
poses, and a collective operation apart from broadcast op-
eration is converted into a bundle of point-to-point com-
munications by way of a modified MPI library at the user
level. In the event of a broadcast operation, a modified
MPI library cell generates an MPI Bcast Root message and
MPI Bcast Leaf message. The MPI Bcast Root message is
then sent to the root node at the transaction level and the
MPI Bcast Leaf message is sent to leaf nodes - received
nodes - at the same level. As the content of the scoreboard
register is unknown at the user level, the broadcast algorithm
should be applied at the transaction level.

Subsequently, the order of transmission is decided by
reading the scoreboard register at the transaction level. Fig-
ure 2 (c) highlights the following procedure after MPI unit
receives MPI Bcast Root message. In this case, the score-
board unit reads the scoreboard information and records the
information in the scoreboard register of the MPI unit. The
Scoreboard algorithm unit then decides the order of trans-
mission according to the scoreboard register value. Fig-
ure 2 (d) shows the following procedure after MPI unit re-
ceives MPI Bcast Leaf. In this case, if the other two leaf
nodes are performing point-to-point communication, mean-
ing the two nodes are in the ‘busy’ state, the two nodes wait

Fig. 2 Broadcast implementation & proposed algorithm.



LETTER
2525

to receive the data from the root node following the com-
munication. If no communication is ongoing, meaning all
nodes are in the ‘wait’ state, they wait to receive data from
the root node.

Furthermore, Fig. 3 (a) represents the scoreboard MPI
unit architecture with 4 processing nodes. When the MPI
unit in each node is performing point-to-point communica-
tion, it transmits its state to the scoreboard. If the MPI unit
is communicating, it records 1 for a ‘busy’ state, and if there
is no communication, it records 0 for a ‘wait’ state in its
own bit. The MPI unit of the root node, which received the
MPI Bcast Root message, reads the scoreboard and records
the information in the scoreboard register. As the number
of processing node increases, the size of the scoreboard reg-
ister increases linearly. The scoreboard algorithm unit then
decides the order of transmission according to the sequential
tree algorithm based on the scoreboard. Figure 3 (b) offers
a block diagram of the processing node. In this block di-
agram, the scoreboard unit is added to the processing unit
from the previous study [6]. At the same time, the local bus
is added to the communication using the scoreboard.

Figure 4 depicts the process flow in the scoreboard MPI
unit with clock base when MPI Bcast Root message is sent
from the processor. If MPI Bcast Root message is transmit-
ted in processor wrapper that is in MPI unit, scoreboard port
wrapper sends SB read request signals to the scoreboard. In
the next clock cycle, the scoreboard unit writes the informa-
tion read from the scoreboard into the scoreboard register.
At the same time, the scoreboard unit uses scoreboard in-
formation and selects processing node to be sent preferen-

Fig. 3 Proposed scoreboard MPI unit architecture with 4 nodes.

Fig. 4 Process flow in scoreboard MPI unit with clock base.

tially. Based on the selected processing node, the scoreboard
unit generates a control message and records the message
in the queue that is in the control message sender. In the
third clock cycle, the control message is sent to receive node
through AXI bus. In every cycle, the scoreboard unit gener-
ates control message and store the message in the queue. By
processing the information in the queue sequentially, broad-
casting is processed.

4. Simulation Results

To measure the broadcast communication performance of
the scoreboard MPI unit, we compared it with the previous
standard mode MPI unit [6]. Each unit is then designed as
a Bus Functional Model (BFM) based on SystemC. We de-
signed the BFM with consideration given to the delay time
of each block, and it generates communication traffic in spe-
cific simulation environments. The following sections ad-
dress the simulation results in greater detail.

4.1 Performance Evaluation of Proposed Model

In this section, we compared the proposed scoreboard MPI
unit with the standard mode MPI unit from the previous
study. This comparison was completed with regard to the
results of the simulation in broadcast communications. The
result of the simulation demonstrates the speed-up ratio of
the proposed model when root node 0 broadcasts data to
each leaf node.

Figure 5 depicts how node 0 broadcasts data to node 1,
2, and 3 when the total number of processing nodes is 4. We
simulated the proposed model by increasing the amount of
the broadcasting data from 4 bytes to 4k bytes. In Figs. 5 (a)
and 5 (b), the other synchronous point-to-point communica-
tion between leaf nodes was fixed as 512 bytes and 2k bytes
respectively.

In case 1, the broadcast register is ‘0000’, representing
no point-to-point communication. In case 2, the broadcast
register is ‘0011’, meaning there is another communication
between node 2 and 3. In case 1 and 2, the transmission
order in both models is 0 to 1, 0 to 2, and 0 to 3, though
the performance of the proposed model is declined with the
small amount of data. This is because the first data trans-
mission is done without any conflict in both models. How-
ever, in the case of the proposed model, processing time that
decides the transmission order through the scoreboard unit
is added so that it takes more time to complete the broad-
cast. It is important to note that with small amount of data,
the total transmission time is short, so there is slight per-
formance degradation. In case 3, the broadcast register is
‘0101’ or ‘0110’, and the results of the simulation in both
cases are nearly the same so the result of ‘0110’ is used. In
this case, the transmission order of the previous model was
0 to 1, 0 to 2, and 0 to 3, and the order of the proposed
model is 0 to 3, 0 to 1, and 0 to 2. In the previous model,
when the root node 0 transmits data to the leaf node 1, a
conflict occurs as node 1 communicates with node 2 con-



2526
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 5 Simulation results with 4 nodes (left (a): 512 B, right (b): 2 kB).

Fig. 6 Simulation results with 8 nodes (left (a): 512 B, right (b): 2 kB).

Fig. 7 Simulation results with 16 nodes (left (a): 512 B, right (b): 2 kB).

currently. Hence, the first transmission should wait until the
transmission between node 1 and node 2 is completed. In
the proposed model, however, there is no conflict because
root node transmits data to node 3 first, which shortens the
broadcasting time. For example, with the 2k bytes of broad-
cast data, it shows performance increase up to 32.9% (the
previous model: 10300 ns, the proposed model: 7750 ns) as
shown in Fig. 5 (b).

Figure 6 shows the result of the simulation with 8 nodes
in the same experiment condition, while Fig. 7 shows the
result of the simulation with 16 nodes. In the end, perfor-
mance had increased up to 55.79% (the previous model:
7120 ns, the proposed model: 4570 ns) with 8 nodes, and
increased up to 75.48% (the previous model: 1360 ns, the
proposed model: 775 ns) with 16 nodes. The summary of

the simulation overall is as follows:

1. If there is no communications between leaf nodes when
the root node sends data, the processing time that root
node uses to check the scoreboard unit is increased.
This degrades the performance compared with the pre-
vious model. The degradation of the performance
is obvious when the data size is small, but the total
transmission requires a short amount of time with the
smaller-sized data, so the impact on the whole system
overall is slight.

2. The expected performance improvement is wide as the
number of the processing node increases. Especially, in
the event that the first node to communicate is ‘busy’,
the two communication modes conflict with each other.



LETTER
2527

This allows for the performance to improve further.

4.2 Implementation and Verification

After verifying the performance through the SystemC sim-
ulator, we designed the scoreboard MPI unit using Ver-
ilogHDL. To this end, we synthesized a synopsys design
compiler, and we used MagnaChip 0.18 µm for the synthe-
sis library. To verify the proposed MPI unit, we designed
the multiprocessor based on RISC MIPS DLX architecture.
There are 2 processor nodes and a AXI bus on a chip. Each
processor nodes is consisted of one RISC core, one instruc-
tion memory, one data memory and one MPI unit.

The memory occupies most of the areas, the MPI unit
as well as the processor core occupy fewer areas. The num-
ber of equivalent NAND gates of the proposed scoreboard
MPI unit is 24865.48, and it occupies less than 1.03% of
the whole chip. It is approximately 1.01% larger than the
previous MPI unit. In addition, when the number of pro-
cessing nodes is 4, 8, and 16, the size of the scoreboard unit
is 257.79, 495.96, and 987.96 respectively.

If the proposed scoreboard MPI unit is used, though it
needs one more cycle (= 5 ns), to decide the order of trans-
mission in the scoreboard unit, the total system performance
increases. In addition, as hardware resource occupies less
than 1.03% of the whole chip, cost is negligible.

5. Conclusion

In this paper, we proposed a novel algorithm and hard-
ware structure for message passing interface (MPI) broad-
cast communication. The transmission order is set based on
the state of each processing node that comprises the multi-
core system, so the novel algorithm minimizes the perfor-
mance degradation caused by conflict. The proposed score-
board MPI unit was evaluated by modeling it with Sys-
temC, and implemented using VerilogHDL. According to

the simulation result, the proposed algorithm shows highly
improved performance as the number of nodes increases,
and the performance increased up to 75.48% with 16 nodes.
Furthermore, the proposed scoreboard MPI unit occupies
less than 1.03% of the whole chip, and the size of the score-
board unit occupies 0.005% of the scoreboard MPI unit. The
proposed scoreboard MPI unit can also be used by adjusting
the size of the scoreboard according to the number of the
whole processing nodes. As a result, the scoreboard MPI
unit is particularly useful from the perspective of scalabil-
ity. Hence, with respect to low-cost design and scalability,
this scoreboard MPI hardware unit is useful in significantly
boosting the overall performance of the embedded MPSoC.

References

[1] D.L. Ly, M. Saldana, and P. Chow, “The challenges of using
an embedded MPI for hardware-based processing nodes,” Field-
Programmable Technology (FPT) 2009, pp.120–127, Sydney, NSW,
Dec. 2009.

[2] P. Mahr, C. Lorchner, H. Ishebabi, and C. Bobda, “SoC-MPI: A flex-
ible message passing library for mutliprocessor systems-on-chips,”
International Conference on Reconfigurable Computing and FPGAs,
pp.187–192, Dec. 2008.

[3] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and perfor-
mance analysis of non-blocking collective operations for MPI,” Su-
percomputing, SC ’07, pp.1–10, 2007.

[4] R. Rabenseifner, “Automatic MPI counter profiling of all users: First
results on a CRAY T3E 900-512,” Proc. Message Passing Inter-
face Developer’s and User’s Conference 1999 (MPIDC99), pp.77–85,
1999.

[5] J. Pjesivac-Grbovic, T. Angskum, G. Bosilca, G.E. Fagg, E. Gabriel,
and J.J. Dongarra, “Performance analysis of MPI collective opera-
tions,” Cluster Computing, vol.10, Issue 2, pp.127–143, June 2007.

[6] W. Chung, H. Jeong, W.W. Ro, and Y. Lee, “A low-cost standard mode
MPI hardware unit for embedded MPSoC,” IEICE Trans. Inf. & Syst.,
vol.E94-D, no.7, pp.1497–1501, July 2011.

[7] G. Almasi, C.J. Archer, C.C. Erway, P. Heidelberger, X. Martorell,
J.E. Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization
of MPI collective communication on BlueGene/L systems,” ICS ’05,
Boston, MA, USA, June 2005.


