
2528
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

LETTER

On Improving the Reliability and Performance of the YAFFS Flash
File System∗∗

Seungjae BAEK†, Nonmember, Heekwon PARK†a), Member, and Jongmoo CHOI†∗, Nonmember

SUMMARY In this paper, we propose three techniques to improve the
performance of YAFFS (Yet Another Flash File System), while enhancing
the reliability of the system. Specifically, we first propose to manage meta-
data and user data separately on segregated blocks. This modification not
only leads to the reduction of the mount time but also reduces the garbage
collection time. Second, we tailor the wear-leveling to the segregated meta-
data and user data blocks. That is, worn out blocks between the segregated
blocks are swapped, which leads to more evenly worn out blocks increasing
the lifetime of the system. Finally, we devise an analytic model to predict
the expected garbage collection time. By accurately predicting the garbage
collection time, the system can perform garbage collection at more oppor-
tune times when the user’s perceived performance may not be negatively
affected. Performance evaluation results based on real implementations
show that our modifications enhance performance and reliability without
incurring additional overheads. Specifically, the YAFFS with our proposed
techniques outperforms the original YAFFS by six times in terms of mount
speed and five times in terms of benchmark performance, while reducing
the average erase count of blocks by 14%.
key words: flash memory, file system, mount speed, performance evalua-
tion, garbage collection

1. Introduction

Flash memory has advantages over conventional disks in
terms of weight, shock resistance, and power consumption.
Hence, a variety of systems make use of Flash memory as a
storage medium. However, flash memory has notable limita-
tions, including an overwrite limitation and the limited num-
ber of erasures possible to each block. In general, there are
two approaches to overcome the limitations. One is intro-
ducing a new software layer, called FTL (Flash Translation
Layer), between the traditional file system and flash mem-
ory. The other approach is designing a specialized flash file
system such as YAFFS [4] and JFFS [5].

In this paper, we mainly focus on YAFFS, though our
techniques can be applied to other flash file systems and
FTLs. YAFFS is one of the widely used flash file systems,

Manuscript received March 15, 2011.
Manuscript revised August 25, 2011.
†The authors are with the Dankook University, Korea.
∗Corresponding author.
∗∗This research was supported in part by National IT Industry

Promotion Agency (NIPA) under the program of Software Engi-
neering Technologies Development and Expert Education, by the
Korea Research Foundation Grant funded by the Korea govern-
ment (MOEHRD, Basic Research Promotion Fund) (KRF-2008-
314-D00340) and by the Korea Science and Engineering Foun-
dation (KOSEF) grant funded by the Korea government (MEST)
(No.2009-0085883).

a) E-mail: parkhk81@dankook.ac.kr
DOI: 10.1587/transinf.E94.D.2528

deployed in the Google Android platform and phones devel-
oped from Motorola, Philips, Samsung, LG, HTC and many
others. To overcome the overwrite limitation of flash mem-
ory, YAFFS makes use of the out-of place update.

To reduce the mount time even under a power failure,
we propose a technique that manages user data and metadata
separately on different blocks. The separation leads to re-
duced mount time and enhanced performance. One concern
about the separation is that there is a potential to wear out
blocks used for metadata more frequently than others. To
handle the problem, we design a simple but effective wear-
leveling technique for enhancing the reliability of the stor-
age system. The final contribution is devising an analytic
model to anticipate expected garbage collection time. By
using the model, we can set limits of the garbage collection
time, thus making flash memory more predictable.

Experimental results on a real embedded system show
that our modified YAFFS can enhance the mount time up to
six times in a normal case and four times in a power failure
case respectively, compared with the original YAFFS. Also,
our proposal can reduce garbage collection overheads and
decrease differences of the erase numbers among blocks.

The rest of paper is organized as follows. In Sect. 2, we
describe the structure of the YAFFS. Then, we discuss how
to improve performance and reliability of YAFFS in Sect. 3.
Performance evaluation results are presented in Sect. 4. Fi-
nally, we provide a summary and directions for future works
in Sect. 5.

2. Structure of the YAFFS

As shown in Fig. 1, when a file creating request is issued,

Fig. 1 New structure of YAFFS.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



LETTER
2529

YAFFS allocates a page for metadata such as file name and
size, and several other pages for user data. After writing
user data, it writes metadata again for update the field such
as file size and it invalidate old metadata for consistency.

The metadata is called as yaffs ObjectHeader in
YAFFS. Also, it stores some housekeeping information, that
is called as tag in YAFFS, on the spare area of each page,
which includes object id, chuck id, and sequence number.
The object id of a page is used for identifying which file
owns the page, while the chuck id is used to restore order-
ing of pages within a file. Finally, the sequence number is
used for finding out the latest page when there are more than
or equal to two pages that have the same object id and chuck
id to differentiate the valid page from other invalid ones.

Also, YAFFS maintains several data structures in
SDRAM such as yaffs Object and yaffs Tnode. Each
yaffs Object can be constructed by reading the corre-
sponding yaffs ObjectHeader from flash memory and all
yaffs Objects form a hierarchy, providing directory func-
tionality. Each file has its own yaffs Tnode that supports
page indexing facility It can be constructed by reading
housekeeping information stored in the spare areas of pages.
During the mount operation, YAFFS builds up all SDRAM
data structures, which requires scanning all pages in flash
memory leading to a lengthy mount time.

The new version of YAFFS, usually called YAFFS2,
employs a checkpoint mechanism that saves the SDRAM
data structures on flash memory at the umount time. Then,
by restoring the saved structures, the mount operation can
bypass scan of all pages, allowing to reduce mount over-
head. However, when a power failure occurs or the check-
point is not performed properly, YAFFS still has to pay non-
trivial mount overhead. The problem becomes worse as
flash memory size in smartphones increases.

3. Design of Performance-Enhanced and Reliable
Flash File System

3.1 Separation of User Data and Metadata

Figure 1 presents internal structure of the original YAFFS
and the new YAFFS designed in this paper. New YAFFS
manages metadata and user data separately on different
blocks. There are two motivations on the separation. The
first is that mount operation needs to access all metadata in
flash memory. If metadata resides on some specific blocks,
the mount process needs to access only those blocks in-
stead of scanning all blocks. The second is that update rate
of metadata and that of user data are quite different. The
yaffs ObjectHeader contains various file attributes includ-
ing file size and access time, which are needed to be updated
whenever any part of user data is updated. In other words,
metadata can be classified as hot data while user data as cold
one, and the hot-cold data segregation gives a positive effect
on the garbage collection performance [2].

Another challenge of our design is how to construct
the yaffs Tnode without scanning of all pages. To accom-

plish this goal, when we write a yaffs ObjectHeader on a
page, we piggyback index information at the same time. In
current implementation, we use a large block NAND flash
memory whose page size is 2 KB. But, the size of the
yaffs ObjectHeader structure in YAFFS is designed to be
0.5 KB due to the backward compatibility purpose. As a
result, the remaining 1.5 KB is not utilized in YAFFS. We
might coalesce four yaffs ObjectHeaders on a page, but this
is not allowed due to the write once requirement of flash
memory. In this study, we exploit the remaining space to
store index information, a collection of direct index pointers
and indirect index pointers, like inode in ext3 file system as
shown in the left side of Fig. 1, which enables to construct
yaffs Tnode without accessing all pages.

The final question is how to find out the blocks holding
metadata at the mount time. There are two possible solu-
tions. The one is storing block information in flash memory
and the other is scanning the first page of all blocks to detect
whether a block is used for metadata or user data. We im-
plement both solutions since the former supports fast gath-
ering of block information while the latter allows obtaining
consistent block information even if a sudden power failure
happens. The former solution, however, can cause serious
wear-out problem so we use latter solution in this paper.

3.2 Wear-Leveling

The separation of metadata and user data on different blocks
may cause skewed wear out among blocks since they have
different update rates. To alleviate this problem, we design
a simple but effective wear-leveling technique. It consists of
two steps. At the first step, when a free block requested, it
checks whether the requested block will be used for meta-
data or not. If so, it chooses a free block from blocks that
were used for user data, and vice versa. In actuality, this
leads to the swap of blocks between metadata and user data.

At the second step, it checks erase count of the candi-
date block. If its erase count is over the average number of
erase count of all blocks, our technique checks erase count
of the next free block and allocates a block that has smaller
erase count among the two blocks. This step can give an-
other chance to save the block that was more worn out than
others. Note that we can use complex data structures such
as a red black tree to allocate the least worn out block. But
it may cause considerable overhead, especially in the em-
bedded systems. Hence we choose our technique that can
allocate a free block with O(1) time complexity using two
free queue data structures, one for metadata blocks and the
other for user data blocks. Also note that the technique can
redistribute blocks for metadata and user data dynamically
in accordance with file system workloads.

3.3 Expected Garbage Collection Time

The garbage collection operation consists of choosing a can-
didate block to recycle, erasing the block, copying valid
pages of the chosen block, updating mapping information.



2530
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

In YAFFS, there are two modes for garbage collection. One
is normal mode where it tries to recycle at most one block
that has less than 10 valid pages at each write request. The
other is the aggressive mode, and when the total number of
free blocks is lower than a predefined number (the number
of blocks for reserved and checkpoint plus 2), the mode is
converted from normal into aggressive. On the aggressive
mode, YAFFS chooses a block that has at least invalid pages
among whole flash memory and reclaims the block regard-
less of number of valid pages in it.

The garbage collection operation is quite a time-
consuming task, which may delay user requests and exert a
bad influence on responsiveness. One solution is estimating
the expected garbage collection time and bound the upper
limits according to user activities. In this paper, we devise a
formula for the estimation as follows:

GC(n) =
n∑

i=1

(et + (rt + wt) ∗ valid(i) + map(i)) (1)

where n is the number of blocks recycled, valid(i) is the
number of valid pages in a block i, map(i) is the time re-
quired to update mapping information, and et, rt, and wt are
the time for erase, read, write operations, respectively. Per-
formance evaluation has shown that the results of Formula 1
match well with the real garbage collection times, implying
that it can be exploited effectively to predict flash memory
write time precisely.

4. Performance Evaluation

To carry out performance evaluation, we have built an em-
bedded system, consisting of 400 MHz XScale ARM CPU,
64 MB SDRAM, 1 GB NAND flash memory and peripher-
als. To this hardware platform, we have ported Linux ker-
nel version 2.6.28 and integrated our proposed techniques
into the YAFFS. Then, we have measured mount time,
garbage collection overhead, distribution of erase counts
among blocks.

4.1 Performance Results

Figure 2 presents the mount time comparisons between the
original YAFFS and our new YAFFS with various utiliza-
tions. Utilization was artificially increased by executing the
Postmark [3] before each of the measurements. This bench-
mark creates a large number of randomly sized files. It

(a) Power failure case (without check-
point)

(b) Normal case (with checkpoint)

Fig. 2 Mount time with various utilizations.

then executes read, write, delete, and append transactions on
these files. For fill up the utilization, the benchmark config-
uration is set to the average file size as 512 KB, and initially
100 files are created, and 800 transactions are processed.

The figure shows two cases, one is the power fail-
ure case where YAFFS can not make use of the check-
point mechanism and the other is the normal case where the
checkpoint was done and information for fast boot is avail-
able during the mount operation. In the power failure case,
our new YAFFS enhances the mount speed up to four times
compared with the original YAFFS, since it can avoid the
scanning of all pages. Even in the normal case, the new
YAFFS improves the mount speed up to six times since we
also store status of pages into flash memory during piggy-
backing as shown in Fig. 1 (note that the units of Y-axis are
different between two graphs).

To evaluate the garbage collection overhead, we have
measured the response time of the Postmark benchmark [3]
as depicted in Fig. 3. The response time is composed of not
only the Postmark’s execution time but also the garbage col-
lection time occurred during the execution. When the uti-
lization is lower than 90%, YAFFS runs in the normal mode
and do not show any distinct differences between the origi-
nal and new YAFFS. However, in the aggressive mode with
the utilization higher than 90%, our new YAFFS performs
five times better than the original YAFFS. Sensitivity anal-
ysis has shown that the new YAFFS can segregate invalid
pages from valid pages on the different blocks and incurs
less frequent garbage collections, which leads to the perfor-
mance differences.

4.2 Wear-Leveling

Our third measurement is the distribution of erase counts
among blocks. During the execution of Postmark as shown
in Fig. 3, we also have measured the number of erase oper-
ation per each block and presented the results in Fig. 4. In
the new YAFFS, the average number of erase counts is 5.54
with the standard deviation of 3.41, while it is 6.35 with the
standard deviation of 4.09 in the original YAFFS.

Since the new YAFFS incurs less frequent garbage col-
lections than the original YAFFS, it can diminish the average
number of erase counts. For the more, our proposed wear-
leveling technique swaps metadata blocks with user data
blocks, and provides another chance to save more worn-out

Fig. 3 Garbage collection overhead with various utilizations.



LETTER
2531

Fig. 4 Wear-level results.

Fig. 5 The expected and measured garbage collection time.

blocks, it can reduce the standard deviation by decreasing
the difference of erase numbers among blocks. The results
imply that our proposed technique can eventually expand
lifetime of flash memory.

4.3 Prediction of Garbage Collection Time and Its Appli-
cation

Figure 5 shows comparison between the expected garbage
collection time calculated by the formula 1 and the mea-
sured time. In the calculation, based on datasheet we set
the values of rt, wt, and et to 60 µs, 800 µs and 1.5 ms [1],
respectively, and the time for map(i) of a page to rt + wt.
The results show that the estimation accords well with the
measurement, though there are a little difference mainly due
to the software overheads. The results imply that our pro-
posed prediction technique of a garbage collection time can
be utilized usefully for more predictable flash memory man-
agement. As a proof of concept, we have designed a quality
of service mechanism that supports a guaranteed write re-
quest processing time specified by users. For example, let
us assume that a user requires a write request should be sat-
isfied less than t qos time. Also, assume that the service
time of a write request is t ser. Note that since there is no
seek time in flash memory, the estimation of t ser is straight
forward in flash memory, that is (wt + map) ∗ n where n is
the number of writing pages. Then, the maximum allowable
time for garbage collection is defined as t qos − t ser. Fi-
nally, based on the Formula 1 and the maximum allowable
time, we can figure out the upper limits of blocks to be re-
cycled at a garbage collection trial that satisfies the quality
of service required by users.

Figure 6 shows the quality of service experimental re-
sults with various t qos as 0.15 second for (b), 0.1 second
for (c) and 0.05 second for (d), respectively. For comparison

(a) No QoS (b) QoS = 0.15 second

(c) QoS = 0.1 second (d) QoS = 0.05 second

Fig. 6 QoS test results.

purpose, we also have measured the response time of a write
request in the original YAFFS as shown in figure (a), where
quality of service is not specified. For these tests, we first
set the utilization of flash memory as 0% and run Postmark
while measuring the time consumed by each write request of
a page. The results reveal that the original YAFFS violates
user requirements, especially when the total number of write
requests becomes 100,000 where garbage collection is trig-
gered frequently. On the contrary, the new YAFFS indeed
satisfies the quality of service requested by users.

5. Conclusion

In this paper, we have designed a metadata/user data sep-
arating management technique, a wear-leveling technique,
and a garbage collection time prediction technique. Exper-
imental results conducted in YAFFS have shown that these
techniques can enhance the mount speed and garbage collec-
tion time and increase reliability by diminishing differences
of erase counts among blocks. Though we focus on YAFFS
in this study, we expect that our proposed techniques can be
used effectively in other flash file systems and FTLs.

We are considering following two research directions
for future work. One direction is designing more predictable
flash memory file systems. In this work, we only show some
preliminary results as a proof of concept. We plan to extend
our work to support quality of service not only in a single
write request level but also in a user-perceived response time
level. Another direction is designing a more strict wear-
leveling technique since recently developed large-capacity
flash memory, such as TLC (Triple-Level Cell) or QLC
(Quadruple-Level Cell) flash memory, has less than 1,000
erase cycles.

References

[1] Samsung electronics. NAND flash data sheet.
“http://www.samsung.com/products/semiconductor/nand-flash”.



2532
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

[2] S. Baek, S. Ahn, J. Choi, D. Lee, and S.H. Noh, “Uniformity improv-
ing page allocation for flash memory file systems,” EMSOFT ’07:
Proceedings of the 7th ACM & IEEE International Conference on
Embedded Software, pp.154–163, New York, NY, USA, 2007.

[3] J. Katcher, “Postmark: A new file system benchmark,” Technical Re-

port TR3022, Network Appliance, 1997.
[4] Aleph One, YAFFS: Yet another flash file system.

“http://www.yaffs.net”.
[5] D. Woodhouse, “JFFS: The journaling flash file system,” Ottawa

Linux Symposium, 2001.


