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Speech Enhancement Based on Data-Driven Residual Gain
Estimation

Yu Gwang JIN†a), Nonmember, Nam Soo KIM†b), and Joon-Hyuk CHANG††c), Members

SUMMARY In this letter, we propose a novel speech enhancement al-
gorithm based on data-driven residual gain estimation. The entire system
consists of two stages. At the first stage, a conventional speech enhance-
ment algorithm enhances the input signal while estimating several signal-
to-noise ratio (SNR)-related parameters. The residual gain, which is esti-
mated by a data-driven method, is applied to further enhance the signal at
the second stage. A number of experimental results show that the proposed
speech enhancement algorithm outperforms the conventional speech en-
hancement technique based on soft decision and the data-driven approach
using SNR grid look-up table.
key words: speech enhancement, noise reduction, data-driven approach,
residual gain estimation

1. Introduction

The quality of a speech signal may significantly deterio-
rate when additive noise is present in the background. The
speech enhancement technique, which estimates the clean
speech when only the noisy signals are available, is the most
popular approach to reduce the effect of noises. In the past
few decades, many approaches to speech enhancement have
been proposed. Among them, the minimum mean-square er-
ror (MMSE) estimators of the spectral amplitudes [1] or log
spectral amplitudes [2] are widely used for noise reduction.
The performance of those speech enhancement algorithms
has been further improved with the incorporation of the soft
decision scheme [3], [4].

In recent years, several speech enhancement algorithms
based on the data-driven techniques have been proposed [5],
[6]. In these approaches, a proper gain is obtained from a
look-up table which is trained off-line in a variety of noisy
conditions. The index for the gain is usually found by using
signal features provided by a conventional speech enhance-
ment algorithm. More recently, several approaches, instead
of deriving the gain directly, estimate the noise power [7]
and the a priori signal-to-noise ratio (SNR) [8] in a data-
driven manner.

In this letter, we propose a novel speech enhance-
ment algorithm based on data-driven residual gain estima-
tion which consists of two stages: a conventional speech

Manuscript received May 2, 2011.
Manuscript revised August 12, 2011.
†The authors are with the School of Electrical Engineering and

the INMC, Seoul National University, Seoul 151–744, Korea.
††The author is with the School of Electronic Engineering,

Hanyang University, Seoul 133–791, Korea.
a) E-mail: ygjin@hi.snu.ac.kr
b) E-mail: nkim@snu.ac.kr
c) E-mail: jchang@hanyang.ac.kr

DOI: 10.1587/transinf.E94.D.2537

enhancement module and the gain adjustment module. At
the first stage, the noisy input signal is processed by a con-
ventional enhancement algorithm from which both the en-
hanced signal and several SNR-related parameters are ob-
tained. At the second stage, the gain obtained from the first
stage is further adjusted by incorporating the residual gain,
which means the difference between the optimal gain and
the one extracted from the first stage’s enhancement algo-
rithm. A data-driven strategy is employed to estimate the
residual gain, for which we use the SNR-related parameters
provided by the first stage enhancement algorithm. From
a number of experiments, we can see that the proposed
residual gain estimation approach shows better performance
compared with the soft decision based enhancement algo-
rithm [3] which is used as the first stage module in this work
and the data-driven approach proposed in [5].

2. Conventional Approaches to Speech Enhancement

Let Yk(l), Xk(l) and Dk(l) denote the discrete Fourier trans-
form (DFT) coefficients of the noisy speech, clean speech
and noise signal, respectively, for the k-th frequency bin at
frame l. Then the spectral component of the noisy speech
Yk(l) is given by

Yk(l) = Xk(l) + Dk(l). (1)

In the spectral subtraction techniques, the spectral compo-
nent of the noisy speech can be enhanced by

X̂k(l) � Ĝ(k, l) · Yk(l) (2)

where X̂k(l) and Ĝ(k, l) represent the spectral component of
the enhanced speech and the corresponding spectral gain,
respectively.

A number of methods to calculate a suitable gain Ĝ(k, l)
have been developed. Among them, the MMSE estimators
of the spectral amplitudes [1] or log spectral amplitudes [2]
are well-known. In these algorithms, the gain Ĝ(k, l) is de-
rived as Ĝ(k, l) = F[ξ̂(k, l), γ̂(k, l)] where F[·] is a compli-
cated non-linear function and ξ̂(k, l) and γ̂(k, l) are estimates
for the a priori SNR and the a posteriori SNR, respectively.
The performances of these algorithms have been further im-
proved with the incorporation of a soft decision scheme [3],
[4] such that Ĝ(k, l) = F[ξ̂(k, l), γ̂(k, l), p̂(k, l)] where p̂(k, l)
indicates the speech absence probability (SAP) computed
for the k-th frequency bin at frame l. Additionally, the noise
power spectrum estimate can be updated not only during the
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periods of speech absence but also when there exists an ac-
tive speech component by taking the SAP into account [3].

Recently, several data-driven approaches to optimize
speech enhancement methods have been proposed [5], [6].
In these approaches, the gain is obtained from an SNR look-
up table trained in a variety of noisy conditions. Within the
framework of table look-up, the gain is found such that

Ĝ(k, l) = Table[�ξ̂(k, l)�, �γ̂(k, l)�] (3)

where Table[α, β] denotes the gain corresponding to the
(α, β) component of the look-up table and �·� indicates
the operation of matching to the nearest table grid index.
In these approaches, the conventional speech enhancement
system works only as an estimator for the a priori and the
a posteriori SNR’s which become the input feature for the
table look-up.

Data-driven methods have been found advantageous in
optimizing the speech enhancement system to a particular
environment with enough training database collected in the
target environment. Since, however, the performance totally
depends on the trained table, it may deteriorate if there ex-
ist some mismatches between the training and test environ-
ments.

3. Data-Driven Residual Gain Estimation

In this section, we propose a two-stage speech enhancement
algorithm consisting of the conventional speech enhance-
ment module and the gain adjustment module. At the first
stage, the noisy input signal is enhanced and several SNR-
related feature parameters are estimated. Unlike previous
data-driven methods, the first stage module works for not
only estimating parameters but also enhancing the input sig-
nal. In the subsequent processing, the speech signal is fur-
ther enhanced by applying the residual gain. Estimation of
the residual gain is performed based on a data-driven ap-
proach in which the codebooks are trained on a collected
training database.

In a conventional speech enhancement algorithm, the
gain Ĝ(k, l) is applied to the spectral component of an in-
put signal as given by (2). Let Gopt(k, l) denote the optimal
gain for the k-th frequency bin at frame l, which is given by
Gopt(k, l) � Xk(l)/Yk(l). Then,

Xk(l) = Gopt(k, l) · Yk(l)

= (Gres(k, l) · Ĝ(k, l)) · Yk(l)

= Gres(k, l) · X̂k(l) (4)

where Gres(k, l) is a residual gain which represents the dif-
ference between the optimal gain and the gain derived by
the conventional speech enhancement algorithm.

As seen from (4), the optimal output signal can be
obtained by applying the residual gain Gres(k, l) to the en-
hanced signal X̂k(l), so a successful estimation of the resid-
ual gain will lead to an improved speech enhancement per-
formance. In this work, we estimate the log residual gain

Fig. 1 Block diagram of the proposed two-stage speech enhancement
system.

defined by

H(k, l) � log Gres(k, l)

= log Gopt(k, l) − log Ĝ(k, l) (5)

to minimize E{||Xk(l) − exp(Ĥ(k, l)) · X̂k(l)||2} where Ĥ(k, l)
is an estimate for H(k, l). In order to estimate the log resid-
ual gain, we employ a data-driven approach using the SNR-
related parameters which are obtained from the first stage
speech enhancement module. The block diagram of the pro-
posed speech enhancement algorithm is shown in Fig. 1. As
for the first stage module, we apply the speech enhance-
ment algorithm proposed in [3] to compute ξ̂(k, l), γ̂(k, l) and
Ĝ(k, l).

It is generally known that the speech spectra possess
high level of spectral and temporal correlations. To take ad-
vantage of the temporal and spectral correlations inherent
in the speech signals, we perform a grouping of the SNR-
related parameters and gains both in the frequency and time
domains. For a frequency-time grid point (k, l), we incor-
porate the frequency components with frequency bin index
from k−M to k+M and the temporal components with frame
index from l−N to l+N except for the grid point itself. Let
Ξk,l, Γk,l, and Gk,l be the grouped components defined at the
frequency-time point (k, l) of the a priori SNR, the a pos-
teriori SNR and the gain, respectively. Then they can be
described by ((2M + 1)(2N + 1)− 1)-dimensional vectors as
given by

Ξk,l � [ξ̌k,l(−M,−N), ξ̌k,l(−M,−N+1), · · · , ξ̌k,l(−M,N),

ξ̌k,l(−M + 1,−N), · · · , ξ̌k,l(0,−1), ξ̌k,l(0, 1), · · · ,
· · · , ξ̌k,l(M,N)],

Γk,l � [γ̌k,l(−M,−N), γ̌k,l(−M,−N+1),· · ·, γ̌k,l(−M,N),

γ̌k,l(−M+1,−N), · · · , γ̌k,l(0,−1), γ̌k,l(0, 1), · · · ,
· · · , γ̌k,l(M,N)],

Gk,l � [ǧk,l(−M,−N), ǧk,l(−M,−N+1),· · ·, ǧk,l(−M,N),

ǧk,l(−M+1,−N), · · · , ǧk,l(0,−1), ǧk,l(0, 1), · · · ,
· · · , ǧk,l(M,N)], (6)

where

ξ̌k,l(i, j) � log ξ̂(k + i, l + j) − log ξ̂(k, l),

γ̌k,l(i, j) � log γ̂(k + i, l + j) − log γ̂(k, l),

ǧk,l(i, j) � log Ĝ(k + i, l + j) − log Ĝ(k, l),
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Fig. 2 Combination of feature parameters in the time-frequency domain.

f or i = −M, · · · ,M, j = −N, · · · ,N. (7)

This grouping is illustrated in Fig. 2. In order to tabulate
Ξk,l, Γk,l, and Gk,l jointly, we apply the vector quantization
(VQ) technique. The VQ codebook is obtained for each fre-
quency component separately. The input to this VQ is the
supervector Fk,l = [Ξk,l,Γk,l,Gk,l] of which dimension equals
12MN + 6M + 6N. Since the dimension of the supervector
is usually high, direct application of it to the VQ codebook
construction may be inefficient. In order to alleviate this
problem, we apply the principal component analysis (PCA)
technique as follows:

F́k,l = Pk · {Fk,l − mk}, (8)

where Pk is the matrix of which rows are the PCA basis vec-
tors and mk denotes the mean vector. Since Pk consists of
reduced number of basis vectors, Fk,l is projected to a low-
dimensional representation F́k,l through (8). Since different
frequency components have different characteristics of the
spectral and temporal correlations, in this work we apply the
PCA technique separately to the individual frequencies for
an effective processing. Now a codebook is constructed for
each frequency bin by applying a conventional VQ training
algorithm to {F́k,l}. In the training procedure, since it is as-
sumed that we know the exact values of Xk(l), Yk(l) and their
ratio Gopt(k, l) which are accompanied with a supervector
F́k,l, we can associate each codeword of the VQ codebook
with an estimate for the residual gain. A log residual gain
associated to a specific codeword is computed by averaging
the log residual gains obtained from the supervectors that
are assigned to that codeword.

There are several advantages in the proposed two-stage
speech enhancement technique. First, the proposed resid-
ual gain estimation approach considers the error character-
istics of the conventional enhancement module and tries to
recover them. So a better or similar performance can be
anticipated compared with the conventional method even in
the worst environmental condition. It makes the whole sys-
tem more robust. Second, the proposed scheme of estimat-
ing the residual gain instead of the optimal gain itself can be
considered more robust because the dynamic range of the
residual gain is usually smaller than that of the gain. The
robustness may be improved further if the first stage en-
hancement algorithm produces more exact spectral gains.
Third, the proposed approach considers both the spectral

and temporal correlations of the speech signal for table look-
up. Through the incorporation of these correlations, some
mistakes in gain estimation occurring at the first stage en-
hancement module can be partially recovered. Finally, each
element of the supervector does not represent the original
SNR-related parameter or gain directly but the relative dif-
ference, as given by (7). Since the distribution of this rela-
tive difference is usually more compact and better balanced,
it is highly likely to result in a good VQ codebook.

4. Experimental Results

To verify the performance of the proposed speech enhance-
ment algorithm, we carried out a number of objective qual-
ity measurements under various noisy conditions. We com-
pared the speech quality obtained from the proposed resid-
ual gain estimation algorithm (denoted as RGE) with those
of the conventional speech enhancement algorithm based on
soft decision [3] (denoted as SESD) which was adopted in
this work as the first stage module, and the data-driven ap-
proach proposed in [5] using the SNR grid look-up table (de-
noted as SGLT). For the test material, NOIZEUS corpus [9]
was used which consisted of 30 IEEE sentences, and these
speech data were corrupted by different types of additive
noises at various SNR’s. In this work, noisy files corrupted
by airport, street and train noises were used with 0, 5, 10 and
15 dB SNR. Each file was sampled at 8 kHz. In the proce-
dure for VQ codebook training, the white noise was added to
a separate speech data of length 456 seconds by varying the
SNR from −10 dB to 30 dB so that the total length of data
became 4104 sec. For RGE, parameter grouping as shown in
(6) was performed with M=1 and N=3, hence the dimension
of each supervector became 60 which was further reduced to
10 with the application of PCA. A VQ codebook with 128
codewords was trained for each frequency bin based on the
10-dimensional feature vectors. The SNR grid look-up table
used in the SGLT scheme was trained for the values of the a
priori and a posteriori SNR’s, ξ̂(k, l) and γ̂(k, l), in the range
[−20 dB, 40 dB] with a 1 dB step size [1].

In order to evaluate the performance of the proposed
speech enhancement technique, the segmental SNR (SSNR)
and the perceptual evaluation of speech quality (PESQ) [10]
measurements were carried out. For a comparison among
the tested algorithms, SESD, RGE and SGLT, we computed
the SSNR improvement (SSNR+) score, the difference of
the SSNR of the signal which was processed by each en-
hancement technique from that of the unprocessed noisy sig-
nal. The results are shown in Table 1 where we can see that
in most of the tested cases, the proposed RGE algorithm pro-
duced better SSNR+ and PESQ scores than both the SESD
used in the first stage and the SGLT algorithms.

To discuss the difference between each method in terms
of the amount of noise reduction and speech distortion, we
evaluated the segmental noise attenuation (segmental NA)
and the segmental speech-to-speech-distortion ratio (seg-
mental SSDR) [6]. The larger the values of the segmental
NA and segmental SSDR become, the less residual noise
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Table 1 Results of segmental SNR improvement (SSNR+) and percep-
tual evaluation of speech quality (PESQ).

SSNR+ [dB] PESQ [point]
noise SNR SESD RGE SGLT SESD RGE SGLT

airport

0 dB 5.70 7.14 4.88 1.78 1.84 1.84
5 dB 4.43 5.82 4.14 2.14 2.23 2.22
10 dB 3.62 5.00 3.56 2.53 2.57 2.54
15 dB 3.05 4.21 3.17 2.90 2.93 2.86

street

0 dB 5.77 7.17 5.18 1.71 1.80 1.79
5 dB 4.12 5.39 4.15 2.07 2.17 2.16
10 dB 3.15 4.27 3.35 2.49 2.54 2.51
15 dB 2.45 3.63 2.83 2.81 2.84 2.80

train

0 dB 6.06 7.53 5.62 1.69 1.79 1.80
5 dB 4.91 6.27 4.76 2.01 2.14 2.13
10 dB 4.27 5.54 4.23 2.42 2.48 2.45
15 dB 3.42 4.55 3.56 2.80 2.85 2.80

Avg. 4.25 5.54 4.12 2.28 2.35 2.33

Table 2 Results of segmental noise attenuation (segmental NA) and seg-
mental speech-to-speech-distortion ratio (segmental SSDR).

segmental NA [dB] segmental SSDR [dB]
noise SNR SESD RGE SGLT SESD RGE SGLT

airport

0 dB 15.31 19.69 10.28 3.16 3.55 6.91
5 dB 14.26 18.36 9.64 6.01 6.90 10.07
10 dB 12.86 16.94 9.27 10.04 11.45 13.70
15 dB 11.47 15.68 8.80 15.28 16.50 18.14

street

0 dB 15.62 20.22 11.39 2.93 3.07 6.38
5 dB 14.59 18.80 10.51 6.09 6.86 9.96
10 dB 12.73 16.84 9.54 12.29 13.57 15.52
15 dB 11.82 15.95 9.14 15.80 17.13 18.73

train

0 dB 15.71 20.25 11.70 2.64 2.83 6.31
5 dB 14.64 18.77 10.79 5.94 7.01 10.09
10 dB 12.95 17.07 9.97 11.09 12.83 14.69
15 dB 11.38 15.52 8.97 17.06 18.60 19.99

Avg. 13.61 17.84 10.00 9.03 10.03 12.54

Fig. 3 Segmental SSDR vs. segmental NA tested under white noise, by
applying the SESD, RGE and SGLT algorithm.

and speech distortion remain, and the better the algorithm
performs. The segmental SSDR was averaged over the
frames where speech was present, while the segmental NA
was averaged over all frames. The results are summarized in
Table 2, and the result for the white noise is plotted in Fig. 3
where the markers of each curve indicate the performances
for the input SNR in the range [0 dB, 20 dB] with a 2 dB
step size. Compared with the SGLT algorithm, RGE ap-
proach showed a higher level of segmental NA though slight
degradation in terms of segmental SSDR. Furthermore, the

residual noise of the SGLT algorithm was found relatively
nonstationary because the gain estimated from each frame
was less correlated with that of the previous frame.

5. Conclusions

In this letter, we have proposed a novel speech enhancement
algorithm based on data-driven residual gain estimation. At
the first stage, the input signal is enhanced by a conventional
speech enhancement module while several SNR-related pa-
rameters are estimated simultaneously. The residual gain,
which is estimated by a data-driven method, is applied to
further adjust the gain obtained from the first stage. Ex-
perimental results show that the proposed algorithm per-
forms better than both the conventional speech enhancement
technique based on soft decision [3] and the data-driven ap-
proach using SNR grid look-up table [5].
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