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High-Accuracy Sub-Pixel Registration for Noisy Images Based on
Phase Correlation
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SUMMARY This paper proposes a high-accuracy sub-pixel registra-
tion framework based on phase correlation for noisy images. First we in-
troduce a denoising module, where the edge-preserving filter is adopted.
This strategy not only filters off the noise but also preserves most of the
original image signal. A confidence-weighted optimization module is then
proposed to fit the linear phase plane discriminately and to achieve sub-
pixel shifts. Experiments demonstrate the effectiveness of the combination
of our modules and improvements of the accuracy and robustness against
noise compared to other sub-pixel phase correlation methods in the Fourier
domain.
key words: phase correlation, sub-pixel, edge-preserving filter, confidence-
weighted optimization

1. Introduction

Sub-pixel image registration plays a crucial role in computer
vision and image processing, such as super resolution, de-
noising and medical reconstruction [1], [2]. Phase correla-
tion has proved to be an attractive solution [4] among a wide
variety of registration techniques.

Shift-estimation based on phase correlation falls into
two categories: methods in the spatial and the Fourier
domains. The methods in the spatial domain obtain the
peak of the phase correlation surface as the shifts [3], [5],
[7]. Foroosh [5] calculated the shifts by linear-weighting
the maximum and sub-maximum peaks. J Ren [7] took into
consideration the difference between two side neighbors of
the maximum peak to improve the robustness against noise.

Methods in the Fourier domain fit the linear
phase plane to achieve sub-pixel estimations [4], [8], [9].
Patrick [8] picked data points in the low-frequency band
only of the linear phase plane to alleviate the effects of the
high-frequency outliers. Keller [9] utilized the energy con-
centration property of the phase correlation surface and used
the low-pass filter to suppress the noise. However, these
methods utilize all picked data points in the linear phase
plane equally when outliers of this plane, sometimes exist-
ing in the low-frequency band, might corrupt the estima-
tions.

In this paper, a high-accuracy sub-pixel registration
framework is proposed based on phase correlation in the
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Fourier domain. First, a denoising module is introduced,
where the edge-preserving filter is proposed and utilized be-
fore the traditional phase correlation module to retain a more
original image signal. Second, we propose a confidence-
weighted optimization module to fit the linear phase plane
discriminately which leads to accurate and robust estima-
tions.

The rest of the paper is organized as follows. The for-
mulation of phase correlation is introduced in Sect. 2. Our
proposed scheme is presented in Sect. 3. Evaluation of our
framework is given in Sect. 4, followed by a brief conclusion
in Sect. 5.

2. Phase Correlation Method

Suppose images I1(x) and I2(x) satisfy I2(x) = I1(x + Δx)
where x = (x, y) and Δx = (Δx,Δy). Their Fourier trans-
forms are denoted by F1(u) and F2(u) where u = (u, v). Ac-
cording to the Fourier shift property, the phase correlation
function C(u) is calculated as

C(u) =
F2(u)
F1(u)

= exp{2π j · uΔx}. (1)

If we apply the inverse Fourier transform to C(u), the
phase correlation surface c(x) is obtained in Eq. (2). By
locating the peak of the surface, we get the integer shifts.

c(x) = F−1{C(u)} = δ(x + Δx). (2)

The sub-pixel shifts can be estimated by fitting the lin-
ear phase plane A(u) calculated in Eq. (3).

A(u) = arctan(C(u)) = uΔx. (3)

However, noise can not be neglected in real images and
C(u) in Eq. (1) should be changed to C

′
(u),

C
′
(u) =

C(u) + N2(u)/F1(u)
1 + N1(u)/F1(u)

, (4)

where N1(u) and N2(u) are the Fourier transform of the
noises in I1(x) and I2(x) respectively. When the Signal to
Noise Ratio (SNR) is low, the phase correlation surface is
turned to be unreliable and there would be many outliers ex-
isting in the linear phase plane. As a result, fitting all data
points equally would degrade the estimation accuracy.
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Fig. 1 The global flowchart of our framework.

3. Proposed Framework

Figure 1 shows the flowchart of our proposed framework.
Before the step of phase correlation, we apply the denoising
module with an edge-preserving filter. Then we divide the
shift estimation into two steps: the coarse step and the refine
one. In the coarse step, the integer shifts Δx1 = (Δx1,Δy1)
are obtained by determining the peak of the phase corre-
lation surface. After making compensation for the integer
shifts, we achieve the decimal shifts Δx2 = (Δx2,Δy2) in
the refine step. Finally, the integer and decimal parts are
added as the ultimate shifts Δx. Our contributions concen-
trate on the design of the edge-preserving denoising and the
confidence-weighted optimization modules.

3.1 Edge-Preserving Denoising

According to Eq. (4), noise existing in the original image
would affect the fitting step. Especially when the SNR is
low, the influence will even be amplified. Therefore, we
denoise the images before phase correlation. As the noise
mainly concentrates on the high-frequency band, the low-
pass filter can alleviate the noise. However, lacking the ca-
pacity to separate the image signal from the noise, this type
of the filter also reduces the high-frequency image signal.
Therefore, fewer data points are available for plane fitting
and would lead to less accurate estimations.

This paper introduces the edge-preserving filter [10] for
noisy images, which is formulated as

Io(x) =
1
S

∑
m⊆R(x)

Ii(m)

Gα(‖m − x‖)Gβ(|Ii(m) − Ii(x)|), (5)

where Ii and Io are input and output images, R represents
the neighbor area of the point x. Gα(‖m − x‖) refers to the
spatial Gaussian kernel with the variance α, and Gβ(|Ii(m)−
Ii(x)|) refers to the range Gaussian kernel with the variance
β. These two kernels constitute our edge-preserving filter.
The normalized item S is denoted as

S =
∑

m⊆R(x)

Gα(‖m − x‖)Gβ(|Ii(m) − Ii(x)|). (6)

In the flat region where the pixels have the similar
range (corresponding to the low-frequency image signal),
the edge-preserving filter acts like a low-pass filter. While in

the edge region where the pixels range varies abruptly (cor-
responding to the high-frequency image signal), this filter
can preserve more image signal by using the range Gaussian
kernel. Consequently, in the low SNR, our scheme can still
collect most of the original image signal and lead to more
convincing estimations. Though the filter may change some
complex edge locations, we preserve a majority of the image
signal. This module is theoretically applicable as there is al-
ways noise existing in the real images and the experiments
in Sect. 4 support that.

3.2 Confidence-Weighted Optimization

In the previous steps, we estimate and compensate for the
integer shifts. In the refine step, the outliers in the linear
phase plane caused by the noise and aliasing would corrupt
the estimations of direct fitting. So we evaluate each data
point with a confidence-weight and propose the weighted
optimization to calculate the decimal shift. This implies the
plane is fitted discriminately. The optimization criterion is
defined as

arg min
Δx2

∑
u

ω(u)(uΔx2 − A(u))2, (7)

where u represents the coordinate point (u, v), ω(u) refers to
the corresponding confidence-weight, and A(u) refers to the
linear phase plane in Eq. (3). Accurate sub-pixel shifts can
be resolved as a closed form solution defined as,

Δx2 = (HT H)−1HT b, (8)

where H = (H1,H2, . . . ,HM)T , Hk =
√
ω(u)uT , b =

(b1, b2, . . . , bM)T , bk =
√
ω(u)A(u) and k = 1, 2, . . . ,M. k

refers to the kth coordinate point pair and M refers to the
number of pairs. k = v + (u − 1)h where h means the height
of A(u). The weight ω(u) is denoted by,

ω(u) = Corr(u) · Dist(u), (9)

where Corr(u) refers to the correlation weight and Dist(u)
refers to the distance one. They are defined as follows.

Corr(u) =
N(B(u))N(B(0))
‖N(B(u))‖‖N(B(0))‖ , (10)

where B(u) denotes the square-block of data points with the
side length L around the point u in the plane A(u). B(0)
corresponds to the point (0, 0). N(B(u)) refers to the three-
dimensional normal unit vector calculated by least-square
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fitting of the data square-block B(u). L = 10 is a typical and
effective value in our experiments.

Dist(u) = 1 −
√

2[(u/w)2 + (v/h)2], (11)

where w and h refer to the width and height of A(u). The
range of point u is from (−w/2,−h/2) to (w/2, h/2). If the
point lies at the center of the linear phase plane, e.g., u =
(0, 0), the distance weight gets the high value; if the point is
one of the diagonal points in the plane, e.g., u = (w/2, h/2),
the distance weight gets the low value.

In our scheme, we assume that the data points in the
center of the plane (corresponding to the low-frequency
band) are more reliable than others. Our assumption is
reasonable because outliers on the low-frequency band are
much less than ones on the high-frequency band [8]. Ac-
cording to that, we calculate the correlation between each
data block and the central block. The higher results lead
to higher confidence-weight, and vice versa. In addition,
the low-frequency points are considered more effective and
their confidence-weights are higher.

4. Experiments and Discussion

Both the synthetic and real data are tested on the perfor-
mance of the accuracy and robustness against noise. Let
dx(i) and dy(i) denote the absolute registration errors along
the x- and y- directions, i.e., dx(i) = |xi − x̂i| and dy(i) =
|yi − ŷi|, where (xi, yi) are the ith ground truth and (x̂i, ŷi)
are their corresponding estimations. The MAE (Mean of
the Absolute Errors) and the SAE (Standard deviation of the
Absolute Errors) are used as the measurement, which are
defined by,

MAE(z) =
1
n

n∑
i=1

dz(i),

(a) (b) (c)

(d) (e) (f)

Fig. 3 The MAE with the SAE (y-axis) versus the noise variance (x-axis). (a) and (d) refer to the
evaluation of modules along the x- and y- directions. (b) and (e) refer to the evaluation of schemes for
the synthetic data along the x- and y- directions. (c) and (f) refer to the evaluation of schemes for the
real data along the x- and y- directions.

S AE(z) =

√√
1

n − 1

n∑
i=1

(dz(i) − MAE(z))2, (12)

where n refers to the times of simulations and z = x, y. First
we take experiments on different combinations of our mod-
ules. Then our scheme is compared with the schemes of
Patrick [8] and Keller [9] implemented by us.

4.1 Modules Evaluation

In this section, modules of our framework are evaluated,
including the denoising and confidence-weighted optimiza-
tion modules. We take experiments on 4 images shown
in Fig. 2. For each image, a test pair with the shifts of
Δx = (0.5, 0.5) is created. Then the White Gaussian Noise
(WGN) with different variances is added to the test pairs
and the variances are from 0 to 12, 000 with the interval of
1, 000. This procedure is repeated 100 times. Four combi-
nations of our modules are compared, i.e., PC (Phase Cor-
relation), PC+ED (Edge-preserving Denoising), PC+CO
(Confidence-weighted Optimization) and PC+ED+CO (the
proposed method). The MAE with the SAE along the x-
and y- directions versus the noise variance are plotted in
Fig. 3 (a) and (d) respectively.

We draw three conclusions from the above experi-
ments. 1) As the EF and CO modules filter off outliers partly

(a) (b) (c) (d)

Fig. 2 Test images to generate the samples of sub-pixel shifts, namely
“Barbara”, “Pentagon”, “Aerial” and “MRI”.



2544
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

in the linear phase plane, the estimations are more accurate
than PC. 2) The CO module proves to be more effective than
the EF one. That’s because giving low weights to the data
points on the high-frequency band can alleviate the noise. 3)
The proposed method achieves the most accurate and robust
results among all.

4.2 Schemes Evaluation

Firstly, 10 standard images in the literature are employed
as the synthetic data. First, in each direction 9 shifts are
generated within the interval of [−1, 1], which include −1,
−0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75 and 1. Consequently,
for each image in total 81 2-D shifts are formed to generate
sub-pixel samples. Then the additive WGN with different
variances is embedded on those samples and the procedure
is repeated 100 times. The corresponding variances are from
0 to 40, 000 with the interval of 1, 000. When the variance
is larger than 12, 000, the MAE of all the methods are larger
than 1 which are unreliable. So Fig. 3 (b) and (e) only show
the MAE with the SAE along the x- and y- directions versus
the noise variances from 0 to 12, 000.

Next, real MRI (Magnetic Resonance Imaging) data is
evaluated. The dataset is from Hoge [2], containing a series
of MRI images, and a sample is shown in Fig. 2 (d). The real
shifts between each pair of images are known. After estab-
lishing image pairs from given data, the additive WGN with
different variances is embedded on images for 100 times.
The corresponding variances are from 0 to 40, 000 with the
interval of 1, 000. In this experiment, integer parts have
been compensated firstly. When the variance is larger than
6, 000, the MAE of all the methods are larger than 1 which
are unreliable. Thus only the MAE with the SAE along the
x- and y- directions versus the noise variances from 0 to 6,
000 are shown in Fig. 3 (c) and (f).

Some conclusions can be drawn from the above results.
1) All methods report good results in the high SNR. The rea-
son why the estimations of the real data along the x- direc-
tion are bad is analyzed in [2]. 2) The MAE of all methods
is less than 0.01 under the condition that images registered
are noisy-free, i.e. variance=0. Further more, we achieve
the minimal MAE among all. 3) With the SNR decreasing,

our method becomes more accurate and robust against noise
than Patrick’s and Keller’s, especially in the experiments for
the synthetic data.

5. Conclusion

In summary, we propose a high-accuracy sub-pixel registra-
tion framework which is composed of the denoising and op-
timization modules. In the denoising module, we acquire a
more original image signal by applying an edge-preserving
filter. In the optimization module, we fit the confidence-
weighted plane to achieve sub-pixel shifts. Experimental
results on both synthetic and real data demonstrate that our
framework is reasonable and achieves the most accurate and
robust estimations among recent research works.
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