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A Novel Bayes’ Theorem-Based Saliency Detection Model

Xin HE†, Huiyun JING†, Qi HAN†, Nonmembers, and Xiamu NIU†a), Member

SUMMARY We propose a novel saliency detection model based on
Bayes’ theorem. The model integrates the two parts of Bayes’ equation
to measure saliency, each part of which was considered separately in the
previous models. The proposed model measures saliency by computing
local kernel density estimation of features in the center-surround region
and global kernel density estimation of features at each pixel across the
whole image. Under the proposed model, a saliency detection method is
presented that extracts DCT (Discrete Cosine Transform) magnitude of lo-
cal region around each pixel as the feature. Experiments show that the
proposed model not only performs competitively on psychological patterns
and better than the current state-of-the-art models on human visual fixation
data, but also is robust against signal uncertainty.
key words: visual attention, saliency map, Bayes’ theorem, kernel density
estimation

1. Introduction

The Human vision system rapidly detects important or in-
teresting parts of images or videos to reduce the computa-
tional complexity. It is well known that visual saliency plays
an important role that makes important or interesting parts
stand/pop out from their surrounding and drives our per-
ceptual attention. Thus, saliency detection is an indispens-
able component in many theories of visual attention. Ap-
plications of saliency detection have been reported in many
fields such as object detection [1], image cropping [2], im-
age browsing [3], and image/video compression [4].

Saliency has two major categories: bottom-up saliency
and top-down saliency. The bottom-up saliency approach
refers to mechanisms which are generally fast, stimulus-
driven and independent of the knowledge in the scene,
whereas the top-down saliency approach refers to mecha-
nisms which are slow, goal-oriented and require the prior
knowledge.

There have been many studies focusing on the bottom-
up saliency detection over the last two decades. Based on
the feature integration theory [5], Itti et al. [6] presented
a saliency-based computational model for scene analysis.
In Itti et al.’s work, visual input is first decomposed into
several multi-scale feature maps. Followed by a center-
surround operation, early visual features are extracted in
parallel through linear filtering for the three types: intensity,
color and orientation. All feature maps are then combined to
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produce a single saliency map. Bruce and Tsotsos [7] pro-
posed a bottom-up model of overt attention based on the
principle of maximizing information sampled from a scene.
In their work, saliency is determined by quantifying the self-
information of each local image patch after ICA (Indepen-
dent Component Analysis) decomposition. Zhang et al. [8]
proposed a similar scheme based on a Bayesian framework,
which defines bottom-up saliency as the self-information of
visual features and overall saliency (incorporating top-down
information with bottom-up saliency) as the pointwise mu-
tual information between the visual features and the desired
target. Gao et al. [9] proposed a discriminant saliency model
based on the center-surround mechanism, which measures
saliency as the discriminant power of a set of features with
respect to the classification problem that opposes stimuli
at center and surround. Recently, Seo and Milanfar [10]
presented nonparametric saliency detection approach based
on LSK (Local Steering Kernel) features and utilized self-
resemblance mechanism to compute saliency map.

Without full consideration of Bayes’ theorem, previous
works [8], [10] utilized different parts of Bayes’ equation to
measure saliency. In this letter, we integrate the two parts of
Bayes’ equation for better performance. We model saliency
as a function of local kernel density estimation of features in
the center-surround region and global kernel density estima-
tion of features at each pixel across the whole image. This
model not only considers local statistics of features, but also
global statistics of features.

2. Proposed Saliency Detection Model

Motivated by the approach in [8], [9] and [10], we measure
saliency of each pixel by Bayes’ theorem. Firstly, repre-
senting saliency of each pixel i under the feature Fi and the
location Li as a binary random variable, we define binary
random variables {yi

M
i=1} as follows

yi =

{
1, if pixel i is salient,
0, otherwise.

(1)

where i = 1, . . . ,M and M is the total number of pixels in
the image.

Thus, the saliency of a pixel i is defined as a posterior
probability Pr(yi = 1|F, L) as follows

S i = Pr(yi = 1|Fi, Li) (2)

where Fi = [ f 1
i , f 2

i , . . . , f K
i ] contains a set of features { fiKk=1}
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extracted from the local neighborhood of the corresponding
pixel, K is the number of features in that neighborhood and
Li represents the pixel coordinates.

Equation (2) can be rewritten using Bayes’ rule:

S i = Pr(yi = 1|Fi, Li) =
p(Fi, Li|yi = 1)Pr(yi = 1)

p(Fi, Li)
(3)

Inspired by Zhang et al. [8], we also assume that the
feature and location are independent and conditionally in-
dependent given yi = 1, which implies that location doesn’t
depend on the distribution of the features.

p(Fi, Li) = p(Fi)p(Li) (4)

p(Fi, Li|yi = 1) = p(Fi|yi = 1)p(Li|yi = 1) (5)

Then (3) is simplified as follows

S i =
p(Fi, Li|yi = 1)Pr(yi = 1)

p(Fi, Li)

=
p(Fi|yi = 1)

p(Fi)
p(Li|yi = 1)Pr(yi = 1)

p(Li)

=
1

p(Fi)
p(Fi|yi = 1)Pr(yi = 1|Li) (6)

We assume that under location prior, Pr(yi = 1|L) is
equal to be salient and is omitted for simplicity. Equation (6)
can be rewritten as follows

S i =
1

p(Fi)
p(Fi|yi = 1) (7)

p(Fi) depends on the visual features and implies that
the feature of less probability seems to have higher saliency.
In Seo et al. [10], p(Fi) is considered uniform over features.
In Bruce et al. [7] and Zhang et al. [8], p(Fi) is used to de-
tect saliency, where Fi is the feature vector and the features
are calculated as the responses to filters learned from natural
images. Different from Bruce et al. [7] and Zhang et al. [8],
we directly calculate p(Fi) using normalization kernel den-
sity estimation for Fi. Then we obtain Eq. (8).

1
p(Fi)

=

∑M
i=1
∑M

j=1 κ(Fi − F j)∑M
j=1 κ(Fi − F j)

(8)

where κ is the kernel density function and M is the total
pixels number of the image.

In Zhang et al. [8], p(Fi|yi = 1) of Eq. (7) is consid-
ered with knowledge of the target and is not used when
calculating saliency. However, Seo et al. [10] adopt local
“self-resemblance” measure to calculate p(F|yi = 1) using
nonparametric kernel density estimation. Similar to Seo et
al. [10], we make a hypothesis that yi = 1 of the center pixel
i in the center-surround region. It means that Fi is the only
sampled feature in the center-surround features’ space. Un-
der this hypothesis, we estimate all F = [F1, F2, . . . , FN]
including Fi using kernel density estimation in the center-
surround region where F is a feature set containing features
from the center and surrounding region and N is the number
of pixels in the center-surround region. Then we normalize

p(Fi|yi = 1) under the hypothesis of yi = 1.

p(Fi|yi = 1) =
κ(Fi − Fi)∑N

j=1 κ(Fi − F j)

=
1∑N

j=1 κ(Fi − F j)
(9)

Now we rewrite Eq. (7) using Eqs. (8) and (9) and ob-
tain the saliency formula of each pixel

S i =

∑M
i=1
∑M

j=1 κ(Fi − F j)∑M
j=1 κ(Fi − F j)

1∑N
j=1 κ(Fi − F j)

(10)

Equation (10) could be represented as follows

S i =
Klocal(Fi)
Kglobal(Fi)

(11)

where Klocal(Fi) represents normalization kernel density es-
timation in the local center-surround region and Kglobal(Fi)
represents normalization kernel density estimation across
the whole image. Thus, we define pixel saliency using lo-
cal and global kernel density estimation of features of the
corresponding pixel.

3. Implementation

We only extract DCT (Discrete Cosine Transform) magni-
tude of local region around each pixel as the feature to cal-
culate Klocal(F) and Kglobal(F), which represents the energy
information of local region in the image. DCT has been
widely applied in many fields related to human vision sys-
tem, such as image/video compression, content-based image
retrieval and indexing, and image/video watermarking. The
implementation could be detailed by the following steps:

1. For the input image of M pixels, 2D-DCT operates
on 3 × 3 block around pixel i. The absolute values of DCT
coefficients are considered as the feature of each pixel, Fi =

[ f 1
i , f 2

i , . . . , f 9
i ]. i is the ith pixel. For the sake of robustness,

we ignore f 7
i , f 8

i and f 9
i , and use Fi = [ f 1

i f 2
i , . . . , f 6

i ] to
represent the feature.

2. Calculating Kglobal(Fi) is usually time-consuming. In
order to speed up the operation, we perform a kernel density
estimation using a Gaussian kernel with the rule-of-thumb
bandwidth†.

3. We choose 7×7 window around pixel i as the center-
surround region of pixel i. Each window has 49 features
which is represented as F1, F2, . . . , F49. An adaptive kernel
G(·) [10] and “Matrix Cosine Similarity” [10], [13] are used
to calculate p(Fi|yi = 1) effectively. Then we use the fol-
lowing equation to calculate Klocal(Fi)

Klocal(Fi) =
1∑N

j=1 exp
(−1+ρ(Fi,F j)

σ2

) (12)

†We use the Kernel Density Estimation Toolbox for Matlab
provided by Alexander Ihler (available at http://www.ics.uci.edu/
˜ihler/code/kde.html).
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where ρ(Fi, F j) is equal to trace
(

FT
i F j

‖Fi‖‖F j‖
)

and σ is set to

0.007 as default value.
4. By step 2 and step 3, we obtain Kglobal(Fi) and

Klocal(Fi). Then saliency of each pixel is calculated using
Eq. (11).

4. Experimental Results

4.1 Psychological Patterns

We tested our model on psychological patterns, which are
widely used in attention experiments not only to explore the
mechanism of visual search but also to test the effectiveness
of saliency map. We used 8 patterns to test our method, in-
cluding density, curvature, color (hue), intersection, length,
intensity, number, orientation and terminators pattern. The
results are shown in Fig. 1. The experimental results show
that our model performs competitively on psychological pat-
terns.

4.2 Visual Fixation Data

We evaluated our model on human visual fixation data from
natural images. The dataset we used was collected by Bruce
and Tsotsos [7] as the benchmark dataset for comparing hu-
man eye predictions between methods. The dataset contains
eye fixation data from 20 subjects for a total of 120 nat-
ural images. The Kullback-Leibler divergence (KLD) and
the area under receiver operating characteristic (AUC) were

Fig. 1 Saliency map on psychological patterns.

computed as performance metrics. A high value of two met-
rics means better performance. In Zhang et al. [8], Zhang
et al. noted that the original KL divergence and ROC area
measurement are corrupted by an edge effect which yield-
ing artificially high results. For eliminating border effects,
we adopt the same procedure described by Zhang et al. [8]
to measure KL divergence and ROC area. We compared
our method against state-of-the-art methods including Itti et
al. [6], Bruce et al. [7], Gao et al. [9], Zhang et al. [8], and
Seo et al. [10]. The mean and the standard error are reported
in Table 1. Our model performs better than the current state-
of-the-art models in KLD and AUC metrics.

Limited by space, we only present some examples of
visual results of our model compared with Seo et al. [10] and
Bruce et al. [7] in Fig. 2. Visually, our model also exceeds
the other two models in term of accuracy.

Table 1 Experimental results.

Model KLD(SE) AUC(SE)
Itti et al. [6] 0.1130(0.0011) 0.6146(0.0008)
Bruce and Tsotsos [7] 0.2029(0.0017) 0.6727(0.0008)
Gao et al. [9] 0.1535(0.0016) 0.6395(0.0007)
Zhang et al. [8] 0.2097(0.0016) 0.6570(0.0008)
Seo and Milanfar [10] 0.3432(0.0029) 0.6769(0.0008)
Our Model 0.4386(0.0034) 0.6970(0.0008)

Fig. 2 Examples of saliency map on human visual fixation data.
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Fig. 3 Robust experimental results.

4.3 Robust Experiments

We also evaluated our model on distorted images. The
dataset and experimental protocol are the same as in the ex-
periment on visual fixation data, but each image of dataset is
distorted using six different types of distortions at ten differ-
ent levels of distortion. We compared our model against Seo
et al. [10]. The curves of mean KLD and AUC are shown
in Fig. 3. The experimental results show that our model
achieves high robustness on distorted images.

5. Conclusions and Future Work

This letter presents a novel saliency detection model based

on Bayes’ theorem. Our model integrates the two parts of
Bayes’ equation and defines saliency as a function of local
kernel density estimation of features in the center-surround
region and global kernel density estimation of features at
each pixel across the whole image. Moreover, a saliency
detection method based on the DCT magnitude is proposed.
Experiments demonstrate that the proposed model achieves
good performance and robustness.

In future work, we will try to incorporate more fea-
tures (e.g. local color features) to our model and make use
of spare features to measure saliency. Also, we will extend
our model to spatial-temporal domain so as to detect video
saliency.
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