IEICE TRANS. INE. & SYST., VOL.E94-D, NO.12 DECEMBER 2011

2549

[LETTER

Implementation of Scale and Rotation Invariant On-Line Object

Tracking Based on CUDA

Quan MIAO™, Student Member, Guijin WANG ™, Member, and Xinggang LIN'®, Nonmember

SUMMARY Object tracking is a major technique in image processing
and computer vision. Tracking speed will directly determine the quality of
applications. This paper presents a parallel implementation for a recently
proposed scale- and rotation-invariant on-line object tracking system. The
algorithm is based on NVIDIA’s Graphics Processing Units (GPU) using
Compute Unified Device Architecture (CUDA), following the model of
single instruction multiple threads. Specifically, we analyze the original
algorithm and propose the GPU-based parallel design. Emphasis is placed
on exploiting the data parallelism and memory usage. In addition, we apply
optimization technique to maximize the utilization of NVIDIA’s GPU and
reduce the data transfer time. Experimental results show that our GPGPU-
based method running on a GTX480 graphics card could achieve up to
12X speed-up compared with the efficiency equivalence on an Intel E8400
3.0 GHz CPU, including I/O time.

key words: object tracking, classifier updating, GPGPU, CUDA

1. Introduction

Robust object tracking is an important task with many
applications, ranging from visual surveillance to human-
computer interfaces. The difficulties of object tracking in-
clude complicated object appearance variations, such as il-
lumination change, partial occlusion and cluttered scenes.

In our earlier work [1], we proposed a new object track-
ing scheme which employs the invariance of local features
to guide an on-line boosting technique. The resulting tracker
has been proven to achieve robust and accurate object track-
ing, especially under complex appearance changes. How-
ever, the discriminative on-line learning of local features be-
comes a major bottleneck with respect to computing time.
The incorporation of local features’ invariance in the weak
classifiers and the subsequent updating consume significant
CPU resources, limiting its usage in applications with real-
time constraints.

Fortunately, modern GPGPU has evolved into a highly
parallel, multithreaded processor with huge computational
power and high memory bandwidth [2]. A serial process-
ing problem can often be partitioned into coarse sub prob-
lems solved independently in parallel. Now GPU parallel
computing has seen increasing applications in the domain of
image processing and computer vision, such as face detec-
tion [3], feature matching [4], human detection [5] and pat-

Manuscript received July 6, 2011.
Manuscript revised September 1, 2011.
"The authors are with the Department of Electronic Engineer-
ing, Tsinghua University, Beijing 100084, China.

a) E-mail: miaoq07 @mails.tsinghua.edu.cn
b) E-mail: wangguijin@tsinghua.edu.cn
¢) E-mail: xglin@tsinghua.edu.cn

DOI: 10.1587/transinf. E94.D.2549

tern classification [6]. Despite the tremendous computing
capacity of GPU, utilizing it to deal with practical problems
is non-trivial. It is obviously unprofessional to only con-
cern the definition of blocks and threads without utilizing all
the GPU’s resources to maximize the computing efficiency.
On one hand, how to interpret data structure and handle dif-
ferent memory spaces based on the algorithm itself has to
be considered. On the other hand, data loading between
CPU and GPU is the major factor which significantly de-
tracts from the advantages of parallel computing. The way
to overcome it merits discussion.

This paper performs efficient parallel design on the ba-
sis of analyzing the on-line object tracking system. Through
collaborative interaction of different kernels and suitable
data parallelism, we can efficiently achieve scale- and
rotation-invariance. Algorithmic adjustments and imple-
mentation details are described. For best overall object
tracking performance, we employ stream technique based
on page-locked memory to improve concurrency and opti-
mize the data transfer process between CPU and GPU.

2. On-Line Boosting for Object Tracking

In [1], we propose a new feature-based tracking scheme by
employing adaptive classifiers to match the detected key-
points in consecutive frames (see Fig. 1). The object region
is transformed using the homography estimated based on the
matching candidates. In [7], we further expand the idea and
provide in detail a new framework.

Specifically, each classifier C is composed of J selec-
tors h‘/‘?l and holds a weak classifier pool X from which the
training procedure selects the selectors with the minimal es-
timated error. The classifier wishes to predict the matching
confidence of a point x by:

Fig.1 Establish feature correspondences by classifier-based keypoint
matching. The object region is transformed based on estimated homog-
raphy.

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers

2550

J J
C(x) = Zaj.h;f’(x)/zaj. (1)
= =

As new samples arrive sequentially, each selector h;gl re-
selects the best weak classifier and the corresponding vot-
ing weight «; is updated (see Fig.2). In [8], Grabner et
al. correspond each weak classifier to a simple Haar feature
computed in a fixed bounding patch centered at the corre-
sponding keypoint. Despite the simple computation, such
approaches can only deal with ordinary object changes such
as pure translations and slight rotations. Under other more
complex changes in the target object, the updates of each
classifier will fail, causing poor tracking performance and
few applications of such techniques in reality.

The main novelty of [1] is that the scale and dominant
orientation of each SURF feature is used to guide the on-line
learning process. Each weak classifier seeks its correspond-
ing Haar feature within the scale- and rotation-invariant win-
dow. The size of the Haar feature changes with the current
scale. Furthermore, the responses are distributed in horizon-
tal and vertical direction in relation to the dominant orienta-
tion. Experiments show the resulted tracker is able to handle
viewpoint change, partial occlusion and complex transfor-
mations [7].

However, updating the whole classifier pool and con-
structing the final strong classifiers result in high computa-
tion complexity. Unlike the situation of [9] in which a cer-
tain response (horizontal or vertical) is sufficient to compute
a Haar feature, both the horizontal and vertical responses
have to be computed in our scheme and then combined in
relation to the dominant orientation. In addition, the center
of each weak Haar feature is no longer fixed; it has to be
reconsidered with respect to the scale and dominant orienta-
tion. The shape of Haar feature’s rectangular region must be
also scale normalized. For 60 strong classifiers each consist-
ing of 20 selectors and 250 weak features, it will cost about
215ms to tackle object tracking for each frame, whereas
the on-line updating using 40 samples would require up to
180 ms, which occupies more than 80% of the whole time.
Therefore, accelerating the on-line boosting algorithm is of
great significance to improve the efficiency of object track-
ing. This paper focuses on a GPGPU accelerated parallel
solution for the on-line updating technique, to achieve effi-
cient tracking.

weak classifier pool X

importance
weight

Fig.2 On-line boosting for a strong classifier.

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.12 DECEMBER 2011

3. GPU-Boosted On-Line Object Tracking

Boosting algorithm may seem intuitively suitable for paral-
lel processing. One option is to roughly assign each key-
point to one block and each weak classifier (250 in total for
each strong classifier) to one thread. In this case, each thread
has to independently take charge of the complex scale- and
rotation-based computation, followed by classifier’s updat-
ing. If we alternatively assign each thread to only one sam-
ple and every M threads correspond to a weak classifier,
250 x 40 = 10000 threads will be needed, which com-
pletely exceed the upper limit (1536 for GTX480 card) of
the threads each block could contain. In addition, the cor-
responding memory allocation is non-trivial. It is optimal
to store the Haar feature pool in the shared memory, rather
than the global memory. Nevertheless, the size of shared
memory leads to several further limitations. All these ingre-
dients make this proposed problem different from the pre-
vious boosting techniques, and thus form new difficulties to
be resolved. This section performs efficient parallel design
to overcome difficulties mentioned above. The ultimate aim
is to make the whole tracking system applicable in real-time
tasks.

3.1 Implementation on GPU Platform

As is mentioned above, the series of operations to achieve
scale- and rotation-normalization make the mechanism
rather complex. Generally, we employ three kernels work-
ing collaboratively on the on-line updating scheme. Figure 3
shows the assignment of the kernels.

The first kernel called Initial-HaarLocation extracts
each sample’s patch and establishes the new location and
size of each weak feature according to the sample’s scale
and orientation. This kernel is implemented on a grid of
40 thread blocks, each in charge of processing one sample.
Each block consists of 250 threads finding the new location
and size of Haar rectangles. The pseudo CUDA implemen-
tation of Initial-HaarLocation kernel is illustrated in Table 1.

The second kernel called Update-WeakClassifier up-
dates the weak classifiers of each strong classifier. The ker-

L pixels

Fig.3 The process of classifier learning based on sequential kernels.

LETTER

Table1 CUDA implementation of Initial-HaarLocation kernel.

Initial-HaarLocation<<< 40, 250 >>>(Haarfeature, Samples)

// Launch a grid of 40 blocks and each block contains 250 threads
// blockIndex will be the index of thread block

// threadIndex will be the index of thread in the block

Samples(blockIndex).size = L X S amples(blockIndex).scale;
ori = Samples(blockIndex).orientation;

Samples(blockIndex). freature(threadlndex).x = Haar feature
(threadlIndex).x X cos(ori) — Haar feature(threadIndex).y X sin(ori);
Samples(blockIndex).freature(threadlndex).y = Haar feature
(threadlndex).x X sin(ori) + Haar feature(threadIndex).y X cos(ori);

Samples(blockIndex).freature(threadlndex).size = Haar feature
(threadlndex).size X S amples(blockIndex).scale;

Weak Integral
feature Classifier image

Global memory

Bluck(O 0) Block(O 1

Training
Shared
memory

.o

7/

Block (M, 0) | [Block(M, 1) | « |Block (M, N)

Fig.4 Storage structure of Update-WeakClassifier kernel on GPU.

Registers

nel is implemented on a grid of 60 thread blocks, each corre-
sponding to a strong classifier. Inside each block every two
thread correspond to one weak classifier, so there will be
500 threads in total. The two threads respectively compute
the horizontal and vertical Haar responses according to the
weak feature’s location and shape the first kernel outputs.
After synchronizing all the threads, the consecutive two fea-
tures are scale- and rotation-normalized and combined to es-
timate the feature value corresponding to the current weak
classifier. Furthermore, we employ the threads with even in-
dex to update the parameters of each weak classifier’s classi-
fying model, such as the mean and variance, for subsequent
tracking.

Figure 4 shows the storage structure. The Haar feature
pool, the computed integral image and the classifiers are
written into the global memory because the size of shared
memory is limited (48 KB for GTX480). These arrays are
ordered in a coalesced way to maximize the speed of reading
data from global memory to shared memory. Take the Haar
feature pool for example, as is illustrated in Fig.5. Each
thread corresponds to a Haar feature; the parity of the cur-
rent thread’s index determines whether horizontal or vertical
one is used. If the horizontal feature and the vertical fea-
ture are stored in row major (see Fig. 5 (a)), the global mem-
ory accesses between consecutive threads fall into locations
separated by an offset of 250 (column number) data ele-
ments. But, if the feature is stored in an interaction way (see
Fig. 5 (b)), the data read by each set of 32 adjacent threads
fall into 32 consecutive locations of global memory which
meets the coalesced access requirement and hence gives rise
to 500/32 coalesced read transactions. Thus the kernel can

2551

thread 0 thread2 thread4 «eeees thread 498

vertical
thread1 thread3 thread5 .essss thread499
(a) Non-coalescing due to row-major order storage

first coalesced access

thread id 0 sssees sssees

V H V

threadid 250 251 252 eesees 281 essees 499
(b) Coalescing due to interactive order storage

Fig.5 Data arrangement involving memory coalescing.

be accelerated.

The third kernel called Update-StrongClassifier up-
dates all the strong classifiers by selecting the 20 selectors
from their updated weak classifiers. The kernel is imple-
mented on a grid of 60 thread blocks, each consisting of
250 threads. First each thread updates the accumulated esti-
mated error of its corresponding weak classifier with respect
to the importance weight of each sample. Then the weak
classifier with smallest error is selected by the selector; the
corresponding voting weight «; is updated.

3.2 Optimization Methods for CPU-GPU Memory Access

As the peak bandwidth between the device memory and the
GPU is much higher than the peak bandwidth between host
memory and device memory, minimizing data transfer be-
tween the host and the device is very important for saving
the I/O time. Our approach is optimized in this aspect.

Since the process of data transfer between host and de-
vice is unavoidable, the solution can be converted to overlap
kernel execution with data transfer, which is called concur-
rent copy and execute. On devices that have this capability,
page-locked (or pinned) memory [10] is required to achieve
higher bandwidth between host and device. In addition, the
data transfer and kernel must use different, nonzero streams.
A stream is a sequence of commands that execute in order.
Classifier updating in different streams can be interleaved
and overlapped with stream transferring from CPU to GPU.
Thus, part of the I/O time is “hided” by the device compu-
tations.

4. Experimental Results

We now present the experimental results of applying our
algorithm on various image sequences with the size of
640 x 480. The platforms used are NVIDIA’s GTX480 card
and Intel E8400 3.0 GHz CPU, respectively. Comparisons
are carried out as follows.

Figure 6 shows the speedups when running our parallel
approach. To better illustrate the soundness of our design,

——
=8 proposed method ‘————
=® block-thread method ———

400 -
-
,—"
5300 -
o ’,4
d -
o -
2 200
[7)
100 .
BT
-‘---------‘----------
o ’Illllllll.‘lllIllll ‘ ‘ |
T30 20 . .

50 60
Number of strong classifiers

Fig.6 Speedups with varying number of strong classifiers.

B Optimization M Without optimization = CPU

250
o 200 =
£ 150 =
§ 100 =

30 40 50 60 70 80
Number of strong classifiers

(ms)

m

Executiol

o
|

Fig.7 Execution time comparison.

we perform another GPU-based implementation which di-
rectly assigns each keypoint to one block and each weak
classifier to one thread. We call this approach the block-
thread method. As the number of strong classifiers in-
creases, this block-thread method has not shown obvious
speedups. In contrast, the proposed method exhibits good
scalability, validating the superiority of our implementation.
For 60 strong classifiers, our GPU-based on-line boosting
achieves 400X compared to its counterpart implementation
on CPU.

Although our design of on-line boosting shows very
high degree of parallelization, data transfer between CPU
and GPU is still a major factor which negatively affects
the overall speed of object tracking. For 60 strong classi-
fiers, the parallel computing time is 0.45 ms, while the data
transfer time will cost nearly 60 ms. Hence, we employ
the optimization technique mentioned above. Figure 7 ver-
ifies the performance of optimization. For 60 strong clas-
sifiers, the optimized version takes only 15ms (including
I/O time) to execute on-line learning, realizing 12X speedup
compared to CPU implementation (180 ms). With the rest

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.12 DECEMBER 2011

CPU computational modules (about 35 ms), our CPU-GPU
cooperative platform needs only 50 ms for the overall object
tracking, achieving a real-time speed of 20 fps.

5. Conclusion

This paper developes a GPU-based parallel implementation
of a novel on-line tracking system. Three kernels work col-
laboratively to compute the scale- and rotation-normalized
Haar features and update the strong classifiers. Reasonable
organization of data construction based on memory hier-
archy further improves computing efficiency. Through de-
sign optimization, our parallel on-line tracking presents up
to 12X speedup, including I/O time. The resulted tracker
can process 640 x 480 sized videos in real time.

This work shows a new way of implementing high per-
formance computing systems. We believe the GPU-based
parallel computing will keep providing compelling benefits
for tracking and other real-world industrial tasks. Future
work will involve performing multi-GPGPU associated pro-
cessing in one computer to achieve multiple camera track-
ing.

References

[1] Q. Miao, G. Wang, X. Lin et al., “Scale and rotation invariant
feature-based object tracking via modified on-line boosting,” ICIP,
pp-3929-3932, 2010.

[2] NVIDIA, NVIDIA CUDA programming guide version 2.3,
NVIDIA, 2009.

[3] J. Kong and Y. Deng, “GPU accelerated face detection,” ICIP,
pp-584-588, 2010.

[4] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection
and matching on programmable graphics hardware,” CVPR, 2008.

[5] S. Tang and S. Goto, “Accurate human detection by appearance and
motion,” IEICE Trans. Inf. & Syst., vol.E93-D, no.10, pp.2728-
2736, Oct. 2010.

[6] S. Liang, Y. Liu, C. Wang, and L. Jian, “A CUDA-based parallel
implementation of K-nearest neighbor algorithm,” CyberC, pp.291-
296, 2009.

[7]1 Q. Miao, G. Wang, C. Shi, X. Lin et al., “A new framework for on-
line object tracking based on SURF,” Pattern Recognit. Lett., vol.32,
no.13, pp.1564-1571, 2011.

[8] M. Grabner, H. Grabner, and H. Bischof, “Learning features for
tracking,” CVPR, 2007.

[9] H. Grabner and H. Bischof, “On-line boosting and vision,” CVPR,
2006.

[10] NVIDIA Corp., NVIDIA CUDA C program best practices guide,
Santa Clara, CA, NVIDIA, 2009.

